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Abstract

In this paper we study the page number of upward planar directed
acyclic graphs. We prove that: (1) the page number of any n-vertex
upward planar triangulation G whose every maximal 4-connected com-
ponent has page number k is at most min{O(k logn), O(2k)}; (2) every
upward planar triangulation G with o( n

logn
) diameter has o(n) page num-

ber; and (3) every upward planar triangulation has a vertex ordering with
o(n) page number if and only if every upward planar triangulation whose
maximum degree is O(

√
n) does.
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1 Introduction

Let σ be a total ordering of the vertex set V of a graph G=(V,E). Two edges
(u, v) and (w, z) in E cross if u <σ w <σ v <σ z. A k-page book embedding of
G is a total ordering σ of V and a partition of E into subsets E1, E2, . . . , Ek,
called pages, such that no two edges in the same set Ei cross. The page number
of G is the minimum k such that G admits a k-page book embedding.

Book embeddings (first introduced by Kainen [16] and by Ollmann [20]) find
applications in several contexts, such as VLSI design, fault-tolerant processing,
sorting networks, and parallel matrix multiplication (see, e.g., [4, 12, 21, 22]).
Henceforth, they have been widely studied from a theoretical point of view;
namely, the literature is rich of combinatorial and algorithmic contributions on
the page number of various classes of graphs (see, e.g., [2, 7, 9, 10, 11, 18, 19]).
We remark here a famous result of Yannakakis [24] stating that any planar graph
has page number at most four.

Heath et al. [14, 15] extended the notions of book embedding and page
number to directed acyclic graphs (DAGs for short) in a very natural way:
Given a DAG G=(V,E), book embedding and page number of G are defined as
for undirected graphs, except that the total ordering of V is now required to be
a linear extension of the partial order of V induced by E. That is, if G contains
an edge from a vertex u to a vertex v, then u <σ v in any feasible total ordering
σ of V . The authors of [14, 15] showed that DAGs with page number equal to
one can be characterized and recognized efficiently; however, they proved that,
in general, determining the page number of a DAG is NP-complete.

The main problem raised by Heath et al. and studied in, e.g., [1, 6, 13, 14, 15],
is whether every upward planar DAG admits a book embedding in few pages.
An upward planar DAG is a DAG that admits a drawing which is simultaneously
upward, i.e., each edge is represented by a curve monotonically increasing in the
y-direction, and planar, i.e., no two edges cross. Upward planar DAGs are the
natural counterpart of planar graphs in the context of directed graphs. Notice
that there exist DAGs which admit a planar non-upward embedding and that
require Ω(|V |) pages in any book embedding (see [13, 15] and Fig. 1). No
upper bound better than the trivial O(|V |) and no lower bound better than
the trivial Ω(1) are known for the page number of upward planar DAGs. It is
however known that directed trees have page number one [15], that unicyclic
DAGs have page number two [15], and that series-parallel DAGs have page
number two [1, 6].

In this paper we study the page number of upward planar DAGs. Before
stating our results we need some background.

First, it is known that every upward planar DAG G can be augmented to an
upward planar triangulation G′ [5]. That is, edges can be added to G so that the
resulting graphG′ is still an upward planar DAG and every face ofG′ is delimited
by a 3-cycle. Thus, in order to establish tight bounds on the page number of
upward planar DAGs, it suffices to look at upward planar triangulations, as the
page number of a subgraph G of a graph G′ is at most the page number of
G′. In the following, unless otherwise specified, all the considered graphs are
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Figure 1: A DAG with page number |V |/2.

upward planar triangulations.
Second, consider a total ordering σ of V . A twist is a set of pairwise crossing

edges, i.e., a set {(u1, v1), (u2, v2), . . . , (uk, vk)} of edges such that u1 <σ u2 <σ
· · · <σ uk <σ v1 <σ v2 <σ · · · <σ vk. It is straightforward that the page number
of a graph G is lower bounded by the minimum over all vertex orderings σ of
the maximum size of a twist in σ. Moreover, a function of the maximum size
of a twist in a vertex ordering upper bounds the page number of an n-vertex
graph G, as stated in the following two lemmata.

Lemma 1 [3] Let σ be a vertex ordering of an n-vertex graph G. Suppose
that the maximum twist of σ has size k. Then G admits a book embedding with
vertex ordering σ and with O(k log n) pages.

Lemma 2 [17] Let σ be a vertex ordering of an n-vertex graph G. Suppose
that the maximum twist of σ has size k. Then G admits a book embedding with
vertex ordering σ and with O(2k) pages.

Thus, in order to get upper bounds for the page number of a graph, it often
suffices to construct vertex orderings with small maximum twist size.

In this paper we consider the relationship between the page number of an
n-vertex upward planar triangulation G and three important graph parameters
of G: The connectivity, the diameter, and the degree. We show the following
results.

• In Sect. 3, we prove that an upward planar triangulation G admits a vertex
ordering with maximum twist size O(f(n)) if and only if every maximal
4-connected component of G does. As a corollary, maximal upward planar
3-trees have constant page number. It is easy to prove that any n-vertex
series-parallel DAG [1, 6] can be augmented to a maximal upward planar
3-tree with O(n) vertices. Thus, our result extends the largest known class
of upward planar DAGs with constant page number.

• In Sect. 4, we prove that every upward planar triangulation G has a vertex
ordering whose maximum twist size is a function of the diameter of G,
that is, of the length of the longest directed path in G. As a corollary,
every upward planar triangulation whose diameter is o(n/ log n) admits a
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book embedding in o(n) pages. Such a result pairs the easy observation
that upward planar triangulations with n− o(n) diameter have o(n) page
number.

• In Sect. 5, we show that every upward planar triangulation has a ver-
tex ordering with o(n) page number if and only if every upward planar
triangulation whose maximum degree is O(

√
n) does.

2 Definitions

A directed graph is a graph with direction on the edges. The underlying graph
of a directed graph G is the undirected graph obtained from G by removing the
directions on its edges. We denote by (u, v) an edge directed from a vertex u,
which is called the origin of (u, v), to a vertex v, which is called the destination
of (u, v); edge (u, v) is incoming v and outgoing u. A source (resp. sink) is a
vertex with no incoming edge (resp. with no outgoing edge). A directed cycle is
a directed graph whose underlying graph is a cycle and containing no source and
no sink. A directed acyclic graph (DAG for short) is a directed graph containing
no directed cycle. A directed path is a directed graph whose underlying graph
is a path and containing exactly one source and one sink. The diameter of a
directed graph is the number of vertices in its longest directed path.

