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Abstract

The visibility representation (VR for short) is a classical representation
of plane graphs. It has various applications and has been extensively
studied. A main focus of the study is to minimize the size of the VR. The
trivial upper bound is (n−1)×(2n−5) (height × width). It is known that
there exists a plane graph G with n vertices where any VR of G requires
a grid of size at least 2

3
n× ( 4

3
n− 3). For upper bounds, it is known that

every plane graph has a VR with grid size at most 2

3
n× (2n − 5), and a

VR with grid size at most (n − 1) × 4

3
n. It has been an open problem

to find a VR with both height and width simultaneously bounded away
from the trivial upper bounds (namely with size at most chn× cwn with
ch < 1 and cw < 2).

In this paper, we provide the first VR construction with this property.
We prove that every plane graph of n vertices has a VR with height at
most 23

24
n + 2⌈√n⌉ + 10 and width at most 23

12
n. The area of our VR is

larger than the area of some of the previous results. However, bounding
one dimension of the VR only requires finding a good st-orientation or

a good dual s∗t∗-orientation of G. On the other hand, to bound both
dimensions of VR simultaneously, one must find a good st-orientation
and a good dual s

∗

t
∗-orientation at the same time, which is far more

challenging. Our VR algorithm is based on an st-orientation of plane
graphs with special properties. Since st-orientations are a very useful
concept in other applications, this result may be of independent interests.

Submitted:

May 2011
Reviewed:

November 2011

Revised:

February 2012
Accepted:

April 2012

Final:

April 2012
Published:

May 2012

Article type:

Regular paper
Communicated by:

A. Symvonis

Research supported in part by NSF Grant CCR-0635104.

E-mail addresses: jiunjiew@buffalo.edu (Jiun-Jie Wang) xinhe@buffalo.edu (Xin He)

mailto:jiunjiew@buffalo.edu
mailto:xinhe@buffalo.edu


318 Wang et al. VR of Plane Graphs with Simultaneous Bound

Plane Graph 4-Connected Plane Graph

Width Height Width Height

1 ≤ (2n− 5) [13, 14] ≤ (n− 1) [13, 14]

2 ≤ ⌊ 3n−6

2
⌋ [7]

3 ≤ ⌊ 22n−42

15
⌋ [10] ≤ (n− 1) [8]

4 ≤ ⌊ 5n

6
⌋ [18]

5 ≤ ⌊ 13n−24

9
⌋ [17] ≤ ⌈ 3n

4
⌉ [16]

6 ≤ ⌊ 4n−1

5
⌋ [15]

7 ≤ 2n

3
+ ⌊2√n⌋ [6]

8 ≤ 2n

3
+ 14 [19]

9 ≤ ⌊ 4n

3
⌋ − 2 [4] ≤ ⌈n

2
⌉+ 2⌈

√

n−2

2
⌉ [1]

10 ≤ 3

2
n [5] ≤ 3

4
n+ 2⌈√n⌉ + 4 [5]

Table 1: Previous results on the height and the width of VR.

1 Introduction

Drawing plane graphs has emerged as a fast growing research area in recent
years (see [3] for a survey). A visibility representation (VR for short) is a
classical drawing style of plane graphs where the vertices of a graph G are
represented by horizontal line segments (called vertex segment), and each edge
of G is represented by a vertical line segment (called edge segment) touching
the vertex segments of its end vertices. Figure 1 shows a VR of a plane graph
G. The problem of finding a VR on a compact grid is important not only in
algorithmic graph theory, but also in practical applications. A simple linear-
time VR algorithm was given by [13, 14] for 2-connected plane graphs. It uses
an st-orientation of G and the corresponding st-orientation of its st-dual G∗

to construct a VR. Using this approach, the height of the VR is bounded by
(n− 1) (which is the number of vertices of G minus 1) and the width of the VR
is bounded by (2n− 5) (which is the number of faces of G minus 1) [13, 14].

As in many other graph drawing problems, one of the main concerns in
VR research is to minimize the grid size (i.e., the height and the width) of the
representation. For the lower bounds, Zhang and He [18] showed that there
exists a plane graph G with n vertices where any VR of G requires a grid of size
at least (⌊ 2n

3 ⌋) × (⌊ 4n
3 ⌋ − 3). Some works have been done to reduce the height

and width of the VR by carefully constructing special st-orientations. Table 1
summarizes related previous results.

Line 1 in Table 1 gives the trivial upper bounds. All other results, except
for Line 10, concentrated on one dimension of the VR (either the width or the
height). In Table 1, the un-mentioned dimension is bounded by the trivial upper
bound, namely, n− 1 for the height and 2n− 5 for the width. (For Line 8, the
original bound given in [19] was Height ≤ 2n/3 + O(1). By a more careful
calculation, the term O(1) is actually 14.) In [11, 12], heuristic algorithms
were developed aiming at reducing the height and the width of VRs at the
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same time. Line 10 in Table 1 is the only VR construction with simultaneously
reduced height and width. However, it only works for 4-connected plane graphs.

