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Abstract

In this paper, we study the geometric RAC simultaneous drawing prob-
lem: Given two planar graphs that share a common vertex set, a geometric
RAC simultaneous drawing is a straight-line drawing in which each graph
is drawn planar, there are no edge overlaps, and, crossings between edges
of the two graphs occur at right angles. We first prove that two planar
graphs admitting a geometric simultaneous drawing may not admit a ge-
ometric RAC simultaneous drawing. We further show that a cycle and a
matching always admit a geometric RAC simultaneous drawing.We also
study a closely related problem according to which we are given a planar
embedded graph G and the main goal is to determine a geometric draw-
ing of G and its weak dual G∗ such that: (i) G and G∗ are drawn planar,
(ii) each vertex of the dual is drawn inside its corresponding face of G
and, (iii) the primal-dual edge crossings form right angles. We prove that
it is always possible to construct such a drawing if the input graph is an
outerplanar embedded graph.
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1 Introduction

A geometric right angle crossing drawing (or geometric RAC drawing, for short)
of a graph is a straight-line drawing in which every pair of crossing edges inter-
sects at right angle. A graph which admits a geometric RAC drawing is called
right angle crossing graph (or RAC graph, for short). Motivated by cognitive
experiments of Huang et al. [17], which indicate that the negative impact of an
edge crossing on the human understanding of a graph drawing is eliminated in
the case where the crossing angle is greater than seventy degrees, RAC graphs
were recently introduced in [10] as a response to the problem of drawing graphs
with optimal crossing angle resolution.

Simultaneous graph drawing deals with the problem of drawing two (or more)
planar graphs on the same set of vertices on the plane, such that each graph
is drawn planar1 (i.e., only edges of different graphs are allowed to cross). The
geometric version restricts the problem to straight-line drawings. Besides its
independent theoretical interest, this problem arises in several application areas,
such as software engineering, databases and social networks, where a visual
analysis of evolving graphs, defined on the same set of vertices, is useful.
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Figure 1: (a) A graph with 8 vertices and 22 edges which does not admit a RAC
drawing [11]. (b) A decomposition of the graph of Figure 1a into a planar
graph (solid edges; a planar drawing is given in Figure 1c) and a matching
(dashed edges), which implies that a planar graph and a matching do not
always admit a GRacSim drawing; their union is not RAC.

Both problems mentioned above are active research topics in the graph draw-
ing literature and positive and negative results are known for certain variations
(refer to Section 2). In this paper, we study the geometric RAC simultaneous
drawing problem (or GRacSim drawing problem, for short), i.e., a combination
of both problems. Formally, the GRacSim drawing problem can be stated as
follows: Let G1 = (V,E1) and G2 = (V,E2) be two planar graphs that share a
common vertex set. The main task is to place the vertices on the plane so that,
when the edges are drawn as straight-lines segments, (i) each graph is drawn
planar, (ii) there are no edge overlaps and (iii) crossings between edges in E1

1In the graph drawing literature, the problem is known as “simultaneous graph drawing
with mapping”. For simplicity, we use the term “simultaneous graph drawing”.



JGAA, 17(1) 11–34 (2013) 13

and E2 occur at right angles. Let G = (V,E1 ∪ E2) be the graph induced by
the union of G1 and G2. Observe that G should be a RAC graph, which implies
that |E1 ∪ E2| ≤ 4|V | − 10 [10]. We refer to this relationship as the RAC-size
constraint.

If two graphs do not admit a geometric simultaneous drawing they, obviously,
do not admit a GRacSim drawing. For instance, since it is known that there
exists a planar graph and a matching that do not admit a geometric simultane-
ous drawing [7], as a consequence, the same graph and matching do not admit a
GRacSim drawing either. Figure 1 depicts an alternative and simpler technique
to prove such negative results for GRacSim drawings, which is based on the
fact that not all graphs that obey the RAC-size constraint are actually RAC
graphs. On the other hand, as we will shortly see, two planar graphs admitting
a geometric simultaneous drawing may not admit a GRacSim drawing.

The GRacSim drawing problem is of interest since it combines two current
research topics in graph drawing. Our motivation to study this problem rests on
the work of Didimo et al. [10] who proved that the crossing graph of a geometric
RAC drawing is bipartite2. Thus, the edges of a geometric RAC drawing of a
graph G = (V,E) can be partitioned into two sets E1 and E2, such that no two
edges of the same set cross. So, the problem we study is, in a sense, equivalent
to the problem of finding a geometric RAC drawing of an input graph (if one
exists), given its crossing graph.

A closely related problem to the GRacSim drawing problem is the follow-
ing: Given a planar embedded graph G, determine a geometric drawing of G
and its weak dual G∗ (i.e., without the face-vertex corresponding to the external
face) such that: (i) G and G∗ are drawn planar, (ii) each vertex of the dual is
drawn inside its corresponding face of G and, (iii) the primal-dual edge cross-
ings form right angles. We refer to this problem as the geometric Graph-Dual
RAC simultaneous drawing problem (or GDual-GRacSim for short). Note that,
the GDual-GRacSim drawing problem is not a new problem. Back in 1963,
W.T. Tutte asked whether “Can we construct simultaneous straight represen-
tations . . . of G and G∗ in which the . . . corresponding edges are represented by
perpendicular segments ?” [18, p.p.767].

The remainder of this paper is structured as follows: In Section 2, we re-
view relevant previous research. In Section 3, we demonstrate that two planar
graphs admitting a geometric simultaneous drawing may not admit a GRacSim
drawing. In Section 4, we prove that a cycle and a matching always admit
a GRacSim drawing, which can be constructed in linear time. In Section 5,
we study the GDual-GRacSim drawing problem. We show that given a pla-
nar embedded graph, a GDual-GRacSim drawing of the planar graph and its
weak dual does not always exist. If the input graph is an outerplanar embedded
graph, we present an algorithm that constructs a GDual-GRacSim drawing of
the outerplanar graph and its weak dual. We conclude in Section 6 with open
problems.