A drawing of a directed graph is a mapping of each vertex to a point in the
plane and of each edge to a Jordan curve between its end-points. A drawing is
upward if each edge (u, v) is a curve monotonically increasing in the y-direction
and it is planar if no two edges intersect except, possibly, at common end-points.
A drawing is upward planar if it is both upward and planar. An upward planar
graph is a graph that admits an upward planar drawing. A planar drawing of a
graph partitions the plane into connected regions, called faces. The unbounded
face is the outer face, all the other faces are internal faces. Two upward planar
drawings of an upward planar DAG are equivalent if they determine the same
clockwise ordering of the edges around each vertex. An embedding of an upward
planar DAG is an equivalence class of upward planar drawings. An embedded
upward planar graph is an upward planar DAG together with an embedding.
Consider an embedded upward planar graph G with exactly one source s. Then,
the leftmost path of G is the path (u1, . . . , uk) defined as follows: u1 = s; for
i = 2, . . . , k, ui is the neighbor of ui−1 such that (ui−1, ui) is the first edge in
the clockwise order of the edges outgoing ui−1; uk is a sink. The rightmost path
of G is defined analogously.

An upward planar triangulation is an upward planar graph whose underlying
graph is a maximal planar graph. Consider any two upward planar drawings
Γ1 and Γ2 of an upward planar triangulation G. Then, either Γ1 and Γ2 are
equivalent, or the clockwise ordering of the edges around each vertex in Γ1

is exactly the opposite of the one in Γ2. The outer face of an upward planar
drawing Γ of an upward planar triangulation G is delimited by a cycle composed
of three edges (u, v), (u, z), and (v, z). Then, u, v, and z are called bottom vertex,
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middle vertex, and top vertex of Γ, respectively. Consider the two embeddings
E1 and E2 of an upward planar triangulation G. Then, the bottom, middle,
and top vertex of E1 coincide with the bottom, middle, and top vertex of E2,
respectively. Hence such vertices are simply called the bottom vertex of G, the
middle vertex of G, and the top vertex of G, respectively.

A total vertex ordering σ of a DAG G is upward if G has no edge (u, v) such
that v<σu. The upward vertex orderings are all and only the vertex orderings
that are feasible for a book embedding of a DAG. We say that an upward vertex
ordering σ induces a twist of size k if G contains edges (u1, v1), . . . , (uk, vk) such
that u1<σ. . . <σuk<σv1<σ. . . , vk. The maximum twist size of an upward vertex
ordering σ is the maximum number of edges in a twist induced by σ. Two edges
(u1, v1) and (u2, v2) are nested in σ if u1<σu2<σv2<σ v1. Two edges (u1, v1)
and (u2, v2) cross in σ if u1<σu2<σv1<σ v2.

An undirected graph is k-connected if the removal of any k−1 vertices leaves
the graph connected. A directed graph is k-connected if its underlying graph
is. A maximal k-connected component of a graph G is a subgraph G′ of G such
that G′ is k-connected and no subgraph G′′ of G with G′ ⊂ G′′ is k-connected.
A separating triangle C in a graph G is a 3-cycle such that the removal of the
vertices of C from G disconnects G. A separating triangle C in a graph G is
maximal if G has no separating triangle C ′ such that C is internal to C ′.

The degree of a vertex is the number of edges incident to it. The degree of a
graph is the maximum among the degrees of its vertices. A DAG is Hamiltonian
if it contains a directed path passing through all its vertices. An Hamiltonian
DAG G has exactly one upward total vertex ordering. Moreover, if G is upward
planar, then it has page number at most 2. A plane 3-tree is a maximal plane
graph that can be constructed as follows. Let G3 be a 3-cycle embedded in the
plane. A plane 3-tree with n vertices is a plane graph that can be constructed
from a plane graph Gn−1 with n − 1 vertices by inserting a vertex inside an
internal face of Gn−1 and by connecting such a vertex to the three vertices
incident to the face. A planar 3-tree is a planar graph that can be embedded
as a plane 3-tree. An upward plane 3-tree is an upward planar DAG whose
underlying graph is a plane 3-tree.

3 Page Number and Connectivity

In this section we study the relationship between the page number of an upward
planar DAG and the page number of its maximal 4-connected components. We
prove the following:

Theorem 1 Let f(n) be any function such that f(n) ∈ Ω(1) and f(n) ∈ O(n).
Consider any n-vertex upward planar triangulation G and suppose that every
maximal 4-connected component of G has an upward vertex ordering with max-
imum twist size at most f(n). Then G has an upward vertex ordering with
maximum twist size O(f(n)).
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First, we define a rooted tree T = (V ′, E′), whose nodes correspond to
subgraphs of G=(V,E), which reflects the structure of separating triangles in
G. The tree T appeared already in the work of [23], where it is called the
4-block tree. Tree T is recursively defined as follows (see Fig. 2). The root r
of T corresponds to G′(r) = G. Suppose that a node a of T corresponds to a
subgraph G′(a) of G. If G′(a) contains no separating triangle, then a is a leaf
of T . Otherwise, consider every maximal separating triangle (u, v, z) of G′(a);
then, insert a node b in T as a child of a, such that G′(b) is the subgraph of G′(a)
induced by the vertices internal to or on the border of cycle (u, v, z). For each
node a ∈ T , denote as V ′(a) and E′(a) the vertex set and the edge set of G′(a).
Further, for each node a ∈ T , let G(a) = (V (a), E(a)) denote the subgraph
of G′(a) induced by all the vertices which are not internal to any separating
triangle of G′(a). Note that G(a) is 4-connected for every a ∈ V ′.

G = G′(r)

r

G′(u)
u

G′(v)

v

T

Figure 2: Tree T capturing the structure of the separating triangles in G.

We now define a total ordering o(V ) of V and we later prove that the max-
imum twist size of o(V ) is O(f(n)). Ordering o(V ) is constructed by induction
on T .

In the base case a is a leaf; then let o(V ′(a)) be any total ordering of V ′(a)
such that the maximum twist size of o(V ′(a)) is f(n). Such an ordering exists
by hypothesis, since G′(a) is 4-connected.

In the inductive case, let a1, . . . , am be the children of a in T , where to-
tal orderings o(V ′(a1)), . . . , o(V ′(am)) of V ′(a1), . . . , V ′(am), respectively, have
already been computed. Compute a total ordering o(V (a)) of V (a) such that
the maximum twist size of o(V (a)) is f(n). Again, such an ordering exists by
hypothesis, since G(a) is 4-connected. Next, we merge o(V ′(a1)), . . . , o(V ′(am))
with o(V (a)). In order to do this, we define the operation of merging an order-
ing o(V2) into an ordering o(V1), that takes as input two total vertex orderings
o(V1) and o(V2) such that V1 and V2 share a single vertex v, and outputs a
single total vertex ordering o(V1 ∪ V2) of V1 ∪ V2 such that o(V1 ∪ V2) coincides
with o(Vi) when restricted to the vertices in Vi, for i = 1, 2, and such that
every vertex of V1 that precedes v in o(V1) (resp. follows v in o(V1)) precedes
all the vertices of V2 in o(V ) (resp. follows all the vertices of V2 in o(V )). De-
note by b(H), by m(H), and by t(H) the bottom vertex, the middle vertex,
and the top vertex of an upward triangulation H, respectively. Then, ordering
o(V ′(a)) is defined as follows: Let o1 = o(V (a)) and let oi+1 be the ordering
obtained by merging o(V ′(ai)) \ {b(G′(ai)), t(G′(ai))} into oi, for i = 1, . . . ,m;
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then o(V ′(a)) = om+1. Observe that o(V ′(a)) is an upward vertex ordering
because o(V (a)), o(V ′(a1)), . . . , o(V ′(am)) are and because of the definition of
the merging operation.