In this paper, we prove that every plane graph with n vertices has a VR
with height at most 23

24n+ 2⌈√n⌉+ 10 and width at most 23
12n.

The present paper is organized as follows. Section 2 introduces preliminaries.
Section 3 presents a decomposition lemma for plane graphs. Section 4 presents
the construction of VR with the stated height and width. Section 5 concludes
the paper.

2 Preliminaries

In this section, we give definitions and preliminary results. Definitions not
mentioned here are standard.

All graphs considered in this paper are simple graphs (namely without self-
loops and multiple edges). For a graph G = (V,E) and a subset U ⊂ V , G−U
denotes the graph obtained from G by deleting the vertices in U (and all edges
incident to these vertices). A planar graph is a graph G = (V,E) such that the
vertices of G can be drawn in the plane and the edges of G can be drawn as
non-intersecting curves. Such a drawing is called an embedding. The embedding
divides the plane into a number of connected regions. Each region is called a
face. The unbounded face is the exterior face. The other faces are interior
faces. The vertices and edges that are not on the boundary of the exterior face
are called interior vertices and edges, respectively. A plane graph is a planar
graph with a fixed embedding. A plane triangulation is a plane graph where
every face is a triangle (including the exterior face). We denote the number of
vertices of G by |G|. The set of interior vertices of G is denoted by I(G). Thus
|I(G)| = |G| − 3 for a plane triangulation G.

For a path P , length(P ) (or |P |) denotes the number of edges in P . For two
vertices a, b in P , P (a, b) denotes the sub-path of P from a to b (including a
and b).

When discussing VRs, we assume that, without loss of generality, the input
graph G is a plane triangulation. (If not, we add dummy edges into the faces
of G to obtain a triangulation G′. After constructing a VR for G′, we can get
a VR of G by deleting the vertical line segments for the dummy edges). From
now on, G always denotes a plane triangulation.

A numberingO of a set S = {a1, . . . , ak} is an one-to-one mapping between S
and the set {1, 2, . . . , k}. We write O = 〈ai1 , ai2 , . . . , aik〉 to indicate O(ai1) = 1,
O(ai2) = 2, etc. A set S with a numbering written this way is called an ordered
list. For two elements ai and aj , if O(ai) < O(aj), we write ai ≺O aj . Let S1

and S2 be two disjoint sets. If O1 is a numbering of S1 and O2 is a numbering
of S2, their concatenation, written as O = 〈O1,O2〉, is the numbering of S1∪S2

defined by:

O(x) =

{

O1(x) for all x ∈ S1

O2(x) + |S1| for all x ∈ S2
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G is called a directed graph (digraph for short) if each edge of G is assigned
a direction. An orientation of an undirected graph G is a digraph obtained
from G by assigning a direction to each edge of G. We use G to denote both
the resulting digraph and the underlying undirected graph unless otherwise
specified. (Its meaning will be clear from the context.)

Let G = (V,E) be an undirected graph. A numbering O of V induces an
orientation of G as follows: each edge (u, v) of G is directed from u to v if
and only if O(u) < O(v). The resulting digraph, denoted by GO, is called
the orientation derived from O which, obviously, is an acyclic digraph. We use
lengthG(O) (or simply length(O) if G is clear from the context) to denote the
length of the longest directed path in GO.

For a 2-connected plane graph G and an exterior edge (s, t), an orientation
of G is called an st-orientation if the following conditions hold:

• the resulting digraph is acyclic;

• s is the only source and t is the only sink.

Such a digraph is also called an st-graph. Lempel et al. [9] showed that for
every 2-connected plane graph G and an exterior edge (s, t), there exists an
st-orientation. The properties of st-orientations and st-graphs can be found in
[2].

Let G be a 2-connected plane graph and (s, t) an exterior edge. An st-
numbering of G is an one-to-one mapping ξ : V → {1, 2, . . . , n} such that
ξ(s) = 1, ξ(t) = n, and each vertex v 6= s, t has two neighbors u,w with
ξ(u) < ξ(v) < ξ(w), where u (w, resp.) is called a smaller neighbor (bigger
neighbor, resp.) of v. Given an st-numbering ξ of G, the orientation of G derived
from ξ is obviously an st-orientation of G. On the other hand, if G = (V,E) has
an st-orientation O, we can define an one-to-one mapping ξ : V → {1, . . . , n} by
topological sort. It is easy to see that ξ is an st-numbering and the orientation
derived from ξ is O. From now on, we will interchangeably use the term “an
st-numbering” of G and the term “an st-orientation” of G, where each edge of
G is directed accordingly.

Definition 1 Let G be a plane graph with an st-orientation O, where (s, t) is
an exterior edge drawn at the left on the exterior face of G. The st-dual G∗ of
G and the dual orientation O∗ of O are defined as follows:

• Each face f of G corresponds to a node f∗ of G∗. In particular, the unique
interior face adjacent to the edge (s, t) corresponds to a node s∗ in G∗,
the exterior face corresponds to a node t∗ in G∗.