2This can be interpreted as follows: “If two edges of a geometric RAC drawing cross a
third one, then these two edges must be parallel.”
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2 Related Work

Didimo et al. [10] were the first to study the geometric RAC drawing problem
and proved that any graph with n ≥ 3 vertices that admits a geometric RAC
drawing has at most 4n− 10 edges. Arikushi et al. [4] presented bounds on the
number of edges of polyline RAC drawings with at most one or two bends per
edge. Angelini et al. [1] presented acyclic planar digraphs that do not admit
upward geometric RAC drawings and proved that the corresponding decision
problem is NP-hard. Argyriou et al. [3] proved that it is NP-hard to decide
whether a given graph admits a geometric RAC drawing (i.e., the upwardness re-
quirement is relaxed). Di Giacomo et al. [8] presented tradeoffs on the maximum
number of bends per edge, the required area and the crossing angle resolution.
Didimo et al. [9] characterized classes of complete bipartite graphs that admit
geometric RAC drawings. Van Kreveld [19] showed that the quality of a planar
drawing of a planar graph (measured in terms of area required, edge-length and
angular resolution) can be improved if one allows right angle crossings. Eades
and Liotta [11] proved that a maximally dense RAC graph (i.e., |E| = 4|V |−10)
is also 1-planar, i.e., it admits a drawing in which every edge is crossed at most
once.

Regarding the geometric simultaneous graph drawing problem, Brass et al.
[5] presented algorithms for drawing simultaneously (a) two paths, (b) two cycles
and, (c) two caterpillars. They also proved that there exist three paths that do
not admit a geometric simultaneous drawing. Estrella-Balderrama et al. [14]
proved that the problem of determining whether two planar graphs admit a
geometric simultaneous drawing is NP-hard. Erten and Kobourov [13] showed
that a planar graph and a path cannot always be drawn simultaneously. Frati,
Kaufmann and Kobourov [15] proved this negative result, even for the case
where the planar graph and the path do not share any edges. Geyer, Kaufmann
and Vrt’o [16], showed that a geometric simultaneous drawing of two trees does
not always exist. Angelini et al. [2] proved the same result for a path and a tree.
Cabello et al. [7] showed that a geometric simultaneous drawing of a matching
and (a) a wheel, (b) an outerpath or, (c) a tree always exists, while there exist a
planar graph and a matching that cannot be drawn simultaneously. For a quick
overview of known results on this research area refer to Table 1 of [15].

Brightwell and Scheinermann [6] proved that the GDual-GRacSim drawing
problem always admits a solution if the input graph is a triconnected planar
graph. To the best of our knowledge, this is the only result which incorporates
the requirement that the primal-dual edge crossings form right angles. Erten
and Kobourov [12], presented an O(n) time algorithm that results into a simul-
taneous drawing but not a RAC drawing of a triconnected planar graph and its
dual on an O(n2) integer grid, where n is the total number of vertices in the
graph and its dual.

Before we proceed with the description of our results, we introduce some
necessary notation. Let G = (V,E) be a simple, undirected graph drawn on the
plane. We denote by Γ(G) the drawing of G. By x(v) and y(v), we denote the
x- and y-coordinate of v ∈ V in Γ(G). We refer to the vertex (edge) set of G
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as V (G) (E(G)). Given two graphs G and G′, we denote by G ∪G′ the graph
induced by the union of G and G′.

3 A Wheel and a Matching: A Negative Result

In this section, we show that there exists a pair of planar graphs that admits
a geometric simultaneous drawing, their union meets the RAC size constraint
and they do not admit a GRacSim drawing (i.e, the class of graphs that admit
GRacSim drawings is a subset of the class of graphs for which a simultaneous
drawing is possible). We achieve this by showing that there exists a wheel
and a matching which do not admit a GRacSim drawing3. Cabello et al. [7]
have shown that a geometric simultaneous drawing of a wheel and a matching
always exists. Before we proceed with the detailed description of our proof, we
first present a known property of RAC graphs, which has been independently
observed by Didimo, Eades and Liotta [10] and Angelini et al. [1].

Rac-Property 1 Let (u, v) and (u, v′) be a pair of non-overlapping edges in-
cident to the same vertex. We say that (u, v) and (u, v′) form a fan anchored
at u. In a straight-line RAC drawing no edge can cross a fan.

Theorem 1 There exists a wheel and a matching which do not admit a GRacSim
drawing.

Proof: We denote the wheel by W and the matching by M. Let the com-
mon vertex set of W and M be V = {v0, v1, . . . , vn+1}, where n ≥ 6. We
further assume that n = 6k, for some k ∈ Z. If v0 is the center of W and
v1 → . . . → vn+1 → v1 is the rim of W, then E(W) = {(vi, vi+1); i =
1, . . . , n} ∪ {(vn+1, v1)} ∪ {(v0, vi); i = 1, . . . , n + 1}. Matching M contributes
n/2+1 edges; one edge ofM connects v0 with vn+1. The 6k vertices on the rim
(excluding vertex 6k + 1) are split into k groups, with group i, 1 ≤ i ≤ k, con-
sisting of vertices v6i, . . . , v6i+5. Then, in each group i, vertex v6i+j is matched
with v6i+j+3, j = 0, 1, 2. More formally, E(M) = {(v6i−j−3, v6i−j); i =
1, . . . , n/6, j = 0, 1, 2} ∪ {(v0, vn+1)}.

In any planar drawing of W, the outerface is bounded either by a 3-cycle
formed by v0 and two consecutive vertices of the rim of W (see Figure 2a where
we assume without loss of generality that (v1, vn+1) is an edge of the boundary)
or by the rim of W itself (see Figure 2b). Now observe that in both cases each
edge ofM (except for edge (v0, vn+1)) connects two vertices that belong to two
triangles of W incident at v0 and are not consecutive around v0, in the planar
drawing ofW. Hence, by RAC-Property 1 it follows that the edges ofM cannot
cross the spokes of W. This implies that the edges of M and the edges of W
cannot cross with each other, except for edge (v0, vn+1) that belongs to both
M and W. However, under this assumption M cannot be drawn planar. 2

3A wheel and a matching on a vertex set of size n contribute 5n/2− 2 edges, which meets
the RAC size constraint.
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v1 vn+1

v2 v3 v4 v5 v6

v0

(a) The outerface of W is bounded by a
3-cycle

v0v1 v5

v4v2

v3

v6vn+1

(b) The outerface ofW is bounded by its
rim

Figure 2: In both figures, the center of W is marked by a box, the spokes of W
are drawn as dashed line-segments, the rim of W is drawn in bold, while
matchingM is drawn in gray. The examples correspond to the case where
k = 1, i.e., wheel of rim-size seven. Wheels of rim-size 6k + 1, k > 1
can be obtained by subdividing the dotted drawn edges and appropriately
inserting wheel and matching edges.