We now prove that the size of the maximum twist induced by o(V ) is
O(f(n)). Let M = {e1=(u1, v1), . . . , ek=(uk, vk)} denote any maximal twist
induced by o(V ). We have the following:

Claim 1 Let a be a node of T . Let a1 and a2 be two distinct children of a. There
is no pair of distinct edges (ui, vi), (uj , vj) in M such that (ui, vi) ∈ E′(a1),
(uj , vj) ∈ E′(a2), and {ui, vi, uj , vj} ∩ V (a) = ∅.

Proof: Let (u1, v1, z1) and (u2, v2, z2) be the separating triangles of G′(a) that
delimit the outer faces of G′(a1) and G′(a2), where vi is the middle vertex of
G′(ai), for i = 1, 2. If v1 6= v2, then, by the construction of o(V ), all internal
vertices of G′(a1) precede all internal vertices of G′(a2) or vice versa, thus ei
and ej do not both belong to M . Otherwise, v1 = v2. Then, again by the
construction of o(V ), ei and ej are nested, thus they do not both belong to M .

�

Let r be the root of T . We assume that G is “minimal”, that is, we assume
that there exists no child a of r such that all the edges in M belong to G′(a).
Indeed, if such a child exists, graph G=G′(r) can be replaced by G′(a), and the
bound on the size of M can be achieved by arguing on G′(a) rather than on
G′(r). Denote by Mi, with i = 0, 1, 2, the subset of M that contains all the
edges having i endpoints in V (r). Observe that |M | = |M0|+ |M1|+ |M2|, hence
it suffices to prove that |Mi| ∈ O(f(n)), for i = 0, 1, 2, in order to prove the
theorem. By hypothesis and since G(r) is 4-connected, we have |M2| ≤ f(n).
We now deal with the edges in M1.

Claim 2 |M1| ∈ O(f(n)).

Proof: First, we argue that M1 contains at most one edge e such that an end-
vertex of e is the middle vertex of an upward planar triangulation G′(a), for
some child a of r. Indeed, by the vertex ordering’s construction, any two such
edges, say ea and eb, are either incident to the same vertex or are such that
both end-vertices of ea come before both end-vertices of eb in o(V ′(a)). Thus,
it is enough to bound the number of edges in M1 whose end-vertex in V (r) is
the bottom vertex or the top vertex of an upward planar triangulation G′(a),
where a is a child of r.

Let M b
1 (resp. M t

1) be the subset of the edges in M1 whose end-vertex in V (r)
is the bottom vertex (resp. the top vertex) of an upward planar triangulation
G′(a), where a is a child of r. Observe that, by the above observation, |M | ≤
|M b

1 | + |M t
1| + 1. In the following we bound |M b

1 | (the bound for |M t
1| can be

obtained analogously).
Consider any edge (u, v) ∈ M b

1 , where u ∈ V (r). We define a corresponding
edge of (u, v) in G(r) as follows. Let au,v be the child of r such that G′(au,v)
contains edge (u, v). Further, denote by mu,v the middle vertex of G′(au,v).
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Then, (u,mu,v) is the corresponding edge of (u, v) in G(r). Observe that edge
(u,mu,v) exists and belongs to E(r). Now consider the multi-set Eb1 of the
corresponding edges, that is Eb1 = {(u,mu,v)|(u, v) ∈M b

1}. First, we have that,
for each vertex w in V (r), there exist at most two edges (z, w) in Eb1, since each
vertex in V (r) is the middle vertex of at most two upward planar triangulations
G′(ai), where ai is a child of r, and since G′(ai) has at most one edge in M b

1 . If
there exist two edges (z1, w) and (z2, w) in Eb1, then remove one of them. Then,
after such deletions, |Eb1| ≥ |M b

1 |/2.
Next, we prove that each vertex in V (r) is an end-vertex of at most two

edges in Eb1. Namely, consider any two edges (u1, v1) and (u2, v2) in Eb1. Then,
v1 6= v2 because of the deletions performed on Eb1, and u1 6= u2 as otherwise the
corresponding edges in M b

1 would share a vertex, contradicting the assumption
that M is a twist; thus, each vertex in V (r) is the source of at most one edge in
Eb1 and the sink of at most one edge in Eb1. Since the degree of graph (V (r), Eb1)
is two, there exists a subset E∗ of Eb1 such that the degree of graph (V (r), E∗)
is one and |E∗| ≥ |Eb1|/3.

Finally, we have that every two edges in E∗ cross. Namely, if they do not,
then by the vertex ordering’s construction the corresponding edges in M b

1 would
not cross either, thus contradicting the assumption that M is a twist.

Since E∗ ⊆ E(r) and the maximum size of a twist of edges in E(r) is f(n),
given that G(r) is 4-connected, it follows that E∗ ≤ f(n). Using |E∗| ≥ |Eb1|/3
and |Eb1| ≥ |M b

1 |/2, we get |M b
1 | ≤ 6f(n). Such an inequality, together with the

analogous bound |M t
1| ≤ 6f(n) and with |M | ≤ |M b

1 | + |M t
1| + 1, proves the

theorem. �

We now proceed by bounding the size of M0.

Claim 3 |M0| ∈ O(f(n)).

Proof: By Claim 1, all the edges in M0 belong to a graph G′(a), for a certain
descendant a of r. Let us choose a so that the length of the path from a to
r is maximized. That is, a is the node of T farthest from r containing all the
edges of M0. Let w be the middle vertex of the separating triangle (u, v, w)
delimiting G′(a). Let a′ denote the child of r which is an ancestor of a or
that coincides with a. Let w′ be the middle vertex of the separating triangle
(u′, v′, w′) delimiting G′(a′).

For any edge (y, z) ∈ M0, we have that (y, z) “nests around w′”, that is,
y precedes w′ and w′ precedes z in o(V ). Indeed, if both y and z precede
w′ in o(V ) (or if they both follow w′ in o(V )), then only the edges in G′(a′)
can possibly cross (y, z), by the construction of o(V ), thus contradicting the
minimality of r.

If w 6= w′, then |M0| ≤ 3, since only the edges incident to u, v, and w can
nest around w′ and hence belong to M0. Otherwise we have w′ = w (see Fig. 3).
Consider graph G′(a); partition the edges in M0 into two subsets, namely M ′0
contains all the edges of M0 having at least one end-vertex in V (a) and M ′′0
contains all the edges of M0 having no end-vertex in V (a). By definition of a
and by Claim 1, |M ′0| > 0, as otherwise there would exist a child of a containing
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w

u

v

Figure 3: Graph G′(a). The thick edges belong to M0.

all the edges of M0. However, by Claim 2 applied to G′(a) and by the hypothesis
of the theorem, we have |M ′0| ∈ O(f(n)). Moreover, every edge in M ′′0 is in a
separating triangle of G′(a) having w as middle vertex; however, any such edge
is nested inside any edge of M ′0; thus, since |M ′0| > 0, we have |M ′′0 | = 0 and
hence |M0| ∈ O(f(n)), which concludes the proof. �

Since |Mi| ∈ O(f(n)), for i = 0, 1, 2, it follows that |M | ∈ O(f(n)), thus
proving Theorem 1. By Lemmata 1 and 2, we have the following:

Corollary 1 If every n-vertex upward planar 4-connected triangulation has
o( n

logn ) page number, then every n-vertex upward planar triangulation has o(n)
page number.