• For each edge e 6= (s, t) of G separating a face f1 on its left and a face f2
on its right, there is a dual edge e∗ in G∗ from f∗

1 to f∗
2 .

• The dual edge of the exterior edge (s, t) is directed from s∗ to t∗.

Figure 1 (a) shows an st-graphG and its st-dual graphG∗. (Circles and solid
lines denote the vertices and the edges of G. Squares and dashed lines denote the
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Figure 1: (a) An st-graph G and its st-dual graph G∗; (b) A VR of G.

nodes and the edges of G∗.) It is well known that the st-dual graph G∗ defined
above is an st-graph with source s∗ and sink t∗ [2, 13, 14]. The correspondence
between an st-orientationO of G and the dual st-orientationO∗ is an one-to-one
correspondence. The following theorem was proved in [13, 14]:

Theorem 1 Let G be a 2-connected plane graph with an st-orientation O. Let
O∗ be the dual st-orientation of G∗. A VR of G can be obtained from O and
O∗ in linear time. The height of the VR is length(O). The width of the VR is
length(O∗). Since G has n vertices and G∗ has 2n−4 nodes, any st-orientation
of G leads to a VR with height at most n− 1 and width at most 2n− 5.

Figure 1 (b) shows a VR of the graph G shown in Figure 1 (a). The width
of the VR is length(O∗) = 5. The height of the VR is length(O) = 3.

The following theorems were given in [19, 7, 5], and will be needed later for
our VR construction.

Theorem 2 [19] Every plane triangulation with n vertices has a VR with width
at most 2n− 5 and height at most 2

3n+ 14, which can be constructed in linear
time.

Theorem 3 [7] Every plane triangulation with n vertices has a VR with height
at most n−1 and width at most ⌊ 3n−6

2 ⌋, which can be constructed in linear time
and we can specify s and t arbitrarily on the exterior face.

Theorem 4 [5] Every 4-connected plane triangulation with n vertices has a
VR with height at most 3

4n + 2⌈√n⌉ + 4 and width at most 3
2n, which can be

constructed in linear time.

Due to Theorem 1, the results in the above theorems can also be stated in
terms of the lengths of the orientations of G. The statement “G has an st-
orientation O such that length(O) ≤ x and length(O∗) ≤ y” is equivalent to
the statement “the VR of G derived from O has height at most x and width at
most y”. We will use these two statements interchangeably.
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3 A Decomposition Lemma

The basic idea of our VR construction is as follows. First, we divide the input
graph G into several subgraphs. Then we use the VR constructions in Theorems
1, 2, 3 and 4 for different subgraphs of G. Some of them have small width and
others have small height. The main difficulty of our VR construction is to find
a proper balance on the sizes of these subgraphs so that the overall height and
width of the VR are both reduced. In this section, we prove a decomposition
lemma that is needed by our VR construction to achieve the balance.

Let G = (V,E) be a plane graph. A triangle of G is a set of three mutually
adjacent vertices. The notation △ = {a, b, c} denotes a triangle consisting
of vertices a, b, c. A triangle divides the plane into an interior region and an
exterior region. We say that △ = {a, b, c} is a separating triangle if G−{a, b, c}
is disconnected. In other words, △ is a separating triangle if both its interior
and exterior regions contain vertices. The following fact by Whitney is well
known,

Fact 1 A plane triangulationG is 4-connected if and only if G has no separating
triangles.

Let △ = {a, b, c} be a separating triangle. Then G△ denotes the subgraph
of G induced by {a, b, c} ∪ {v ∈ V | v is in the interior of △}. We say that △
is maximal if there is no other separating triangle △′ such G△ ⊂ G△′ . Two
triangles △1 and △2 are related if either G△1

⊆ G△2
or G△2

⊆ G△1
.

Let G1 and G2 be two plane triangulations. If G1 has an internal face f such
that the vertex set of f and the vertex set of the outer face of G2 are identical,
we can embedded G2 into G1 by identifying the face f and the exterior face
of G2. The resulting plane triangulation is denoted by G1 ⊕f G2 (or simply
G1 ⊕G2).

Definition 2 Let G1 and G2 be two plane triangulations such that G2 can
be embedded into G1 by a common face f = {a, b, c}. Let O1 be an st-
orientation of G1 and let O2 be an st-orientation of G2 such that the three
edges {(a, b), (b, c), (c, a)} are oriented the same way in O1 and O2. OG1

⊕OG2

denotes the union of O1 and O2, which is an orientation of G1 ⊕G2.

Lemma 1 Let G1, G2, O1, and O2 be as in Definition 2. Then OG1
⊕OG2

is
an st-orientation of G1 ⊕G2.