4 A Cycle and a Matching: A Positive Result

In this section, we first prove that a path and a matching always admit a
GRacSim drawing and then we show that a cycle and a matching always admit
a GRacSim drawing as well. Note that, the union of a path and a matching is
not necessarily a planar graph. Cabello et al. [7] provide an example of a path
and a matching, which form a subdivision of K3,3. We denote the path by P and
the matching by M. Let v1 → v2 → . . .→ vn be the edges of P (see Figure 3).
In order to keep the description of our algorithm simple, we will initially assume
that P and M do not share edges, i.e., E(P)∩E(M) = ∅. Since P and M are
defined on the same vertex set, n should be even and |E(M)| = n/2 (i.e., M
is a perfect matching). Later on this section, we will describe how to cope with
the cases where E(P) ∩ E(M) 6= ∅ or M is not a perfect matching.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14

Figure 3: An example of a path P and a matching M. The path appears at the
bottom of the figure. The edges of M are drawn bold, with two bends
each. The edges of path P form two matchings, i.e., Podd and P − Podd.
The edges of Podd are drawn solid, while the edges of P − Podd dotted.

The basic idea of our algorithm is to identify in the graph induced by the
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union of P andM a set of cycles C1, C2, . . . , Ck, k ≤ n/4, such that: (i) |E(C1)|+
|E(C2)|+. . .+|E(Ck)| = n, (ii)M⊆ C1∪C2∪. . .∪Ck, and, (iii) the edges of cycle
Ci, i = 1, 2, . . . , k alternate between edges of P and M. Note that properties
(i) and (ii) imply that the cycle collection will contain half of P’s edges (in
particular d|E(P )|/2e edges) and all of M’s edges. In our drawing, these edges
will not cross with each other. The remaining edges of P will introduce only
right angle crossings with the edges of M.

Let Podd be a subgraph of P which contains each second edge of P, starting
from its first edge, i.e., E(Podd) = {(vi, vi+1); 1 ≤ i < n, i is odd}. In Figure 3,
the edges of Podd are drawn solid. Clearly, Podd is a matching. Since we have
assumed that n is even, Podd contains exactly n/2 edges. Hence, |E(Podd)| =
|E(M)|. In addition, Podd covers all vertices of P, and, E(Podd) ∩ E(M) = ∅.
The later equation trivially follows from our initial hypothesis, which states that
E(P)∩E(M) = ∅. We conclude that Podd∪M is a 2-regular graph. Thus, each
connected component of Podd ∪M corresponds to a cycle of even length, which
alternates between edges of Podd andM. This is the cycle collection mentioned
above (see Figure 4).
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Figure 4: Podd ∪M (of Figure 3) consists of cycles C1 and C2. The edges of Podd are
drawn solid, while the edges of M are drawn bold.

Initially, we fix the x-coordinate of each vertex4 of P by setting x(vi) = i,
1 ≤ i ≤ n. This ensures that P is x-monotone and hence planar. Later on, we
will slightly change the x-coordinate of some vertices of P without affecting P’s
monotonicity. The y-coordinate of each vertex of P is established by considering
the cycles of Podd ∪M.

We draw each of these cycles in turn. More precisely, assume that zero or
more cycles have been completely drawn and let C be the cycle in the cycle
collection which contains the leftmost vertex, say vi, of P that has not been
drawn yet (initially, vi is identified by v1). Then, vertex vi should be an odd-

4Note that, the algorithm can be adjusted so that the x and y coordinates of each vertex
are computed at the same time (without affecting neither the correctness of the algorithm
nor its running time). We have chosen to compute them separately in order to simplify the
presentation.
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indexed vertex and thus (vi, vi+1) belongs to C. Orient cycle C so that vertex
vi is the first vertex of cycle C and vi+1 is the last (see Figure 4). Based on this
orientation, we will draw the edges of C in a snake-like fashion, starting from
vertex vi and reaching vertex vi+1 last. The first edge to be drawn is incident
to vertex vi and belongs to M. We draw it as a horizontal line-segment at
the bottommost available layer in the produced drawing (initially, L1 : y = 1).
Since cycle C alternates between edges of Podd and M, the next edge to be
drawn belongs to Podd followed by an edge of M. If we can draw both of them
in the current layer without introducing edge overlaps, we do so. Otherwise, we
employ an additional layer, i.e., the edge of Podd is drawn oblique starting from
the current layer towards the next one and the edge ofM is drawn horizontally
at the new layer. We continue in the same manner, until edge (vi, vi+1) is
reached in the traversal of cycle C. This edge connects two consecutive vertices
of P that are the leftmost in the drawing of C. Therefore, edge (vi, vi+1) can be
added in the drawing of C without introducing any crossings. Thus, cycle C is
drawn planar.

So far, we have drawn all edges of M and half of the edges of P (i.e., Podd)
and we have obtained a planar drawing in which all edges of M are drawn
as horizontal, non-overlapping line segments. In the worst case, this drawing
occupies n/2 layers.

We proceed to incorporate the remaining edges of P, i.e, the ones that belong
to P − Podd, into the drawing (refer to the dotted drawn edges of Figure 5a).
Since x(vi) = i, i = 1, 2, . . . , n, the edges of P do not cross with each other and
therefore P is drawn planar. In contrast, an edge of P−Podd may cross multiple
edges of M, and, these crossings do not form right angles (see Figure 5a). In
order to fix these crossings, we move each even-indexed vertex of P one unit to
the right (keeping its y-coordinate unchanged), except for the last vertex of P.
Then, the endpoints of the edges of P−Podd have exactly the same x-coordinate
and cross at right angles the edges of M which are drawn as horizontal line-
segments. The path remains x-monotone (but not strictly anymore) and hence
planar. In addition, it is not possible to introduce vertex overlaps, since in the
produced drawing each edge of M has at least two units length (recall that
E(P) ∩ E(M) = ∅). Since the vertices of the drawing do not occupy even
x-coordinates, the width of the drawing can be reduced from n to n/2 + 1
(see Figure 5b). We can further reduce the width of the produced drawing by
merging consecutive columns that do not interfere in y-direction into a common
column (see Figure 5c). However, this post-processing does not result into a
drawing of asymptotically smaller area. This completes the description of our
algorithm for the case where E(P) ∩ E(M) = ∅.
Theorem 2 A path P and a perfect matching M on the same vertex set and
such that E(P)∩E(M) = ∅ always admit a GRacSim drawing on an (n/2+1)×
n/2 integer grid, where n is the size of the vertex set. Moreover, the drawing
can be computed in linear time.