Corollary 2 Every upward planar 3-tree has O(1) page number.

4 Page Number and Diameter

In this section we study the relationship between the page number of an upward
planar DAG and its diameter D. We show that upward planar DAGs with
small diameter have sub-linear page number. Notice that such a result pairs the
observation that graphs with diameter n− o(n) have sub-linear page number as
well, given that upward planar Hamiltonian DAGs have page number two. We
have the following:

Theorem 2 Every n-vertex upward planar triangulation whose diameter is at
most D admits an upward vertex ordering whose maximum twist size t(n) is a
function satisfying t(n) ≤ aD + t(n2 ) + b, for some constants a and b.

We will prove the statement for a family of upward planar DAGs that is
strictly larger than the family of upward planar triangulations. Namely, we call
upward cactus an embedded upward planar DAG G having exactly one source
s(G) and such that every internal face is delimited by a 3-cycle. See Fig. 4.
Observe that an upward planar triangulation is an upward cactus.



230 Frati, Fulek, Ruiz-Vargas On the Page Number of Upward Planar DAG

Consider an upward cactus G. We call monotone path any directed path
P = (u1, . . . , uk) from s(G) to a sink of G. Consider an upward planar drawing
Γ of G in which uk is the vertex with highest y-coordinate. Observe that such
a drawing Γ always exists because G is an upward cactus. Then, we define the
left side of P as the subgraph of G induced by all the vertices which are to the
left of the Jordan curve representing P in Γ. The right side of P is defined
analogously. Observe that the vertices of P , the vertices of the left side of P ,
and the vertices of the right side of P form a partition of the vertices of G. We
have the following:

s(G)

left side of P

right side of P

Figure 4: An upward cactus G. The thick edges represent a monotone path P .

Claim 4 In every n-vertex upward cactus there exists a monotone path P such
that both the left side of P and the right side of P have less than n

2 vertices.

Proof: We construct a sequence of monotone paths P1, P2, . . . , Ph and prove
that P = Pi satisfies the statement for a certain 1 ≤ i ≤ h. Path P1 =
(u11, . . . , u

1
k1

) is the leftmost path of G. Clearly, the left side of P1 contains no
vertex. Then, two cases are possible. Namely, either the right side of P1 has less
than n

2 vertices, and in such a case P = P1 is the desired path, or the right side of

P1 has at least n
2 vertices. Suppose that the left side of Pi−1 = (ui−11 , . . . , ui−1k )

has l < n
2 vertices and that the right side of Pi−1 has r ≥ n

2 vertices, for a
certain i ≥ 2.

We distinguish three cases (see Fig. 5).

• Case 1: There exists a vertex v such that (ui−1j , v) follows (ui−1j , ui−1j+1)

in the clockwise order of the edges outgoing ui−1j and (v, ui−1j+1) follows

(ui−1j , ui−1j+1) in the counter-clockwise order of the edges incoming ui−1j+1.

Observe that (ui−1j , v, ui−1j+1) is an internal face ofG. Then, Pi = (ui−11 , . . . ,

ui−1j , v, ui−1j+1, . . . , u
i−1
k ); observe that Pi is a monotone path since Pi−1 is.

The left side of Pi contains exactly the same set of l < n
2 vertices that

the left side of Pi−1 contains; moreover, the right side of Pi contains r− 1
vertices. Hence, either r− 1 < n

2 , and in such a case P = Pi is the desired
path, or we construct a new path Pi+1.
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(a) (b)

(c) (d)

Figure 5: Case 1 applies to the monotone path in (a), yielding the monotone
path in (b). Case 2 applies to the monotone path in (b), yielding the monotone
path in (c). Case 3 applies to the monotone path in (c), yielding the monotone
path in (d).

• Case 2: G contains an edge (ui−1j , ui−1j+2) that follows (ui−1j , ui−1j+1) in the

clockwise order of the edges outgoing ui−1j and that follows (ui−1j+1, u
i−1
j+2)

in the counter-clockwise order of the edges incoming ui−1j+2. Observe that

(ui−1j , ui−1j+1, u
i−1
j+2) is an internal face ofG. Then, Pi = (ui−11 , . . . , ui−1j , ui−1j+2,

. . . , ui−1k ); observe that Pi is a monotone path since Pi−1 is. The right
side of Pi contains exactly the same set of r ≥ n

2 vertices that the right
side of Pi−1 contains; given that Pi contains at least two vertices, the left
side of Pi contains less than n

2 vertices. Then, we construct a new path
Pi+1.

• Case 3: Suppose that neither Case 1 nor Case 2 applies. Suppose, for a
contradiction, that no vertex ui−1j , with 1 ≤ j ≤ k − 1, has an outgoing

edge following (ui−1j , ui−1j+1) in the clockwise order of the edges outgoing

ui−1j . Observe that s(G) and ui−1k have no incoming edge and no outgoing
edge, as they are a source and a sink, respectively. Hence, if any vertex
ui−1j , with 2 ≤ j ≤ k, has an incoming edge following (ui−1j−1, u

i−1
j ) in

the counter-clockwise order of the edges incoming ui−1j , then G would

contain at least two sources, a contradiction; otherwise no vertex ui−1j

has incoming or outgoing edges to the right of Pi−1, contradicting the
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hypothesis that r ≥ n
2 .

It follows that there exists a vertex ui−1j that has an outgoing edge (ui−1j , v)

following (ui−1j , ui−1j+1) in the clockwise order of the edges outgoing ui−1j

and assume that j is the maximum index such that ui−1j satisfies such
a property. Consider the leftmost path Pl(v) starting at v. Then, path
Pi = (ui−11 , . . . , ui−1j , v) ∪ Pl(v).

We claim that every vertex that is in the right side of Pi−1 is also in the
right side of Pi, except for the vertices of Pl(v) that now belong to Pi.
Consider any vertex w in the right side of Pi−1. Since G has a unique
source, then there exists a vertex ui−1y of Pi−1 such that G has a directed

path Pui−1
y ,w from ui−1y to w, for some 1 ≤ y ≤ k − 1. Suppose that y

is the maximum index satisfying such a property. Then, three cases are
possible: (i) if y < j, then Pui−1

y ,w is entirely in the right side of Pi, as

path Pi does not share any vertex other than ui−1y with Pui−1
y ,w, given

the maximality of y; (ii) if y > j, then the maximality of j would be
contradicted; (iii) if y = j, then suppose, for a contradiction, that w is
not in the right side of Pi and consider the last vertex z shared by Pui−1

y ,w

and Pi (observe that such a vertex always exists since such paths share
vertex ui−1y ); if z = ui−1y , then edge (ui−1j , v) would not follow (ui−1j , ui−1j+1)

in the clockwise order of the edges outgoing ui−1j , a contradiction, while
if z ∈ Pl(v), then Pl(v) would not be the leftmost path starting at v, a
contradiction.