Proof: Immediate from the definition. �

Definition 3 The 4-block tree of a plane triangulation G is a rooted tree T
defined as follows:

• If G has no separating triangles (i.e., G is 4-connected), then T consists
of a single root r.
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Figure 2: (a) A triangulation G; (b) 4-block components and the 4-block tree
T of G.

• If not, let △1, . . . ,△p be the maximal separating triangles of G. Let Ti

be the 4-block tree of G△i
. Then T is the tree with root r and the roots

of Ti (1 ≤ i ≤ p) as the children of r.

From the definition, we have the following properties:

• Each non-root node u of T corresponds to a separating triangle △u of G.

• For any u, v ∈ T , u and v have ancestor-descendant relation if and only if
△u and △v are related in G.

For a node u of T , Gu denotes the subgraph G△u
− (

⋃

v∈C(u) I(G△v
)) where

C(u) is the set of children of u in T . In other words, Gu is obtained from
G△u

by deleting all vertices that are in the interior of the maximal separating
triangles of G△u

. Since Gu has no separating triangles, Gu is 4-connected. Each
Gu is called a 4-block component of G. Figure 2 shows a plane triangulation
G, the 4-block components and the 4-block tree of G. For a node u ∈ T , for
convenience, we use |Tu| to denote |G△u

|.
For example, consider the graph G and its decomposition tree T shown

in Figure 2. Let u be the node of T that is the right child of the root of
T (consisting of the vertices {a, c, d, e}.) Then the graph Gu consists of the
four vertices {a, c, d, e}. G△u

is the subgraph of G consisting of the vertices
a, e, c and all vertices contained in the interior region of the separating triangle
△ = {a, e, c}. We have |Tu| = 7.

Lemma 2 Let G be a triangulation and T be its 4-block tree. Then at least one
of the following two conditions holds.

1. There exists a node v in T such that |Gv| ≥ n
6 .
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2. There exists a set of unrelated separating triangles {△1,△2, . . . ,△h} such

that |G△i
| ≥ 5 and n

4 − 3 ≤ ∑h

i=1 |I(G△i
)| ≤ 3

4n− 3.

Moreover, the decomposition can be found in linear time.

Proof: Let r be the root of T . Let H be a maximal path in T from r to some
node v of T such that for each node u ∈ H , |Tu| ≥ 3n

4 (v can be the root r).
If v is a leaf of T , then |Gv| ≥ 3n

4 > n
6 . So condition (1) is satisfied.

Now, suppose v is not a leaf. Let {v1, v2, . . . , vp} be the children of v in T .
Re-arrange the indices, if necessary, so that |Tv1 | ≤ |Tv2 | ≤ . . . ≤ |Tvp |. Then,
either n

4 ≤ |Tvp | < 3n
4 ; or |Tvi | < n

4 for all vi ∈ {v1, v2, . . . , vp}.
Case A: suppose |Tvi | < n

4 for all vi. Let i∗ ∈ {1, · · · , p} be the index such
that |Tvi | ≤ 4 for all i ≤ i∗ and |Tvi | ≥ 5 for all i > i∗. There are three sub-cases.

1.
∑

i>i∗(|Tvi | − 3) < n
4 − 3.

Let n1 = |Gv|. Since Gv is a triangulation with n1 vertices, Gv has 2n1−5
internal faces by Euler’s formula. Each child vi of v corresponds to a
maximal separating triangle of G△v

, and each such separating triangle is
one of the interior faces of Gv. Thus, i

∗ ≤ p ≤ 2n1−5. Since |I(G△vi
)| = 1

for all i ≤ i∗, we have

3

4
n ≤ |Tv| = n1 +

∑

i≤i∗

|I(G△vi
)|+

∑

i>i∗

|I(G△vi
)| = n1 + i∗ +

∑

i>i∗

|I(G△vi
)|

≤ n1 + (2n1 − 5) +
∑

i>i∗

|I(G△vi
)|

From the assumption
∑

i>i∗ |I(G△vi
)| < n

4 − 3, we have: 3n1 − 5 >
3
4n − n

4 + 3 = n
2 + 3. This implies |Gv| = n1 ≥ n

6 + 8
3 . So Gv satisfies

condition (1).

2. n
4 − 3 ≤

∑

i>i∗(|Tvi | − 3) ≤ 3
4n− 3

This is equivalent to n
4 − 3 ≤ ∑

i>i∗ |I(G△vi
)| ≤ 3

4n− 3. So the set of un-
related separating triangles {△vi∗+1

,△vi∗+2
, . . . ,△vip

} satisfies condition
(2).

3.
∑

i>i∗(|Tvi | − 3) > 3
4n− 3

Let it be the first index such that
∑

i∗<i≤it
(|Tvi | − 3) ≥ n

4 − 3. Because

|Tvi | < n
4 for each i, clearly

∑

i∗<i≤it
(|Tvi |−3) ≤ 3

4n−3. So the set of un-
related separating triangles {△vi∗+1

,△vi∗+2
, . . . ,△vit

} satisfies condition
(2).

