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Orthogonal-Ordering Constraints are Tough
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Abstract

We show that rectilinear graph drawing, the core problem of bend-
minimum orthogonal graph drawing, and uniform edge-length drawing,
the core problem of force-directed placement, are NP-hard even for em-
bedded paths if subjected to orthogonal-ordering constraints.
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1 Introduction

In some scenarios, graph drawing algorithms receive not only a graph as input,
but also an initial (possibly partial) drawing. The task then is to redraw the
graph while maintaining selected features of the input drawing. Examples of
this kind are embedding-constrained graph layout, shape simplification, sketch-
based drawing, and dynamic graph layout.

Similar situations are encountered in cartographic applications, with the
simplification of lines being a fundamental example. Given a polygonal path,
the task is to generate a simpler representation of the path, for instance by
omitting vertices [6, 14] (level of detail) or by restricting the feasible types of
segments [19, 17] (schematization).

A common constraint in all these scenarios is the preservation of horizontal
and vertical ordering of vertices or points because this is thought to assist viewers
in maintaining a mental map [18, 3, 4].

We show, however, that it is NP-hard to draw a graph subject to common
drawing standards when orthogonal-ordering constraints are introduced, even if
restricted to simple embedded paths.

A drawing is called rectilinear, if all edges are axis-parallel. It is NP-
complete to decide whether any graph with maximum degree four has a rec-
tilinear drawing [9]. The problem remains NP-complete for instances in which
each edge is prescribed to be either horizontal or vertical, but becomes polyno-
mial when the prescriptions also include directions [16]. Without orthogonal-
ordering constraints, every path has a rectilinear drawing. We show that even
for paths it is NP-complete to decide whether there is a rectilinear drawing that
satiesfies given orthogonal-ordering constraints. This result implies that bend-
minimum orthogonal graph drawing becomes hard when orthogonal-ordering
constraints are introduced. While it is NP-hard in general even without such
ordering constraints [11], it is polynomial for embedded planar 4-graphs [21].
The paths we construct in the proof of Theorem 1 are embedded, however, and
their embedding is preserved by any feasible drawing.

Our second result relates to force-directed graph drawing, where uniform
edge-length is a central objective [15]. In a uniform edge-length drawing, all
edges have the same length. While it is NP-hard to decide whether a planar
graph can be drawn with uniform edge lengths [8], paths and even trees can
be drawn with any edge lengths [1]. We show that even for paths it is NP-
hard to decide whether there is a uniform edge-length drawing that satiesfies
orthogonal-ordering constraints. An algorithm for orthogonal-order preserving
drawing of general graphs with approximately uniform edge lengths is given
in [7].
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2 Preliminaries

All graphs considered in this paper are simple and undirected. Since we require
edges to be represented as straight-lines, a drawing of a graph G = (V,E) is a
pair p = (x, y) of coordinate vectors x = (xv)v∈V and y = (yv)v∈V such that no
two vertices are in the same position and no edge intersects a vertex that it is
not incident to.

A preorder (also called weak partial order) is a binary relation that is reflex-
ive and transitive. We consider the following type of constraints.

Definition 1 (Orthogonal-order Preserving Graph Drawing) Given a
graph G = (V,E) and preorders �x,�y on V, a drawing p = (x, y) of G is
called orthogonal-order preserving, if

u �x v =⇒ x(u) ≤ x(v) and u �y v =⇒ y(u) ≤ y(v)

for all pairs of vertices u, v ∈ V .

Note that, in particular, ties in a preorder must be preserved, but no drawing
is feasible if two vertices are tied in both preorders.

For concreteness we will assume that the constraints �x,�y arise from a
given drawing for which the two preorders induced by the coordinate axes are
to be preserved. While this is in fact a restriction to total preorders, it will turn
out that the problems of interest here remain intractable.