Since every vertex that is in the right side of Pi−1 is either in the right
side of Pi or in Pi, since r ≥ n

2 , and since s(G) is not in the right side of
Pi−1 and is not in the left side of Pi, it follows that the number of vertices
in the left side of Pi is at most n − n

2 − 1 < n
2 . Hence, either the right

side of Pi contains less than n
2 vertices, and in such a case P = Pi is the

desired path, or we construct a new path Pi+1.

Eventually, the considered path Ph coincides with the rightmost path of G.
The right side of such a path has no vertex. It follows that there exists a path
satisfying P = Pi satisfying the statement of the theorem. �

We now prove the statement of the theorem for every n-vertex upward cactus
G with diameter at most D. The proof is by induction on n. If n ≤ 3, then in
any upward vertex ordering of G the maximum twist size is 1, hence t(3) ≤ b,
for any b ≥ 1, thus proving the base case.

Suppose that n > 3. By Claim 4, there exists a monotone path P in G such
that both the left side of P and the right side of P have less than n

2 vertices.
We now associate each vertex in the left side of P and each vertex in the right
side of P to a vertex of P . Namely, we associate a vertex v in the left side of
P to the vertex ui of P such that there exists a directed path from ui to v and
such that, for every j > i, there exists no directed path from uj to v. Observe
that, for every vertex v in the left side of P , there exists a directed path from
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s(G) to v, since G has a unique source, hence v is associated to exactly one
vertex of P . Then, we call left bag of ui the set of vertices in the left side of P
which are associated to ui, for each i = 1, . . . , k. Vertices in the right side of P
are associated to vertices of P analogously, thus analogously defining the right
bag of ui, for each i = 1, . . . , k. We have the following:

Claim 5 The subgraph GLi of G induced by the left bag of ui and by ui is an
upward cactus, for every i = 1, . . . , k.

Proof: Every internal face of GLi is delimited by a 3-cycle since every internal
face of G is. Moreover, since by definition there exists a directed path from ui
to every vertex of GLi different from ui, it follows that GLi has a unique source.

�

An analogous claim holds for the subgraph GRi of G induced by the right
bag of ui and by ui.

Next, we construct an upward vertex ordering of G. This is done as follows.
First, inductively construct an upward vertex ordering σLi of GLi and an upward
vertex ordering σRi of GRi , for i = 1, . . . , k, such that the maximum twist size
of each of σRi and σLi is t(n2 ). This is possible since GLi and GRi are upward
cacti, by Claim 5, and they have less than n

2 vertices, by Claim 4. Observe that
ui is the first vertex both in σLi and in σRi , given that it is the only source of
both GLi and GRi . Then, denote by σi the vertex ordering of GLi ∪GRi which is
obtained by concatenating σLi and σRi \ {ui}. Finally a vertex ordering σ of G
is obtained by concatenating σ1, σ2, . . . , σk.

Claim 6 σ is an upward vertex ordering.

Proof: Suppose, for a contradiction, that G has an edge (u, v) such that v
comes before u in σ.

If u and v both belong to P , then v = ui and u = uj , with j > i. However,
this implies thatG contains a directed cycle (ui, ui+1, . . . , uj , ui), a contradiction
to the fact that G is a DAG.

If u belongs to P , say u = ui, and v is in the left side of P or in the right side
of P , then there exists a directed path from ui to v (namely such a path is edge
(u, v)), hence v is associated to a vertex uj , with j ≥ i, and hence v appears in
σj , with j ≥ i. Since u = ui is the first vertex of σi, v does not precede u in σ,
a contradiction.

If v belongs to P , say v = ui, and u is in the left side of P or in the
right side of P , then observe that u is associated to a vertex uj , with j ≥ i,
as otherwise u would not follow ui in σ. Hence, there exists a directed path
Puj ,u from uj to u. However, this implies that G contains a directed cycle
(ui, ui+1, . . . , uj) ∪ Puj ,u ∪ (u, ui), a contradiction to the fact that G is a DAG.

If u is in the left side of P and v is in the right side of P (or vice versa),
then edge (u, v) crosses P , a contradiction to the upward planarity of G.

If u and v both are in the left side of P or both are in the right side of
P , then we further distinguish two cases. If u and v are both associated to
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the same vertex ui, then they both belong to GLi or they both belong to GRi ,
hence u comes before v in σ since σLi and σRi are upward vertex orderings, a
contradiction. If v is associated to a vertex ui and u is associated to a vertex
uj 6= ui, then j > i, as otherwise u would come before v in σ. It follows
that there exists a directed path Puj ,u from uj to u and hence a directed path
Puj ,u ∪ (u, v) from uj to v. By construction, v is associated to a vertex uk, with
k ≥ j > i, a contradiction. �

Next, we prove that the maximum twist size t(n) of σ is at most aD+t(n2 )+b,
for some constants a and b.

First, observe that the edges that have both end-vertices in P create twists
of size at most two, since the graph induced by the vertices of P is upward
planar Hamiltonian.

Second, we discuss the size of a twist composed of intra-bag edges, which are
edges whose both end-vertices are associated to the same vertex of P . Consider
any edge eLi of GLi and any edge eRi of GRi . Such edges do not cross. Namely, if
such edges are both incident to ui, then they do not cross by definition. If eRi is
not incident to ui, then both end-vertices of eRi come after both end-vertices of
eLi , by construction, hence such edges do not cross. Moreover, if eRi is incident
to ui and eLi is not, then eLi is nested inside eRi , by construction, hence such
edges do not cross. It follows that the maximum size of a twist of intra-bag
edges is equal to the maximum twist size of σ restricted to the vertices in Gai
for some a ∈ {L,R} and some 1 ≤ i ≤ k. By Claim 5, graph Gai is an upward
cactus. Moreover, by Claim 4, Gai has at most n

2 vertices, hence the maximum
size of a twist of intra-bag edges is at most t(n2 ).

Third, we discuss the maximum size of a twist composed of inter-bag edges,
which are edges whose end-vertices are associated to distinct vertices of P . We
show that the maximum size of a twist composed of inter-bag edges in the left
side of P is 2D. An analogous proof shows that the maximum size of a twist
composed of inter-bag edges in the right side of P is also 2D.

Consider any two inter-bag edges (w1, w2) and (w3, w4) in the left side of
P . Suppose that (w1, w2) and (w3, w4) cross in σ. Denote by uj1 , uj2 , uj3 , and
uj4 , such that uj1 < uj2 and uj3 < uj4 , the vertices of P vertices w1, w2, w3,
and w4 have been assigned to, respectively. The following claim asserts that
any two inter-bag edges (w1, w2) and (w3, w4) that cross in σ either have their
sources assigned to the same vertex of P , or have their destinations assigned to
the same vertex of P , or the source of one of them and the destination of the
other of them are assigned to the same vertex of P .