Case B: n
4 ≤ |Tvp | < 3n

4 . If |Tvp | > 4, then the separating triangle △vp

satisfies n
4 − 3 ≤ |I(G△vp

)| ≤ 3n
4 − 3. So the single separating triangle △vp

satisfies condition (2).
Otherwise, |Tvp | ≤ 4. This is a special case of Case A (1) (where i∗ = p). So

the claim holds.
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For the run time, we first construct the 4-block tree and the 4–block com-
ponents of G. This can be done in linear time [7]. The sizes of the 4-block
components can be easily calculated in linear time. Since the decomposition is
solely determined by the sizes of these 4-block components, it can also be done
in linear time. �

4 Compact Visibility Representation

In this section, we describe our compact VR construction of a plane triangula-
tion G. In order to keep the VR’s height and width small simultaneously, we
construct a VR of G by using different VRs for some subgraphs of G. As stated
in Theorems 1, 2, 3 and 4, some of these VRs have small height and others have
small width. Roughly speaking, we select a set of unrelated separating triangles
{△1,△2, . . . ,△h} of G. Let G′ be the subgraph of G consisting of the vertices
that are outside of {G△1

, G△2
, . . . , G△h

}. We use a VR of G′ with small height.
For each G△i

, we use a VR with small width. Then, we embed each G△i
into

G′.
For convenience, define the function X (k) = ⌈k

2 − 1
2⌉ for integers k ≥ 1. It

is easy to verify that

• X (k) is non-decreasing .

• X (k) ≥ 1 and X (k) ≥ k/3 for all k ≥ 2.

Theorem 5 Let S = {△1,△2, . . . ,△h} be a set of unrelated separating tri-
angles of G. Then G has an st-orientation O such that length(O) ≤ 2n

3 +
∑h

i=1
|I(G△i

)|

3 + 14 and length(O∗) ≤ 2n− 5−∑h

i=1 X (|I(G△i
)|).

Proof: Define Gj = G − ⋃h

i=j+1 I(G△i
). (In other words, Gj is obtained

from G by deleting all vertices in the interior of the separating triangles △i for
j + 1 ≤ i ≤ h.) Note that G = Gh.

We will show that Gj (0 ≤ j ≤ h) has an st-orientation Oj so that

Claim 1 length(Oj) ≤ 2
3 |Gj |+ 14 + 1

3

∑j

i=1 |I(G△i
)|.

Claim 2 length(O∗
j ) ≤ 2|Gj| − 5−∑j

i=1 X (|I(G△i
)|).

Then the theorem follows. We prove these claims by induction.
Base case j = 0: From Theorem 2, G0 has an st-orientation O0 such that

length(O0) ≤ 2
3 |G0| + 14 and length(O∗

0) ≤ 2|G0| − 5. So the claims hold for
the base case.

Induction hypothesis: Gk has an st-orientation Ok such that

length(Ok) ≤
2

3
|Gk|+ 14 +

1

3

k
∑

i=1

|I(G△i
)|
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Figure 3: The proof of Theorem 5 (a) Case (ii); (b) Case (iii); (c) Path in the
dual graph.

and

length(O∗
k) ≤ 2|Gk| − 5−

k
∑

i=1

X (|I(G△i
)|).

Suppose that △k+1 = {ak+1, bk+1, ck+1}. Without loss of generality, as-
sume that the edges of △k+1 are oriented in Ok as (ak+1 → bk+1), (bk+1 →
ck+1), (ak+1 → ck+1).

By Theorem 3, G△k+1
has an st-orientation O△k+1

from ak+1 to ck+1 such

that length(O△k+1
) ≤ |G△k+1

| − 1 and length(O∗
△k+1

) ≤ ⌊ 3|G△k+1
|−6

2 ⌋.
Let Ok+1 = Ok ⊕O△k+1

.

First we show length(Ok+1) ≤ 2
3 |Gk+1|+ 14 + 1

3

∑k+1
i=1 |I(G△i

)|.
Note that |Gk+1| = |Gk|+ |I(G△k+1

)| = |Gk|+ |G△k+1
| − 3.

Let Pk+1 be a longest path in Ok+1 from s to t in Gk+1; let Pk be a longest
path in Ok from s to t in Gk; and let P△k+1

be a longest path in O△k+1
from

ak+1 to ck+1. There are several cases:

Pk+1 does not contain any interior edge in G△k+1
. Then Pk+1 is a path in

Gk. By induction hypothesis,

length(Ok+1) = |Pk+1| ≤ 2
3 |Gk|+ 14 + 1

3

∑k

i=1 |I(G△i
)|

< 2
3 |Gk+1|+ 14 + 1

3

∑k+1
i=1 |I(G△i

)|.

(ii) Pk+1 passes through a path inG△k+1
from ak+1 to ck+1 (see Figure 3 (a)).