The following observations are crucial for our subsequent arguments. As-
sume that the input to an orthogonal-order constrained graph drawing problem
contains the edges e, eh, and ev as shown in Figure 1. For e = {u, v}, we call the
unbounded area of points with x-coordinates in the interval [x(u), x(v)] the ver-
tical strip of e. Since ev is contained in it, the orthogonal-ordering constraints
derived from the drawing imply that a vertical edge e forces ev to be vertical,
too. If ev in turn is not drawn vertically, it prevents e from being vertical.
Similarly, the horizontal strip of e is defined by the y-coordinates in the interval
[y(v), y(u)] covered by e. Since e can force eh to be horizontal, eh can prevent
e from being so.

vertical strip

horizontal strip

u

e

v

ev

eh

Figure 1: If e is horizontal (vertical), an edge in its horizontal (vertical) strip
must be, too. If such an edge is not horizontal (vertical), e cannot be, either.
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3 Rectilinear Drawings

Rectilinear drawings do not exist for graphs that contain a vertex of degree
higher than four. As the proof of the following lemma indicates, there always
exists, if any, a rectilinear grid drawing, where all vertices have integer coordi-
nates. This holds independently of any orthogonal-ordering constraints.

Lemma The orthogonal-order preserving rectilinear drawing problem is in NP.

Proof: Consider any input (G,�x,�y) for which there is a feasible drawing.
This drawing implies total preorders of the vertices along each axis. Now con-
sider a vertical strip between any two consecutive x-coordinates. This strip
separates the drawing into two parts that are connected by horizontal lines
only. The width of the strip can therefore be adjusted arbitrarily by horizon-
tally moving the two parts closer together or farther apart. The analogous
observation holds for a horizontal strip between two consecutive y-coordinates.
Assigning to each vertex its ranks in the two total preorders induced by the
drawing therefore yields another rectilinear drawing that also satisfies the or-
dering constraints, but with integer coordinates in the range {1, . . . , n}. A
non-deterministic Turing machine can output such coordinates in polynomial
time, and it can be verified in deterministic polynomial time whether they yield
a feasible drawing. �

We show that the order-constrained rectilinear drawing problem is NP-
complete even for paths and with very restricted constraints. Specifically, we
consider the problem that a planarly drawn graph is to be redrawn with axis-
parallel edges while preserving its planar embedding and the orthogonal ordering
of its vertices.

Theorem 1 The orthogonal-order preserving rectilinear drawing problem is NP-
complete even for simple path drawings, and regardless of whether planarity is
to be preserved or not.

Proof: The problem is in NP by the previous lemma. Completeness is shown
by reduction from MONOTONE 3-SAT, an NP-complete variant of 3-SAT in
which each clause contains either only positive or only negative literals [10]. An
instance F = C1 ∧ . . . ∧ Cm of MONOTONE 3-SAT over variables x1, . . . , xn

thus consist of clauses Ci = yi1 ∨ yi2 ∨ yi3, where either yij ∈ {x1, . . . , xn}
(positive clause) or yij ∈ {x1, . . . , xn} (negative clause) for all j = 1, 2, 3.

We transform F into an instance of the drawing problem by constructing a
path P (F ) using the gadgets shown in Figure 2 and requiring preservation of
the orthogonal orderings implied by its drawing.

First, variable and clause gadgets are placed along a diagonal, line, so that
initially the ordering constraints of each gadget are independent from those
in other gadgets. We will ensure that variable edges are drawn horizontally
(vertically) if and only if the corresponding variable is assigned true (false).

For each occurrence of a variable in a clause we then place a pair of con-
sistency edges in the empty intersections of the horizontal and vertical strips
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Figure 2: Gadgets for the rectilinear drawing problem: a variable can be drawn
horizontally (true) or vertically (false), and frame edges prevent clauses from
having three non-satisfied literals

xi

xi

positive
or negative
clause

variable
consistency edge

consistency edge

Figure 3: Ensuring consistency of a variable edge and an associated literal edge.

defined by a variable edge and one of its corresponding literal edges. In a feasi-
ble drawing all four edges are oriented alike because a variable edge forces one of
the two consistency edges to be oriented alike which in turn prevents the literal
edge from being oriented differently which then also forces the other consistency
edge to be oriented alike.