Claim 7 At least one of the following holds: j1 = j3 < j2, j4, or j1 < j2 = j3 <
j4, or j3 < j4 = j1 < j2, or j1, j3 < j2 = j4.

Proof: First, assume that j1 = j3. Then, since (w1, w2) and (w3, w4) are
inter-bag edges, j2 > j1 and j4 > j3 hold, hence j1 = j3 < j2, j4 holds.

Second, assume that j1 < j3. Observe that j2 > j1 and j4 > j3 given that
(w1, w2) and (w3, w4) are inter-bag edges. Then, observe that j2 ≥ j3, otherwise
both w1 and w2 come before both w3 and w4, and hence edges (w1, w2) and
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(w3, w4) do not cross in σ, a contradiction. Moreover, j2 ≤ j4, as otherwise
edge (w3, w4) is nested inside edge (w1, w2). Suppose that j3 < j2 < j4 and see
Fig. 6. Consider the four directed paths Puj1

,w1
, Puj2

,w2
, Puj3

,w3
, and Puj4

,w4

from uj1 to w1, from uj2 to w2, from uj3 to w3, and from uj4 to w4, respectively.
Such paths exist (since wi is assigned to uji , for i = 1, . . . , 4); moreover, they
do not share vertices, as if they do, then some of vertices uj1 , uj2 , uj3 , and uj4
would coincide, by the construction of the assignment of vertices in the left side
of P to the vertices of P , contradicting the hypothesis that j1 < j3 < j2 < j4.
Then, path Puj1 ,w1

∪ (w1, w2)∪Puj2 ,w2
crosses path Puj3 ,w3

∪ (w3, w4)∪Puj4 ,w4
,

a contradiction to the upward planarity of G. It follows that j1 < j3 < j2 < j4
does not hold, hence either j1 < j2 = j3 < j4 holds or j1 < j3 < j2 = j4 holds.

w1

w3

w4

w2

uj1

uj3

uj2

uj4

P

Figure 6: If j1 < j3 < j2 < j4, then paths Puj1
,w1
∪ (w1, w2) ∪ Puj2

,w2
and

Puj3 ,w3
∪ (w3, w4) ∪ Puj4 ,w4

cross.

Third, assume that j1 > j3. Then, analogously to the previous case, it can
be shown that either j3 < j4 = j1 < j2 holds or j3 < j1 < j2 = j4 holds. �

Hence, if there are more than 2D inter-bag edges pairwise crossing in the left
side of P , then either there are more than D inter-bag edges pairwise crossing
in the left side of P such that the origins of such edges have all been assigned
to the same vertex of P , or there are more than D inter-bag edges pairwise
crossing in the left side of P such that the destinations of such edges have all
been assigned to the same vertex of P . In the following, we discuss such two
cases.

Claim 8 Suppose that G contains inter-bag edges (v1, w1), (v2, w2), . . . , (vk, wk)
in the left side of P , where v1 <σ v2 <σ · · · <σ vk <σ w1 <σ w2 <σ · · · <σ wk
and where all the vertices wi have been assigned to the same vertex ul of P , for
i = 1, . . . , k, or all the vertices vi have been assigned to the same vertex ul of
P , for i = 1, . . . , k. Then, there exists a directed path starting at ul and passing
through w1, w2, . . . , wk.
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Proof: We prove the statement in the case in which all the vertices wi have
been assigned to the same vertex ul of P , the case in which they have all the
vertices vi have been assigned to the same vertex ul of P being analogous.

A directed path P1 starting at ul and ending at w1 exists since w1 is assigned
to ul. Observe that such a path does not pass through any of w2, . . . , wk, as such
vertices follow w1 in σ. Suppose that a directed path Pul,wi from ul to wi, pass-
ing through w1, w2, . . . , wi−1, and not passing through any of wi+1, wi+2, . . . , wk
has been found, for some i ∈ {1, . . . , k−1}. We show how to construct a directed
path Pul,wi+1

from ul to wi+1, passing through w1, w2, . . . , wi, and not passing
through any of wi+2, wi+3, . . . , wk. Eventually, such a construction will lead to
the desired path from ul to wk passing through w1, w2, . . . , wk−1. In order to
construct Pul,wi+1 , it suffices to show that there exists a directed path Pwi,wi+1

from wi to wi+1, not passing through any of w1, w2, . . . , wi−1 and not passing
through any of wi+2, wi+3, . . . , wk. Path Pul,wi+1

is then the concatenation of
Pul,wi

and Pwi,wi+1
.

Consider any directed path Pul,wi+1
from ul to wi+1. Such a path exists

since wi+1 is assigned to ul.
If Pul,wi+1 passes through wi, then consider the sub-path Pwi,wi+1 of Pul,wi+1

starting at wi and ending at wi+1. Such a path does not pass through any of
w1, w2, . . . , wi−1, as such vertices precede wi in σ, and does not pass through
any of wi+2, wi+3, . . . , wk, as such vertices follow wi+1 in σ. Hence, Pwi,wi+1

is
the desired path.

If Pul,wi+1 does not pass through wi, then let um be the vertex of P vertex
vi+1 is assigned to. Observe thatm < l. Let Pum,vi+1 be a directed path from um
to vi+1. Such a path exists since vertex vi+1 is assigned to um. Then, consider
the graph G′ whose outer face is delimited by Pul,wi+1

, by edge (vi+1, wi+1),
by path Pum,vi+1

, and by the sub-path (um, . . . , ul) of P . See Fig. 7. Observe
that, since every internal face of G is internally-triangulated and since the cycle
delimiting the outer face of G′ has exactly one sink, then G′ has exactly one
sink, namely wi+1. Then, it suffices to prove that wi is in G′. Namely, if wi is
in G′, consider any maximal directed path Pwi,wi+1

in G′ starting at wi. Since
wi+1 is the only sink of G′, Pwi,wi+1

ends at wi+1. Moreover, Pwi,wi+1
does not

pass through any of w1, w2, . . . , wi−1, as such vertices precede wi in σ, and does
not pass through any of wi+2, wi+3, . . . , wk, as such vertices follow wi+1 in σ.

We prove that wi is in G′. Suppose, for a contradiction, that wi is not in
G′. Then, let up be the vertex of P vertex vi is assigned to. Observe that p < l.
Let Pup,vi be a directed path from up to vi. Such a path exists since vertex vi
is assigned to up. Then, consider the graph G′′ whose outer face is delimited
by Pul,wi , by edge (vi, wi), by path Pup,vi , and by the sub-path (up, . . . , ul)
of P . Observe that, since every internal face of G is internally-triangulated
and since the cycle delimiting the outer face of G′′ has exactly one sink, then
G′′ has exactly one sink, namely wi. Moreover, by the upward planarity of
G, edge (vi, wi) crosses neither Pul,wi+1

nor edge (vi+1, wi+1). It follows that
G′′ contains wi+1. Then, consider any maximal directed path Pwi+1,wi in G′′

starting at wi+1. Since wi is the only sink of G′′, Pwi+1,wi ends at wi, thus
contradicting the fact that wi+1 follows wi in σ.
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w1

w3

w4

w2

uj1

uj3

uj2

uj4

P

Figure 7: Graph G′.