Pk+1 can be divided into three sub-paths: Pk+1(s, ak+1), Pk+1(ak+1, ck+1),
Pk+1(ck+1, t). Here Pk+1(s, ak+1), Pk+1(ck+1, t) are paths in Gk, while
Pk+1(ak+1, ck+1) is a path in G△k+1

. Since P△k+1
is a longest path in G△k+1

,
we have |Pk+1(ak+1, ck+1)| ≤ |P△k+1

|.
Let P ′ be the concatenation of Pk+1(s, ak+1) followed by the edges (ak+1 →

bk+1) and (bk+1 → ck+1); followed by Pk+1(ck+1, t). Then P ′ is a path in
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Gk. Thus |P ′| = |Pk+1(s, ak+1)| + 2 + |Pk+1(ck+1, t)| ≤ |Pk|. This implies
|Pk+1(s, ak+1)|+ |Pk+1(ck+1, t)| ≤ |Pk| − 2. Hence

length(Ok+1) = |Pk+1| = |Pk+1(s, ak+1)|+ |Pk+1(ak+1, ck+1)|+ |Pk+1(ck+1, t)|
≤ |Pk| − 2 + |P△k+1

|

≤ 2

3
|Gk|+ 14 +

1

3

k
∑

i=1

|I(G△i
)| − 2 + |G△k+1

| − 1

=
2

3
|Gk|+

1

3

k
∑

i=1

|I(G△i
)|+ [|I(G△k+1

)|+ 3] + 14− 3

=
2

3
(|Gk|+ |I(G△k+1

)|) + 1

3

k+1
∑

i=1

|I(G△i
)|+ 14

=
2

3
|Gk+1|+ 14 +

1

3

k+1
∑

i=1

|I(G△i
)|

(iii) Pk+1 passes through a path in G△k+1
from ak+1 to bk+1 (see Figure 3

(b)).
Pk+1 can be divided into three sub-paths Pk+1(s, ak+1), Pk+1(ak+1, bk+1),

Pk+1(bk+1, t). Here Pk+1(s, ak+1) and Pk+1(bk+1, t) are paths in Gk, while
Pk+1(ak+1, bk+1) is a path in G△k+1

. The concatenation of Pk+1(ak+1, bk+1)
and the edge bk+1 → ck+1 is a path in G△k+1

. Hence |Pk+1(ak+1, bk+1)|+ 1 ≤
|P△k+1

|.
The concatenation of Pk+1(s, ak+1) followed by the edge ak+1 → bk+1, fol-

lowed by Pk+1(bk+1, t) is a path in Gk. So we have that |Pk+1(s, ak+1)| + 1 +
|Pk+1(bk+1, t)| ≤ |Pk|. Hence

length(Ok+1) = |Pk+1| = |Pk+1(s, ak+1)|+ |Pk+1(ak+1, bk+1)|+ |Pk+1(bk+1, t)|
≤ (|Pk| − 1) + (|P△k+1

| − 1)

= |Pk| − 2 + |P△k+1
|

≤ 2

3
|Gk+1|+ 14 +

1

3

k+1
∑

i=1

|I(G△i
)|.

The proof of the last inequality is the same as the proof of case (ii).

(iv) Pk+1 passes through a path in G△k+1
from bk+1 to ck+1. The proof is

symmetric to case (iii).

Next we prove Claim 2. Let P ∗
k be a longest path from s∗ to t∗ in O∗

k. From

the induction hypothesis, we know that |P ∗
k | ≤ 2|Gk| − 5 −∑k

i=1 X (|I(G△i
)|).

Let P ∗
△k+1

be a longest path in G∗
△k+1

. By Theorem 3, |P ∗
△k+1

| ≤ ⌊ 3|G△k+1
|−6

2 ⌋.
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Let P ∗
k+1 be a longest path from s∗ to t∗ in O∗

k+1. Let fk+1 be the face
in Gk+1 that is in the interior of △k+1 adjacent to the edge ak+1 → ck+1 (see
Figure 3 (c).) (In other words, fk+1 corresponds to the source node of the dual
st-orientation of G∗

△k+1
.) If P ∗

k+1 uses any edge in G∗
△k+1

, it must cross the edge
ak+1 → ck+1 and enter the face fk+1. There are two cases.