Proof: Finding the cycles of Podd ∪M can be done in O(n) time, where n is
the number of vertices of P; we identify the leftmost vertex of each cycle and
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(a) A drawing obtained by incorporating the edges of P − Podd into

the drawing of Figure 4.
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(b) A drawing obtained by moving the even-indexed vertices of P in
the drawing of Figure 5a one unit to the right.
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(c) A compact GRacSim drawing.

Figure 5: In the drawings the edges of Podd are drawn solid, while the edges of
P − Podd dotted. The edges of M are drawn bold.
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u vw1 w2 w2k−1 w2k

(a) Input instance (P,M) in which E(P) ∩ E(M) 6= ∅

u v
(b) Transforming instance (P,M) to (P ′,M′)

Figure 6: In the drawings the edges of P are drawn plain, while the edges of M are
drawn bold. Vertices of Vdis(P) (Vcom(P), resp.) are drawn as squares
(circles, resp.)

then we traverse it. Having computed the cycle collection of Podd ∪ M, the
coordinates of the vertices are computed in O(n) total time by a traversal of
the cycle. 2

For the case where P and M share edges (i.e., E(P) ∩ E(M) 6= ∅), our
intention is to construct a drawing on an n× n/2 integer grid by extending the
algorithm that supports Theorem 2. To achieve this, we utilize the fact that the
resulting drawings for the case where E(P) ∩ E(M) = ∅ are stretchable in the
following sense: If we draw any vertical non-grid line that crosses part of the
drawing (refer to the dashed drawn line of Figure 5b), then we can shift to the
left (right, resp.) the drawing that is to the left (right, resp.) of this line without
affecting either the planarity of P andM or the angles in which P andM cross
(since crossings always appear at grid points; horizontal stretching). Similarly,
one can vertically stretch the drawing by employing a horizontal non-grid line.

We initially assume that the first and the last edge of P do not appear in
M5, i.e., edges that are in both P andM are interior edges of P. Let Vcom(P)
(Vdis(P), resp.) be the set of vertices of P which are (are not, resp.) incident
to an edge that belongs to both P and M (see Figure 6). More formally,
Vcom(P) = {u ∈ V (P) : ∃u ∈ V (P) s.t. (u, v) ∈ E(P) ∩ E(M)} and Vdis(P) =
V (P) − Vcom(P). Since we have assumed that neither the first nor the last
edge of P appear in M, Vcom(P) ⊂ V (P). Similarly, we define Vcom(M) and
Vdis(M). Obviously, Vcom(P) = Vcom(M). Since P and M are defined on the
same vertex set, it follows that Vdis(P) = Vdis(M).

If there exist edges that belong to both P and M, we momentarily remove
them from both P andM as follows: If u→ w1 → . . .→ w2k → v is a subpath
of vertices of P such that u, v ∈ Vdis(P) and wi ∈ Vcom(P), i = 1, 2, . . . , 2k
(see Figure 6a), we replace it by a single edge (u, v) of P (see Figure 6b). This

5Later on this section, we will describe how to cope with the degenerated cases where either
the first or the last edge of P appear in M.
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will result into a new path P ′ of n′ vertices and a new matching M′ with the
following properties:

i) V (P ′) = Vdis(P)

ii) V (M′) = Vdis(M)

iii) E(P ′) ∩ E(M′) = ∅

iv) n′ is even

v) |E(M′)| = n′/2

Hence, P ′ and M′ can be drawn simultaneously due to Theorem 2. The
width (height, resp.) of the produced drawing equals to |Vdis(P)|/2+1 (|Vdis(M)|/2,
resp.) In order to incorporate the removed vertices and edges in the produced
drawing, we utilize the fact that the resulting drawing is stretchable.

Let u→ w1 → . . .→ w2k → v be a subpath of degree-2 vertices of P which
was contracted into a single edge (u, v) ∈ E(P ′), when transforming instance
(P,M) to (P ′,M′). We distinguish the following cases:

- Edge (u, v) is drawn as a horizontal line segment in the drawing of (P ′,M′):
This case is illustrated in Figure 7a, in which we have assumed that in
the drawing of P ′ and M′ it holds that x(u) < x(v). In this case, we
apply a horizontal stretching in order to allocate 2k units of length di-
rectly next to u. Then, vertices w1, w2, . . . , w2k are drawn at consecutive
x-coordinates along the line y = y(u) starting from x = x(u) + 1 (i.e.,
x(wi) = x(u) + i + 1, i = 1, 2, . . . , 2k).

- Edge (u, v) is drawn as a sloped (neither vertical nor horizontal) line seg-
ment in the drawing of (P ′,M′): This case is illustrated in Figure 7b,
in which we have assumed that in the drawing of P ′ and M′ it holds
that x(u) < x(v) and y(u) < y(v). In this case, we first apply a vertical
stretching in order to allocate one unit of length directly above u followed
by a horizontal stretching, in order to allocate 2k units of length directly
next to u. In the resulting drawing, vertices w1, w2, . . . , w2k are drawn
at consecutive x-coordinates along the line y = y(u) + 1 starting from
x = x(u) + 1 (i.e., x(wi) = x(u) + i + 1, i = 1, 2, . . . , 2k).

- Edge (u, v) is drawn as a vertical line segment in the drawing of (P ′,M′):
This case is illustrated in Figure 7a and is quite similar to the previous one.
Again, without loss of generality, we have assume that in the drawing of
P ′ andM′ it holds that y(u) < y(v). In this case, we first apply a vertical
stretching in order to allocate one unit of length directly above u. Then,
we apply a transformation similar to a horizontal stretching, in order to
allocate 2k units of length between u and v (see Figure 7c). More formally,
in order to achieve the transformation illustrated in Figure 7c, we use a
vertical live segment that coincides with edge (u, v), and, we shift the top
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w2

2k

v
w1 w2k−1 w2k

u v u

(a) Edge (u, v) is drawn as a horizontal line segment in the drawing of
(P ′,M′)

w2

2k

v

w1 w2k−1 w2k

u

v

u
1

(b) Edge (u, v) is drawn as a sloped line segment in the drawing of
(P ′,M′)

w2

2k

v

w1 w2k−1 w2k

u

v

u
1

(c) Edge (u, v) is drawn as a vertical line segment in the drawing of
(P ′,M′)

Figure 7: Different cases that occur when reinserting a contracted subpath u →
w1 → . . .→ w2k → v of degree-2 vertices of P. In the drawings the edges
of the path are drawn plain, while the edges of the matching are drawn
bold.

endpoint of edge (u, v), while keeping its bottom endpoint in place. In
the resulting drawing, vertices w1, w2, . . . , w2k are drawn at consecutive
x-coordinates along the line y = y(u) + 1 starting from x = x(u) (i.e.,
x(wi) = x(u) + i, i = 1, 2, . . . , 2k).