It follows that wi is in G′, hence there exists a directed path Pwi,wi+1
from wi

to wi+1, not passing through any of w1, w2, . . . , wi−1 and not passing through
any of wi+2, wi+3, . . . , wk, thus proving the claim. �

Since by hypothesis any directed path contains at most D vertices, then,
by Claim 8, the maximum size of a twist of inter-bag edges sharing their desti-
nations in the left side of P is at most D and the maximum size of a twist of
inter-bag edges sharing their origins in the left side of P is at most D. Hence,
by Claim 7, the maximum size of a twist of inter-bag edges in the left side of
P is at most 2D and the maximum size of a twist of inter-bag edges is at most
4D. Since every edge of G is either an edge having both end-vertices in P , or
is an intra-bag edge, or is an inter-bag edge, it follows that the maximum size
of a twist in σ is t(n) = 2 + t(n2 ) + 4D, thus proving Theorem 2.

By Lemma 1, we have the following:

Corollary 3 Every n-vertex upward planar triangulation whose diameter is
o( n

logn ) has o(n) page number.

5 Page Number and Degree

In this section we discuss the relationship between the page number of a graph
and its degree. We prove the following theorem.

Theorem 3 Let f(n) be any function such that f(n) ∈ Ω(
√
n) and f(n) ∈

O(n). Suppose that every n-vertex upward planar triangulation whose degree
is O(f(n)) admits a book embedding with O(g(n)) pages, for some function
g(n) ∈ Ω(1) and g(n) ∈ O(n). Then, every n-vertex upward planar triangulation
admits a book embedding with O(g(n) + n

f(n) ) pages.
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Consider any n-vertex upward planar triangulation G. We transform G into
an O(n)-vertex upward planar triangulation G′ with degree O(f(n)) as follows.
Fix any constant c > 0 and denote by u1, . . . , uk any ordering of the vertices of
G whose degree is greater than cf(n).

For i = 1, . . . , k, consider vertex ui. Suppose that ui is an internal ver-
tex of G, the case in which ui is an external vertex being analogous. Since
it is an upward planar triangulation, G has exactly two faces (v1, v2, ui) and
(v3, v4, ui) incident to ui such that edges (v1, ui) and (v4, ui) are incoming ui
and such that edges (ui, v2) and (ui, v3) are outgoing ui. Assume, w.l.o.g.,
that (v1, ui), (ui, v2), (ui, v3), and (v4, ui) appear in this clockwise order around
ui. Denote by w1 = v2, w2, . . . , wx−1, wx = v3, w

′
1 = v4, w

′
2, . . . , w

′
y−1, w

′
y = v1

the clockwise order of the neighbors of ui (see Fig. 8(a)). Remove ui and
its incident edges from G. Let M = d x

f(n)−1e and N = d y
f(n)−1e. Insert

M + N + 2 vertices z1, . . . , zM+N+2 in G inside the cycle of the neighbors
of ui. Insert an edge from zj to zj+1, for j = 1, . . . ,M , insert an edge from
zj+1 to zj , for j = M + 1, . . . ,M + N + 1, and insert edges from zM+2 to
z1, . . . , zM and from zM+3, . . . , zM+N+2 to z1. Insert edges from v1 to z1, from
z1 to v2, from v4 to zM+2, and from zM+2 to v3. Insert edges from zj to
w(j−2)(f(n)−1)+1, w(j−2)(f(n)−1)+2, . . . , w(j−1)(f(n)−1), for j = 2, . . . ,M + 1; in-
sert edges from w′(j−2)(f(n)−1)+1, w

′
(j−2)(f(n)−1)+2, . . . , w

′
(j−1)(f(n)−1) to zM+j ,

for j = 3, . . . , N + 2. See Fig. 8(b).

w′
y=v1

w1=v2

w′
1=v4

wx=v3

w2

wx−1

w′
2

w′
y−1

ui

(a)

z1

w′
y=v1

w1=v2

w′
1=v4

wx=v3

w2

wx−1

w′
2

w′
y−1

zM+1

zM+2zM+N+2

(b)

Figure 8: (a) Neighbors of a high-degree vertex ui. (b) Replacing ui with lower-
degree vertices, assuming f(n) = 3.

It is easy to see that the triangulation G′ obtained from G after all vertices
u1, . . . , uk have been considered is upward planar. We have the following.

Claim 9 G′ has O(n) vertices and O(f(n)) degree. Moreover, for every upward
vertex ordering σ′ of G′, there exists an upward vertex ordering σ of G such that
σ and σ′ restricted to the vertices that are both in G and in G′ coincide.

Proof: First, we prove that G′ has O(n) vertices. When vertex ui is removed,
O( n

f(n) ) vertices are introduced, for i = 1, . . . , k. Since k = O( n
f(n) ), then the
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number of vertices of G′ not in G is O( n2

(f(n))2 ). Since f(n) = Ω(
√
n), then G′

has O(n) vertices.
Second, we prove that the degree of every vertex in G′ is O(f(n)). Consider

a vertex v that belongs to G before vertex ui is removed from G. Two cases
are possible. In the first case v is not incident to ui, and then v does not get
any new neighbors from the modifications that are performed on G when ui is
removed; in the second case v is incident to ui, and then v gets at most two
new neighbors and loses one, namely ui. It follows that the number of edges
incident to v in G′ is at most the number of edges incident to v when it first
appears in G plus k, where k = O( n

f(n) ). Observe that if v also belongs to

the original triangulation G, then it has degree O(f(n)), given that is not in
u1, . . . , uk; otherwise, v is inserted in G when vertex ui is deleted, for a certain
1 ≤ i ≤ k. The degree of v after its insertion is O(f(n)), since such a vertex is
connected to O(f(n)) neighbors of ui and to O( n

f(n) ) = O(f(n)) newly inserted

vertices. It follows that the degree of G′ is O(f(n)).
Third, we consider any upward vertex ordering σ′ of G′, and we show how

to obtain an upward vertex σ of G such that σ and σ′ restricted to the vertices
that are both in G and in G′ coincide. We construct σ from σ′ by inserting ui
and by removing the vertices which have been introduced in G to replace ui,
for i = k, k− 1, . . . , 1. In order to show that ui can be inserted in σ′ yielding an
upward vertex ordering of the current triangulation, it suffices to show that all
the vertices w1, . . . , wx come after all the vertices w′1, . . . , w

′
y in σ′. Namely, in

such a case, vertex ui can be inserted in σ′ at any position after all of w′1, . . . , w
′
y

and before all of w1, . . . , wx. Observe that, because of edges (zj , zj+1), with
j = 1, . . . ,M , all the vertices za come after z1 in σ′, for a = 2, . . . ,M + 1;
since every vertex wb, with b = 1, . . . , x has an incoming edge from a vertex
za, for some a = 1, . . . ,M + 1, it follows that all the vertices w1, . . . , wx come
after z1 in σ′. Analogously, all the vertices w′1, . . . , w

′
y come before zM+2 in σ′.