(a) P ∗
k+1 does not go through fk+1. Then P ∗

k+1 is a path in G∗
k and the claim

trivially holds:

|P ∗
k+1| ≤ 2|Gk| − 5−

k
∑

i=1

X (|I(G△i
)|)

= 2(|Gk|+ |I(G△k+1
)|)− 5− 2|I(G△k+1

)| −
k

∑

i=1

X (|I(G△i
)|)

≤ 2|Gk+1| − 5−
k+1
∑

i=1

X (I(G△i
))

(b) P ∗
k+1 passes through fk+1.

length(O∗
k+1) = |P ∗

k |+ |P ∗
△k+1

| − |{fk+1}|

≤ 2|Gk| − 5−
k
∑

i=1

X (|I(G△i
)|) +

⌊

3|G△k+1
| − 6

2

⌋

− 1

= 2(|Gk+1| − |I(G△k+1
)|)− 5−

k
∑

i=1

X (|I(G△i
)|) +

+

⌊

3(|I(G△k+1
)|+ 3)− 6

2
− 1

⌋

= 2|Gk+1| − 5−
k
∑

i=1

X (|I(G△i
)|)− 2|I(G△k+1

)|+

+

⌊

3|I(G△k+1
)|

2
+

1

2

⌋

= 2|Gk+1| − 5−
k
∑

i=1

X (|I(G△i
)|)−

(⌈ |I(G△k+1
|

2
− 1

2

⌉)

= 2|Gk+1| − 5−
k+1
∑

i=1

X (|I(G△i
)|)

This completes the induction. �

Lemma 3 Let S = {△1,△2, . . . ,△h} be a set of unrelated separating triangles

of G such that G′ = G− (
⋃h

i=1 I(G△i
)) is a 4-connected graph. Then, G has an
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st-orientation O such that length(O) ≤ 3
4n+

∑
h
i=1

|I(G△i
)|

4 + 2⌈
√

|G′|⌉+ 4 and

length(O∗) ≤ 3
2n+

∑
h
i=1

|I(G△i
)|

2 .

Proof: The idea of the proof is very similar to the proof of Theorem 5. The
only difference is that here the graph G′ is assumed to be 4-connected. So we
can construct an st-orientation of G′ in Theorem 4. In contrast, in the proof of
Theorem 5, without the 4-connectivity assumption, we use the st-orientation in
Theorem 2.

Define Gj = G − ⋃h

i=j+1 I(G△i
). We show, by induction, that Gj has an

st-orientation Oj such that

Claim 1: length(Oj) ≤ 3
4 |Gj |+

∑j

i=1
|I(G△i

)|

4 + 2⌈
√

|G′|⌉+ 4 and

Claim 2: length(O∗
j ) ≤ 3

2 |Gj |+
∑j

i=1
|I(G△i

)|

2 .

Base case j = 0: Since G0 = G′ is 4-connected, by Theorem 4, G′ has an
st-orientationO′ such that length(O′) ≤ 3

4 |G′|+2⌈
√

|G′|⌉+4 and length(O′∗) ≤
3
2 |G′|. The claims are trivially true.

Suppose the claims are true for j = k.

Suppose that △k+1 = {ak+1, bk+1, ck+1}. Without loss of generality, assume
the edges of △k+1 are oriented in Ok as (ak+1 → bk+1), (bk+1 → ck+1), (ak+1 →
ck+1).

By Theorem 1, G△k+1
has an st-orientation O△k+1

, with ak+1 as the source
and ck+1 as the sink, such that length(O△k+1

) ≤ |G△k+1
|−1 and length(O∗

△k+1
) ≤

2|G△k+1
| − 5.

We show the orientation Ok+1 = Ok ⊕O△k+1
satisfies the claims.

Both the upper bounds of length(Oj) in Theorem 5 and Lemma 3 can be
written in the form

length(Oj) ≤ α|Gj |+ (1− α)

j
∑

i=1

|I(G△i
)|+ β.

Since we use an st-orientation with the height at most 2
3 |G0|+14 in Theorem 5,

α is 2
3 and β is 14. On the other hand, in the base case of this proof, we use an

st-orientation with height at most 3
4 |Gj |+ 2⌈

√

|G′|⌉+ 4. By the same process,

the value of α is 3
4 and β is 2⌈

√

|G′|⌉+4 in this case. Hence the proof of Claim
1 is similar to the proof of Claim 1 in Theorem 5. In the following, we prove
Claim 2.

By induction hypothesis, Gk has an st-orientationOk such that length(O∗
k) ≤

3
2 |Gk| +

∑k
i=1

|I(G△i
)|

2 . Also, we know that length(O∗
△k+1

) ≤ 2|G△k+1
| − 5. As

in the proof of Theorem 5, there are two cases for analyzing length(O∗
k+1).

(a) P ∗
k+1 does not pass through fk+1. Then P ∗

k+1 is a path in G∗
k and the claim

trivially holds.
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(b) P ∗
k+1 passes through fk+1. Then

length(O) ≤ 3

2
|Gk|+

1

2

k
∑

i=1

|I(G△i
)|+ 2|G△k+1

| − 5− 1

=
3

2
|Gk|+

1

2

k
∑

i=1

|I(G△i
)|+ 2|I(G△k+1

)|

=
3

2
|Gk+1|+

1

2

k+1
∑

i=1

|I(G△i
)|

This completes the induction. �

Theorem 6 Let Gv be a 4-block component of G associated with a node v of
the 4-block tree of G, and let △v be the separating triangle in G corresponding
to node v. Then G has an st-orientation O such that length(O) ≤ 3

4n+ 1
4 (n−

|Gv|) + 2⌈
√

|Gv|⌉+ 5 and length(O∗) ≤ 3
2n+ n−|Gv|

2 .