From the above, it follows that when we reinsert the 2k vertices of a con-
tracted subpath of degree-2 vertices of P the width of the drawing gets larger
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by 2k units of length. So in total, the width of the drawing is at most n. On
the other hand, all matching edges are drawn as horizontal line segments. In
worst case, no two matching edges share the same horizontal grid line. So in
total, the height of the drawing is at most n/2.

Recall that in order to cope with the case where P and M share edges, we
had initially assumed that neither the first nor the last edge of P appear in
M. The reason for this assumption is that the transformations that we have
described so far (see Figure 7) require subpaths that start from a vertex of
Vdis(P) and (through an even number of vertices of Vcom(P)) end to another
vertex of Vdis(P) again. If, for example, the first vertex of P belongs to Vcom(P)
(i.e., the first edge of P appears inM), then there might exist a whole subpath
of vertices of Vcom(P) at the beginning of P6. However, such a subpath is not
supported by the transformations that we have described so far, since it does
not start from a vertex of Vdis(P).

If there exists a subpath of vertices of Vcom(P) at the beginning or at the
end of P, we momentarily remove it from P ∪M and draw it in a snake-like
fashion as illustrated in Figure 8. The remaining part of P ∪M is either the
empty graph or a graph with the property that neither the first nor the last edge
of the path appear in the matching, which can be drawn with the developed
algorithm. In the former case, the resulting drawing is a snake-like drawing of
P and M. In the latter case, we simply plug the snake-like drawings of the
removed parts to the first and last vertices of the drawing of the remaining part
of P ∪M, which are drawn leftmost and rightmost, respectively. The height of
the resulting drawing gets larger by at most two units of length, while its width
is at most the number of vertices of the path. This ensures that the total area
of the drawing is not affected. The following theorem summarizes our result.

Figure 8: Snake-like drawings in the case where the matching pairs each second tuple
of vertices of the path.

Theorem 3 A path P and a perfect matchingM on the same vertex set always
admit a GRacSim drawing on an n×n/2 integer grid, where n is the size of the
vertex set. Moreover, the drawing can be computed in linear time.

We extend the algorithm that produces a GRacSim drawing of a path and
a matching to also cover the case of a cycle C and a matchingM. Obviously, if

6In worst case, all vertices of P belong to Vcom(P), i.e., M matches each second pair of
vertices of P.
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we remove an edge from the input cycle (preferably one that belongs to E(C)−
E(M)), the remaining graph is a path P (see Figure 9). Then, we apply the
developed algorithm and obtain a GRacSim drawing of P and M.

We describe in detail the case where E(P) ∩ E(M) = ∅. The case where
E(P) ∩ E(M) 6= ∅ is treated similarly. By Theorem 2, the drawing fits in a
(n/2 + 1) × n/2 integer grid. Additionally, the first vertex of P is drawn at
the bottommost layer (hence its incident edge in M is not crossed), and the
last vertex of P is drawn rightmost. With these two properties, we can add the
removed edge between the first and the last vertex of P without introducing
new crossings. To achieve this, we move the first vertex of P at most n/2 + 2
units downwards (keeping its x-coordinate unchanged) and the last vertex of P
at most n/2 + 1 units rightwards (keeping its y-coordinate unchanged). Then,
the insertion in the drawing of the edge that closes the cycle does not introduce
any crossings, as desired. The following theorem summarizes our result.

v1

v12

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

Figure 9: A GRacSim drawing of a cycle and a matching.

Theorem 4 A cycle C and a perfect matching M on the same vertex set and
such that E(C) ∩E(M) = ∅ always admit a GRacSim drawing on an (n + 2)×
(n+ 2) integer grid, where n is the size of the vertex set. Moreover, the drawing
can be computed in linear time.

As already stated, the case where E(P) ∩ E(M) 6= ∅ is treated similarly.
Since by Theorem 3 we have to reinsert the deleted edge in a drawing of size
n× n/2, the resulting drawing will be of size 3n/2× 3n/2. Hence, we can state
the following theorem.

Theorem 5 A cycle C and a perfect matchingM on the same vertex set always
admit a GRacSim drawing on an 3n/2× 3n/2 integer grid, where n is the size
of the vertex set. Moreover, the drawing can be computed in linear time.
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4.1 Algorithm Extensions

According to the formal definition of the GRacSim drawing problem, the input
graphs share the same vertex set. This immediately implies thatM is a perfect
matching and n is even. However, our algorithm can be adjusted to support the
case where the input graphs are not necessarily on the same vertex set.

Consider the case where the input consists of a path P and a matching M,
which have to be drawn simultaneously and assume without loss of generality
that the union of P andM is a connected graph7. Let V be the union of V (P)
and V (M) and denote by n the size of V . Without loss of generality, we assume
that n is even8. In a first step, we augment P so that it spans all vertices of
V . Let Paug be the resulting path. Since n is even, we can augmentM so that
it spans all vertices of V , as well. Denote by Maug the augmented matching.
Obviously, Paug andMaug are defined on the same vertex set, which is of even
size, and Maug is a perfect matching. Hence, Paug and Maug can be drawn
simultaneously by the algorithm supporting Theorem 3. In order to obtain a
GRacSim of P and M, it is enough to remove from the GRacSim drawing of
Paug and Maug the extra edges that were used in order to augment P and M
to Paug and Maug, respectively. The following theorem summarizes our result.

Theorem 6 A path P and a matching M always admit a GRacSim drawing
on an n×n/2 integer grid, where n is the size of the union of V (P) and V (M).
Moreover, the drawing can be computed in linear time.