Finally, because of edges (zM+2, z1), all the vertices w1, . . . , wx come after all
the vertices w′1, . . . , w

′
y in σ′. �

We now describe how to compute a book embedding of G in O(g(n) +
n

f(n) ) pages. First, construct the upward planar triangulation G′ as above.

Second, construct a book embedding of G′ into O(g(n)) pages. Such a book
embedding exists by hypothesis, since G′ has O(n) vertices and O(f(n)) degree
(by Claim 9). Denote by σ′ the total ordering of the vertices of G′ in the
constructed book embedding. Construct any total ordering σ of the vertices
of G such that σ and σ′ restricted to the vertices that are both in G and
in G′ coincide. Such an ordering exists (and can be easily constructed) by
Claim 9. The edges of G can be assigned to pages as follows: O(g(n)) pages
suffice to accommodate all the edges that are both in G and in G′; moreover,
one page can be used to accommodate all the edges incident to vertex ui, for
i = 1, . . . , k ∈ O( n

f(n) ). It follows that G has a book embedding in O(g(n)+ n
f(n) )

pages, thus proving Theorem 3.

Corollary 4 Every n-vertex upward planar triangulation has o(n) page number
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if and only if every n-vertex upward planar triangulation with degree O(
√
n) has

o(n) page number.

6 Conclusions

In this paper we studied the relationship between the page number of an upward
planar triangulation G and three important parameters of G: The connectiv-
ity, the diameter, and the degree. It would be interesting, in our opinion, to
understand whether the statements of Theorems 1 and 2 can be referred to the
page number rather than to the maximum twist size. That is: (1) Is it true that
any upward planar triangulation G has page number O(k) if and only if every
maximal 4-connected subgraph of G has page number O(k)? (2) Is it true that
any n-vertex upward planar triangulation G with diameter D has page number
p(n) satisfying p(n) = p(n2 ) + aD + b, for some constants a and b?

Since improving the O(n) upper bound for the page number of upward pla-
nar DAGs seems to be a hard nut to crack, it is natural to look for a lower
bound, which would be provided by an upward planar triangulation with super-
constant page number. In light of Theorem 1, it is enough to consider 4-
connected triangulations; moreover, Theorem 2 suggests that we should better
consider triangulations whose diameter is not too small. Thus, an upward pla-
nar internally-triangulated mesh seems to be a good candidate for such a lower
bound. However, in the following we show that the page number of the two
regular triangulations of a mesh (depicted in Fig. 9) is constant.

(a) (b)

Figure 9: Two ways how to internally triangulate a mesh.

We provide a total ordering of the vertices of the internally-triangulated mesh
depicted in Fig. 9(a) with constant maximum twist size. Such a total ordering
is shown in Fig.10(a) and defined as follows. First, we identify the vertices of
the n×n mesh with the elements of the integer lattice [0;n−1]× [0;n−1] ⊂ Z2

in the natural way. Second, we partition the vertices of the lattice (and hence
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the vertices of the mesh) into the sets Li = {(x, y) ∈ Z2| 2i ≤ x+y ≤ 2i+1; 0 ≤
x, y ≤ n − 1}, with i = 0, . . . , n − 1. Third, we order the elements in each set
Li:

(2i, 0), (2i+ 1, 0), (2i− 1, 1), (2i, 1), . . . , (0, 2i), (1, 2i), (0, 2i+ 1), if i is even;
(0, 2i), (0, 2i+ 1), (1, 2i− 1), (1, 2i), . . . , (2i, 0), (2i, 1), (2i+ 1, 0), if i is odd.

Finally, we get a total ordering of the vertices of the n×n mesh by concate-
nating the above orders so that all the elements in Li precede all the elements
in Lj whenever i < j.
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Figure 10: Orderings of the vertices in the triangulated grids yielding a constant
page number.

We now provide a total ordering of the vertices of the internally-triangulated
mesh depicted in Fig. 9(b) with constant maximum twist size. Such a total or-
dering is shown in Fig.10(b) and defined as follows. Similarly to the previous
case, we associate the elements in the mesh with a suitable subset of the integer
lattice. Then, we define a partition of the elements in the infinite integer lat-
tice whose coordinates are both non-negative into sets L′i = {(2i + 1, 0), (2i +
2, 0), (2i − 1, 1), (2i, 1), . . . , (1, i), (2, i), (0, i + 1)}, for i = −1, 0, . . .. We order
the elements in each L′i as follows:

(1, i), (0, i+ 1), (3, i− 1), (2, i), . . . (2i+ 1, 0), (2i, 1), (2i+ 2, 0), if i is even;
(2i+ 1, 0), (2i+ 2, 0), (2i− 1, 1), (2i, 1), . . . , (1, i), (2, i), (0, i+ 1), if i is odd.

The ordering of the elements in each set L′i defines a total ordering of the
vertices of the mesh associated with such elements. Similarly to the previous
case, a total ordering of the vertices of the mesh is then obtained by imposing
that all the elements in L′i precede all the elements in L′j whenever i < j.

We now sketch the reason why the described total orderings of the vertices
of the meshes do not create twists of large size. We will argue about the mesh in
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Fig. 9(a), the argument for the mesh in Fig. 9(b) being analogous. First, observe
that the removal of the vertices in Li and of their incident edges disconnects
the mesh, for each 1 ≤ i ≤ n − 2. Since the ordering of the vertices of the
mesh is such that all the elements in Li precede all the elements in Lj whenever
i < j, we get that all the edges in any twist are incident to vertices in the same
set Li, for some 1 ≤ i ≤ n. The edges connecting two vertices in Li cannot
participate in a large twist as the end-vertices of any such edge differ by at
most three positions in the ordering. On the other hand, the end-vertices of
the edges connecting vertices in Li to vertices in Li+1 can be arbitrarily far
from each other in the constructed orderings. However, if the vertices in Li are
ordered “from left to right” then those in Li+1 are ordered “from right to left”,
and vice versa. Thus, most of the pairs of edges connecting vertices in Li with
vertices in Li+1 are nested, hence they do not create twists of large size.

The way how we construct the orderings for the two above internally-trian-
gulated meshes suggests a general strategy to order the vertices of any upward
planar DAG G that might lead to vertex orderings with small maximum twist
size: First, partition the set of vertices of G into subsets S0, . . . , Sk such that
the vertices in Si are connected only to vertices in Si−1 (if such a set exists), to
vertices in Si, and to vertices in Si+1 (if such a set exists). Second, order the
vertices in each set Si “from left to right” if i is even and “from right to left” if i
is odd. Finally, concatenate the orders of Si’s in such a way that all the vertices
in Si precede all the vertices in Sj whenever i < j. Even though in many cases,
especially when the structure of G is regular, adapting this strategy is fairly
simply, for a general upward planar DAG this does not seem to be the case.

Determining whether every n-vertex upward planar DAG has o(n) page num-
ber and whether there exist upward planar DAGs with ω(1) page number remain
among the most important problems in the theory of linear graph layouts.
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