Proof: Let S = {△1,△2, . . . ,△h} be the set of maximal separating triangles
of G△v

. Since Gv is 4-connected, by Lemma 3, G△v
has an st-orientation O△v

such that

length(O△v
) ≤ 3

4
|G△v

|+ 2⌈
√

|Gv|⌉+ 4+

∑h

i=1 |I(G△i
)|

4

length(O∗
△v

) ≤ 3

2
|G△v

|+
∑h

i=1 |I(G△i
)|

2
.

Let Gext = G−I(G△v
). By Theorem 1, Gext has an st-orientation such that

length(Oext) ≤ |G
ext

|− 1 and length(O∗
ext) ≤ 2|Gext|− 5. Let O = Oext ⊕O△v

.
Then

length(O) ≤ length(Oext) + length(O△v
)− 1

≤ (|G
ext

| − 1) +
3

4
|G△v

|+ 2⌈
√

|Gv|⌉+ 4 +

∑h

i=1 |I(G△i
)|

4
− 1

=
3

4
|Gext|+

1

4
|Gext|+

3

4
|G△v

|+ 2⌈
√

|Gv|⌉+
∑h

i=1 |I(G△i
)|

4
+ 2

=
3

4
(|G|+ 3) +

1

4
(|V (Gext) ∪ (

h
⋃

i=1

I(G△i
))|) + 2⌈

√

|Gv|⌉+ 2

=
3

4
(n+ 3) +

1

4
(n− |Gv|+ 3) + 2⌈

√

|Gv|⌉+ 2

=
3

4
n+

1

4
(n− |Gv|) + 2⌈

√

|Gv|⌉+ 5
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and

length(O∗) = length(O∗
ext) + length(O∗

△v
)− 1

≤ (2|Gext| − 5) + (
3

2
|G△v

|+
∑h

i=1 |I(G△i
)|

2
)− 1

=
3

2
|Gext|+

3

2
|G△v

|+ 1

2
|Gext|+

∑h

i=1 |I(G△i
)|

2
− 6

=
3

2
(|G|+ 3) +

1

2
(|I(Gext) ∪ (

h
⋃

i=1

I(G△i
))|+ 3)− 6

=
3

2
n+

1

2
(n− |Gv|)

This completes the proof. �

Theorem 7 Every plane triangulation G of n vertices has a VR with height
≤ 23

24n + 2⌈√n⌉ + 10 and width ≤ 23
12n. The VR can be constructed in linear

time.

Proof: By Lemma 2, there are two cases.

Case 1: G has a 4-block component with size n1 ≥ n/6. By Theorem 6,
G has an st-orientation O such that length(O) ≤ 3

4n+ n−n1

4 + 2⌈√n⌉+ 5 and

length(O∗) ≤ 3n
2 + (n−n1)

2 . Since n1 ≥ n
6 , we have

length(O) ≤ 23

24
n+ 2⌈

√
n⌉+ 5,

length(O∗) ≤ 23

12
n.

Case 2: G has a set of unrelated separating triangles {△1,△2, . . . ,△h} such
that

• For all i, |G△i
| ≥ 5, (which implies |I(G△i

)| ≥ 2).

• n
4 − 3 ≤

∑h

i=1 |I(G△i
)| ≤ 3

4n− 3.

Since X (z) ≥ z/3 for all z ≥ 2, we have

h
∑

i=1

X (|I(G△i
)|) ≥

∑h

i=1 |I(G△i
)|

3
.

By Theorem 5, G has an st-orientation O such that
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length(O∗) ≤ 2n− 5−
h
∑

i=1

X (|I(G△i
)|)

≤ 2n− 5−
∑h

i=1 |I(G△i
))

3
≤ 2n− 5− n/4− 3

3
<

23

12
n

length(O) ≤ 2n

3
+

∑h

i=1 |I(G△i
)|

3
+ 14

≤ 2n

3
+

3n/4− 3

3
+ 14 =

11

12
n+ 13

≤ 23

24
n+ 2⌈

√
n⌉+ 10

The last inequality holds provided n ≥ 3. In either case, the orientation O leads
to a VR of G with the stated width and height.

To construct the VR, we first find the decomposition in Lemma 2, which
can be done in linear time. Then we use the VR constructions in Theorems 1,
2, 3 and 4 for different 4-block components of G. Since all these VRs can be
constructed in linear time, our algorithm also takes linear time. �

5 Conclusion

In this paper, we showed that every plane graph of n vertices has a VR with
height ≤ 23

24n+2⌈√n⌉+10 and width ≤ 23
12n. This is the first VR construction

for general plane graphs that simultaneously bounds the height and the width
away from the trivial upper bound. The gap between the size of our VR and the
known lower bound is still large. It would be interesting to find more compact
VR constructions.
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