In the case where the input consists of a cycle C and a matchingM, we follow
a similar but slightly different approach, since C cannot be further augmented.
Again, we assume without loss of generality that the union of C and M is a
connected graph. We proceed as follows. We monetarily remove the vertices
that belong exclusively to M (i.e., their incident edges belong exclusively to
M) and their incident edges in M. Then, we proceed to augment M, so that
it spans all vertices of C (and obtain a new matching Maug, as previously).
Observe that this is feasible, only when |V (C)| is even. If |V (C)| is odd, then
unavoidably there exists a vertex of C which is not covered by Maug. Say
without loss of generality that this is the case. In order to conform with the
assumptions of the algorithm supporting Theorem 5, we momentarily remove
this particular vertex from C, by connecting its two incident vertices in C by
an edge. The resulting cycle, say Cdec, and Maug can be drawn simultaneously
by means of the algorithm supporting Theorem 5, since they are defined on the
same vertex set and Maug is a perfect matching.

In order to obtain a GRacSim of C andM, we first remove from the GRacSim
drawing of Cdec and Maug the extra edges that were used in order to augment
M to Maug. Then, we proceed to incorporate into the resulting drawing the
vertex of C that was previously removed, when transforming the odd-length
cycle C to the even-length cycle Cdec. To achieve this, a horizontal stretching

7If this is not the case, our algorithm treats each connected component separately.
8If n is odd, we add an isolated vertex in V . Hence, its size become even.
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similar to the ones described in the proof of Theorem 3 is enough. However,
since both the width and the height of the drawing might become larger by one
unit of length, special attention should be paid at the bottommost drawn edge
of the cycle (i.e., the one which is drawn neither as a horizontal nor as a vertical
line segment; see Figure 9). More precisely, potential crossings posed by this
particular edge can be resolved by shifting the bottommost (rightmost, resp.)
vertex of the drawing one unit downwards (rightwards, resp.).

Now it remains to explain how to incorporate into the resulting drawing
the vertices that belong exclusively to M and their corresponding edges of the
matching (which we had removed at the begging of this procedure). Since
we have assumed that the union of C and M is a connected graph, each of
these vertices should be incident to a vertex of C (through an edge of M). Let
v ∈ V (C) be such a vertex of C. Obviously, in the drawing constructed so far v is
not incident to a matching edge, which implies that either its left or right “port”
is free. Hence, we can incorporate its incident matching edge into the drawing
constructed so far, as a horizontal line segment of unit length incident to v’s
free port, through a horizontal stretching directly next to v’s free port. Again,
potential crossings posed by the presence of the bottommost drawn edge of the
cycle can be resolved by shifting the bottommost (rightmost, resp.) vertex of
the drawing one unit downwards (rightwards, resp.), each time a new vertex
among those belonging exclusive toM is incorporated. Note that this does not
affect the total area occupied by the drawing, which is still 3n/2×3n/2, where n
is the size of the union of V (C) and V (M). The following theorem summarizes
our result.

Theorem 7 A cycle C and a matching M always admit a GRacSim drawing
on an 3n/2 × 3n/2 integer grid, where n is the size of the union of V (C) and
V (M). Moreover, the drawing can be computed in linear time.

From the above, it follows that we can identify a class of RAC graphs.

Corollary 1 Let G be a simple connected graph that can be decomposed into a
matching and either a path or a cycle. Then, G is a RAC graph.

5 A Planar Graph and its Dual: An Interesting
Variation

In this section, we examine the GDual-GRacSim drawing problem. This prob-
lem can be considered as a variation of the GRacSim drawing problem, where the
first graph (i.e., the planar graph) determines the second one (i.e., the dual) and
places restrictions on its layout. Recall that according to the GDual-GRacSim
drawing problem, we are given a planar embedded graph G and the main task
is to determine a geometric drawing of G and its weak dual G∗ such that: (i) G
and G∗ are drawn planar, (ii) each vertex of the dual is drawn inside its corre-
sponding face of G and, (iii) the primal-dual edge crossings form right angles.
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As already stated in Section 2, Brightwell and Scheinermann [6] proved that
the GDual-GRacSim problem always admits a solution if the input graph is a
triconnected planar graph. For the general case of planar graphs, we demon-
strate by an example that it is not always possible to compute such a drawing,
and thus, we concentrate our study in the case of outerplanar graphs.

Initially, we consider the case where the planar drawing Γ(G) of graph G
is specified as part of the input and it is required that it remains unchanged
in the output. We demonstrate by an example that it is not always feasible to
incorporate G∗ into drawing Γ(G) and obtain a GDual-GRacSim drawing of G
and G∗. The example is illustrated in Figure 10. In the following, we prove
that if the input graph is a planar embedded graph, then the GDual-GRacSim
drawing problem does not always admit a solution, as well.

Figure 10: The input planar drawing of the primal graph G is sketched with black
colored vertices and bold edges and should remain unchanged in the out-
put. The vertices of the dual G∗ are colored gray. Then, the dual’s dashed
drawn edge will inevitably introduce a non right angle crossing.

Theorem 8 There exists a planar graph G with the following property: For
non of the planar embeddings of G a GDual-GRacSim drawing of G and its
weak dual G∗ is possible.

Proof: The graph G used to establish the theorem is depicted in Figure 11,
where the vertices drawn as boxes belong to the dual graph G∗. Observe that
if we replace the two subgraphs drawn with dashed edges by two edges, the
resulting graph is a triconnected planar graph, which has unique planar drawing
up to the choice of the outerface, translations, rotations and stretchings. This
implies that in any planar drawing of G, either u1w1v1x1 or u2w2v2x2 is an
internal faces. Without loss of generality, we consider the case where u1w1v1x1

is an internal face. Now, observe that the dual graph should have two vertices
within each of the gray-colored faces of Figure 11 (refer to the vertices which
are drawn as boxes). Each of these two vertices is incident to two vertices of
the dual that lie within the triangular faces of the dashed drawn subgraph of
G, incident to the two gray-colored faces. Observe that in any RAC drawing of
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G and G∗ both quadrilaterals u1w1v1u
′
1 and u1x1v1v

′
1 must be convex, which is

impossible.

v1 v2

x2x1w1 w2

u1 u2

u′1 v′1

G

u′2 v′2

Figure 11: An example of a planar graph G, for which the GDual-GRacSim does not
admit a solution. The problematic faces are drawn in gray.