The clause gadgets are designed such that a feasible drawing must have at
least one horizontal (vertical) literal edge for each positive (negative) clause
because otherwise the endpoints of their frame edge coincide.

Finally, linking paths connect all gadgets into a single path as shown in
Figure 4. Since these linking paths do not introduce additional dependencies,
a feasible drawing represents a consistent truth assignment with at least one
satisfied literal in each clause, and a feasible drawing can be obtained from a
satisfying truth assignment by orienting variable edges, consistency edges, and
literal edges accordingly and routing the linking paths inbetween. Note that
feasible drawings are necessarily planar. �
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x1
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C1 = x1 ∨ x2 ∨ x4

x2

x3

x4

C2 = x2 ∨ x3 ∨ x4

x1

x2

x4

C3 = x1 ∨ x2 ∨ x4

x1

x2

x3

C4 = x1 ∨ x2 ∨ x3

Figure 4: Drawing for path P (F ) constructed from a MONOTONE 3-SAT
instance F = (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x3).

4 Drawings with Uniform Edge Lengths

Theorem 2 The orthogonal-order preserving uniform edge-length drawing prob-
lem is NP-hard even for simple path drawings, and regardless of whether pla-
narity is to be preserved or not.

Proof: The proof is by reduction from ALL-POSITIVE ONE-IN-THREE-SAT,
an NP-complete variant of 3-SAT in which there are only positive literals and
exactly one literal must be satisfied in each clause [20].

The reduction is essentially the same as the one for rectilinear drawings,
though with the gadgets shown in Figure 5. Both gadgets ensure that in a
feasible drawing exactly one of the diagonal edges is drawn horizontally and the
others vertically. This is because the frame edges in a clause define a rectangular
region to which the diagonal path is confined. Since edges must be drawn with
uniform length, this region is at most one unit wide and one (variable gadget)
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Figure 5: Gadgets modified for the uniform edge-length drawing problem

or two units (clause gadget) high. The diagonal path must be of length two
or three because of the drawing convention, and it must be monotone in both
x- and y-direction because of the ordering constraints. This leaves only the
alternatives shown. Note that the diagonal paths do not fit into smaller regions
and, therefore, bordering edges are necessarily vertical or horizontal. By adding
extra rows and columns between gadgets, we can create enough space to add
linking paths that are long and flexible without adding undesired constrains.

Again, a horizontal (vertical) variable edge corresponds to an assignment of
true (false) and the same kind of consistency edges ensure that variable edges
and literal edges are oriented alike. Hence there is a feasible drawing if and only
if exactly one of the variables in each clause is assigned the value true. Again,
these feasible drawings are planar. �

5 Discussion

We have shown that orthogonal-ordering constraints render rectilinear and uni-
form edge-length graph drawing problems intractable even for the simplest of
graphs, single paths. By small perturbation of the instances created, both results
generalize to inputs with vertices in general position, i.e. with no three vertices
on a line. Similarly, the hardness of uniform edge-length drawing generalizes to
total orders �x,�y because the axis-alignment in feasible drawings is not en-
forced by coordinate ties in the input. This is different in the clause gadgets used
for the rectilinear case, where it was essential that frame edges are axis-parallel.
Since pairs of edges are forbidden to overlap in
more than one point, the frame edges in clause
gadgets of Figure 2 can be replaced by pairs of
edges as shown here.

frame edge
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The embedding preserving variant of Theorem 1 has been generalized to
slopes that are multiples of 90/d degrees for all d ≥ 1 [12]. This is in contrast to
an optimal algorithm for paths that are monotone with respect to one axis [5]
and direction-restricted models in which paths or vertices are constrained to lie
within a given distance of the input position and the number of bends can be
minimized in polynomial time [19, 17].

To proof Theorem 2 we constructed gadgets that essentially enforced recti-
linear drawings on the grid, for which the edge-length problem has already been
studied in [2, 13].

For practical purposes it will be interesting to characterize realizable families
of orthogonal-ordering constraints. Of the many conceivable variants, one that
may be particularly interesting to study is the following: under which conditions
can a graph be drawn in d + 1 dimensions subject to d preorders?
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