2

Corollary 2 There exists an infinite class of planar graphs F with the follow-
ing property: For any graph G ∈ F and any planar embedding E(G) of G, a
GDual-GRacSim drawing of G and its weak dual G∗ is not possible.

We now proceed to study the GDual-GRacSim drawing problem in the case
where the input graph is outerplanar. Notice that an outerplanar graph is
not necessarily triconnected (i.e., by deleting any pair of vertices on the same
interior face and non-consecutive on the outerface, the graph is disconnected).
On the other hand, one can augment an outerplanar graph to a triconnected
planar (but not necessarily outerplanar) graph, by introducing an additional
vertex incident to all vertices of the outerplanar graph. This easily implies that
an outerplanar embedded graph and its dual always admit a GDual-GRacSim
drawing, due Brightwell and Scheinermann [6]. However, their constructive
approach simply proves that such a drawing exists and cannot be utilized to
construct the corresponding drawing, since the computation involves sequences
that do not necessarily converge after a finite number steps.

Theorem 9 Given an outerplane embedding of an outerplanar graph G, it is
always possible to determine a GDual-GRacSim drawing of G and its weak dual
G∗.

Proof: The proof is given by a recursive geometric construction which computes
a GDual-GRacSim drawing of G and its dual G∗. Consider an arbitrary edge
(u, v) of the outerplanar graph that does not belong to its external face and
let f and g be the faces to its left and the right side, respectively, as we move
along (u, v) from vertex u to vertex v. Then, (f, g) is an edge of the dual graph
G∗. Since the dual of an outerplanar graph is a tree, the removal of edge (f, g)
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results in two trees Tf and Tg that can be considered to be rooted at vertices f
and g of G∗, respectively. For the recursive step of our drawing algorithm, we
assume that we have already produced a GDual-GRacSim drawing for Tf and
its corresponding subgraph of G that satisfies the following invariant properties:

I-P1: Edge (u, v) is drawn on the external face of the GDual-GSimRAC drawing
of Tf . Let u and v be drawn at points pu and pv, respectively. Denote by
`u,v the line defined by pu and pv.

I-P2: Let the face-vertex f be drawn at point pf . The perpendicular from point
pf to line `u,v intersects the line segment pupv. Let p be the point of
intersection.

I-P3: There exists two parallel semi-lines `u and `v passing from pu and pv,
respectively, that define a semi-strip to the right of segment pupv that does
not intersect the drawing constructed so far. Denote this empty semi-strip
by Ru,v.

We proceed to describe how to recursively produce a drawing for tree Tg and
its corresponding subgraph of G so that the overall drawing is a GDual-GRacSim
drawing for G and its dual. Refer to Figure 12. Let pg be a point in semi-strip
Ru,v that also belongs to the perpendicular line to line-segment pupv that passes
from point p. Thus, the segment corresponding to the edge (f, g) of the dual
crosses at right angle the segment corresponding to the edge (u, v) of G, as
required. If g is a leaf (i.e., all edges of g except (u, v) are edges of the external
face), we can draw the remaining edges of face g as a polyline of appropriate
number of points that goes around pg and connects pu and pv.

pf

pg
Cg

C′
g

pu

pv

e′

e

`u

`v

a

b

a′

b′

p

Ru,v

`u,v

p′

Figure 12: The recursion step of our algorithm.

Consider now the more interesting case where g is not a leaf in the dual
tree of G. In this case, we draw two circles, say Cg and C′g, centered at pg such
that both lie entirely within the semi-strip Ru,v and do not touch neither line
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`u nor line `v. Assume that circle C′g is the external of the two circles. From
point pu draw the tangent to circle Cg and let a be the point where it touches
Cg and a′ be the point to the right of a where the tangent intersects circle C′g
(see Figure 12). Similarly, we define points b and b′ based on the tangent from
point pv to circle Cg.

Let k ≥ 4 be the number of vertices defining face g. The case where k = 3 will
be examined later. Draw k − 4 points on the (a′, b′) arc, which is furthest from
segment pupv. These points, say {pi | 1 ≤ i ≤ k−4}, together with points pu, pv,
a′ and b′ form face g. Observe that from point pg, we can draw perpendicular
lines towards each edge of the face. Indeed, line segments pga and pgb are
perpendicular to pua

′ and pvb
′, respectively. In addition, the remaining edges

of the face are chords of circle C′g and thus, we can always draw perpendicular
lines to their midpoints from the center pg of the circle. Now, from each of
the newly inserted points of face g draw a semi-line that is parallel to semi-line
`u and lies entirely in the semi-strip Ru,v. We observe all invariant properties
stated above hold for each child of face g in the subtree Tg of the dual of G.
Thus, our algorithm can be applied recursively. The case where the number k of
vertices defining face g is equal to 3 is treated as follows. We use the intersection
of the two tangents, say p′, as the third point of the triangular face. We have to
be careful so that p′ lies inside the semi-strip. However, we can always select a
point pg close to segment pupv and an appropriately small radius for circle Cg,
so that p′ is inside Ru,v.

Now that we have described the recursive step of the algorithm, it remains
to define how the recursion begins (see Figure 13). We start from any face of G
that is a leaf at its dual tree, say face l. We draw the face as regular polygon,
with face-vertex l mapped at its center, say pl. Let e = (u, v) be the only edge
of the face that is internal to the outerplane embedding of G. Without loss of
generality, assume that e is drawn vertically. Then, draw the horizontal semi-
lines `u and `v from the endpoints of e in order to define the semi-strip Ru,v.
From this point on, the algorithm can recursively draw the remaining faces of
G and and its dual G∗.

2

Note that, the produced GDual-GRacSim drawing of G and its dual proves
that producing such drawings is possible. The drawing is not particularly ap-
pealing since the height of the strips quickly becomes very small. However, it
is a starting point towards algorithms that produce better layouts. Also note
that, the algorithm performs a linear number of “point computations” since for
each face-vertex of the dual tree the performed computations are proportional
to the degree of the face-vertex. However, the coordinates of some points may
be non-rational numbers.

6 Conclusion - Open Problems

In this paper, we introduced and examined geometric RAC simultaneous draw-
ings. Our study raises several open problems. Among them are the following:
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v
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`v
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e

Figure 13: The initial step of our algorithm.

1. What other non-trivial classes of graphs, besides a matching and either a
path or a cycle, admit a GRacSim drawing?

2. We considered only geometric RAC simultaneous drawings. For the classes
where GRacSim drawings are not possible, study drawings with bends or
relax the optimality constraint on the crossing resolution of the produced
drawings.

3. We showed that if two graphs admit a geometric simultaneous drawing, it
is not necessary that they admit a GRacSim drawing. Finding a class of
graphs (instead of a particular graph) with this property would strengthen
this result.

4. A quite similar problem to the GRacSim drawing problem is the problem
of drawing two (or more) graphs on the same vertex set on the plane, such
that each graph is drawn RAC (i.e., only edges of different graphs may
introduce non-right angle crossings). Note that, the class of graphs that
admit such drawings contains the class of graphs for which a simultaneous
drawing is possible.

5. Obtain more appealing GDual-GRacSim drawings for an outerplanar graph
and its dual. Study the required drawing area. The characterization of
the classes, other than outerplanar graphs, admitting a GDual-GRacSim
drawing is also of interest.

Acknowledgements

The work of E.N. Argyriou has been co-financed by the European Union (Eu-
ropean Social Fund - ESF) and Greek national funds through the Operational
Program “Education and Lifelong Learning” of the National Strategic Reference



32 Argyriou et al. Geometric RAC Simultaneous Drawings of Graphs

Framework (NSRF) - Research Funding Program: Heracleitus II. Investing in
knowledge society through the European Social Fund.

The work of M.A. Bekos is implemented within the framework of the Action
“Supporting Postdoctoral Researchers” of the Operational Program “Education
and Lifelong Learning” (Action’s Beneficiary: General Secretariat for Research
and Technology), and is co-financed by the European Social Fund (ESF) and
the Greek State.



JGAA, 17(1) 11–34 (2013) 33

References

[1] P. Angelini, L. Cittadini, G. Di Battista, W. Didimo, F. Frati, M. Kauf-
mann, and A. Symvonis. On the perspectives opened by right angle cross-
ing drawings. Journal of Graph Algorithms and Applications, 15(1):53–78,
2011. doi:10.7155/jgaa.00217.

[2] P. Angelini, M. Geyer, M. Kaufmann, and D. Neuwirth. On a tree and
a path with no geometric simultaneous embedding. In Proc. of 18th
International Symposium on Graph Drawing, LNCS, pages 38–49, 2010.
doi:10.1007/978-3-642-18469-7_4.

[3] E. N. Argyriou, M. A. Bekos, and A. Symvonis. The straight-line RAC
drawing problem is NP-hard. In Proc. of 37th International Conference on
Current Trends in Theory and Practice of Computer Science, (SOFSEM),
LNCS, pages 74–85, 2011. doi:10.1007/978-3-642-18381-2_6.

[4] K. Arikushi, R. Fulek, B. Keszegh, F. Moric, and C. Toth. Graphs
that admit right angle crossing drawings. In Graph Theoretic Concepts
in Computer Science, volume 6410 of LNCS, pages 135–146, 2010. doi:

10.1007/978-3-642-16926-7_14.

[5] P. Brass, E. Cenek, C. A. Duncan, A. Efrat, C. Erten, D. Ismailescu,
S. G. Kobourov, A. Lubiw, and J. S. B. Mitchell. On simultaneous planar
graph embeddings. Computational Geometry: Theory and Applications,
36(2):117–130, 2007. doi:10.1016/j.comgeo.2006.05.006.

[6] G. Brightwell and E. R. Scheinerman. Representations of planar graphs.
SIAM Journal Discrete Mathematics, 6(2):214–229, 1993. doi:10.1137/

0406017.

[7] S. Cabello, M. J. v.Kreveld, G. Liotta, H. Meijer, B. Speckmann, and
K. Verbeek. Geometric simultaneous embeddings of a graph and a match-
ing. JGAA, 15(1):79–96, 2011. doi:10.7155/jgaa.00219.

[8] E. Di Giacomo, W. Didimo, G. Liotta, and H. Meijer. Area, curve com-
plexity, and crossing resolution of non-planar graph drawings. In Proc. of
17th International Symposium on Graph Drawing, volume 5849 of LNCS,
pages 15–20, 2009. doi:10.1007/978-3-642-11805-0_4.

[9] W. Didimo, P. Eades, and G. Liotta. A characterization of complete
bipartite graphs. Information Processing Letters, 110(16):687–691, 2010.
doi:10.1016/j.ipl.2010.05.023.

[10] W. Didimo, P. Eades, and G. Liotta. Drawing graphs with right angle
crossings. Theoretical Computer Science, 412(39):5156–5166, 2011. doi:

10.1016/j.tcs.2011.05.025.

http://dx.doi.org/10.7155/jgaa.00217
http://dx.doi.org/10.1007/978-3-642-18469-7_4
http://dx.doi.org/10.1007/978-3-642-18381-2_6
http://dx.doi.org/10.1007/978-3-642-16926-7_14
http://dx.doi.org/10.1007/978-3-642-16926-7_14
http://dx.doi.org/10.1016/j.comgeo.2006.05.006
http://dx.doi.org/10.1137/0406017
http://dx.doi.org/10.1137/0406017
http://dx.doi.org/10.7155/jgaa.00219
http://dx.doi.org/10.1007/978-3-642-11805-0_4
http://dx.doi.org/10.1016/j.ipl.2010.05.023
http://dx.doi.org/10.1016/j.tcs.2011.05.025
http://dx.doi.org/10.1016/j.tcs.2011.05.025


34 Argyriou et al. Geometric RAC Simultaneous Drawings of Graphs

[11] P. Eades and G. Liotta. Right angle crossing graphs and 1-planarity. volume
7034 of Lecture Notes in Computer Science, pages 148–153. Springer, 2011.
doi:10.1007/978-3-642-25878-7_15.

[12] C. Erten and S. G. Kobourov. Simultaneous embedding of a planar graph
and its dual on the grid. Theory Computing Systems, 38(3):313–327, 2005.
doi:10.1007/s00224-005-1143-4.

[13] C. Erten and S. G. Kobourov. Simultaneous embedding of planar graphs
with few bends. JGAA, 9(3):347–364, 2005. doi:10.7155/jgaa.00113.

[14] A. Estrella-Balderrama, E. Gassner, M. Jünger, M. Percan, M. Schaefer,
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