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Abstract

A plane graph is a planar graph with a fixed planar embedding in
the plane. In a box- rectangular drawing of a plane graph, every vertex is
drawn as a rectangle, called a box, each edge is drawn as either a horizontal
line segment or a vertical line segment, and the contour of each face is
drawn as a rectangle. A planar graph is said to have a box-rectangular
drawing if at least one of its plane embeddings has a box-rectangular
drawing. Rahman et al. [11] gave a necessary and sufficient condition for
a plane graph to have a box-rectangular drawing and developed a linear-
time algorithm to draw a box-rectangular drawing of a plane graph if it
exists. Since a planar graph G may have an exponential number of planar
embeddings, determining whether G has a box-rectangular drawing or
not using the algorithm of Rahman et al. [11] for each planar embedding
of G takes exponential time. Thus to develop an efficient algorithm to
examine whether a planar graph has a box-rectangular drawing or not is
a non-trivial problem. In this paper we give a linear-time algorithm to
determine whether a planar graph G has a box-rectangular drawing or
not, and to find a box-rectangular drawing of G if it exists.
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1 Introduction

For the last two decades automatic drawings of graphs have created intense
interest due to their broad applications, and as a consequence, a number of
drawing styles and corresponding drawing algorithms have emerged [1, 3, 6,
13]. A plane graph is a planar graph with a fixed embedding in the plane. A
rectangular drawing of a plane graph G is a drawing of G, where each vertex is
drawn as a point, each edge is drawn as a horizontal or vertical line segment,
and each face is drawn as a rectangle. On the other hand a box-rectangular
drawing of a plane graph G is a drawing of G in which each vertex is drawn as a
(possibly degenerated) rectangle, called a box, each edge is drawn as a horizontal
line segment or a vertical line segment, and the contour of each face is drawn
as a rectangle. Figure 1(c) illustrates a box-rectangular drawing of the plane
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Figure 1: (a) A planar graph G, (b) a plane embedding Γ of G for which a
box-rectangular drawing exists, and (c) a box-rectangular drawing of the planar
graph G.

graph as in Fig. 1(b). Box-rectangular drawings have practical applications in
VLSI floorplanning [7, 8, 11, 12, 14] and architectural floorplanning [2, 9, 10].

All plane graphs do not have box-rectangular drawings. Rahman et al. [11]
gave a necessary and sufficient condition for a plane graph to have a box-
rectangular drawing and developed a linear-time algorithm to draw a box-
rectangular drawing of a plane graph if it exists. Xin He [5] did the same task
for proper box- rectangular drawings of plane graphs. A planar graph is said
to have a box-rectangular drawing if at least one of its plane embeddings has
a box-rectangular drawing. For the plane embedding as illustrated in Fig. 1(a)
of the planar graph G there is no box-rectangular drawing. But the plane em-
bedding as in Fig. 1(b) of G has a box-rectangular drawing as illustrated in
Figure 1(c). Thus G has a box-rectangular drawing. Since a planar graph G

may have an exponential number of planar embeddings, determining whether
G has a box-rectangular drawing or not using the algorithm of Rahman et al.
[11] for each planar embedding of G takes exponential time. Thus to develop
an efficient algorithm to examine whether a planar graph has a box-rectangular
drawing or not is a non-trivial problem. In this paper we give a linear-time al-
gorithm to determine whether a planar graph G has a box-rectangular drawing
or not, and to find a box-rectangular drawing of G if it exists.

Our approach for finding a box-rectangular drawing of a planar graph is
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similar to that of Rahman et al. [12] for finding a rectangular drawing of a planar
graph. However, our work is not a mere extension of the work of Rahman et al.
[12], and we had to face a lot of challenges. In this paper we show that all the
plane embeddings of a subdivision of planar 3-connected cubic graph G which is
cyclically 4-edge-connected, have box-rectangular drawings, whereas not every
such embedding has a rectangular drawing. We denote the maximum degree
of a graph G by ∆(G) or simply by ∆. Rahman et al. [12] deal with planar
graphs having ∆ ≤ 3. But for box-rectangular drawing we deal with planar
graphs of the maximum degree 4 or more. We had to face enormous difficulties
in dealing with the graphs of maximum degree 4 or more. In [12] Rahman et
al. showed that at most four plane embeddings are needed to be checked to
determine whether a planar graph has a rectangular drawing. Whereas in case
of box-rectangular drawing we showed that at most 81 embeddings are needed
to be checked.

The rest of this paper is organized as follows. In section 2, we give some
terminologies, and previous results. In Section 3, we describe a necessary and
sufficient condition for a planar graph G with ∆ ≤ 3 to have a box-rectangular
drawing and find a drawing if it exists. Section 4 gives a necessary and sufficient
condition for a planar graph G with ∆ ≥ 4 to have a box-rectangular drawing
and describes a linear-time algorithm for finding a drawing if it exists. Finally
Section 5 concludes the paper. A preliminary version of this paper has been
presented at [4].

2 Preliminaries

In this section we give some definitions and present preliminary results.

Throughout the paper we assume that a graph G is so called a multigraph
which may have multiple edges, i.e., edges sharing both ends. If G has no
multiple edges, then G is called a simple graph. Subdividing an edge (u, v)
of a graph G is the operation of deleting the edge (u, v) and adding a path
u(= w0), w1, w2, . . . , wk, v(= wk+1) passing through new vertices w1, w2, . . . , wk,
k ≥ 1, of degree 2. A graphG is called a subdivision of a graphG′ ifG is obtained
from G′ by subdividing some of the edges of G′.

The connectivity κ(G) of a graphG is the minimum number of vertices whose
removal results in a disconnected graph or a single-vertex graphK1. We say that
G is k-connected if κ(G) ≥ k. A graph G is called cyclically 4-edge-connected
if the removal of any three or fewer edges leaves a graph such that exactly
one of the components has a cycle [15]. The graph in Fig. 2(a) is cyclically
4-edge-connected. On the other hand, the graph in Fig. 2(b) is not cyclically 4-
edge-connected, since the removal of the three edges drawn by dotted lines leaves
a graph with two connected components each of which has a cycle. We often use
the following operation on a planar graph G. Let v be a vertex of degree d in a
plane graph Γ of the planar graphG, let e1 = vw1, e2 = vw2, . . . , ed = vwd be the
edges incident to v, and assume that these edges e1, e2, . . . , ed appear clockwise
around v in this order. Replace v with a cycle v1, v1v2, v2, v2v3, . . . , vdv1, v1, and
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Figure 2: (a) A cyclically 4-edge-connected graph, and (b) a graph which is not
cyclically 4-edge-connected.

replace the edges vwi with viwi for i = 1, 2, . . . , d. We call the operation above
replacement of a vertex by a cycle. The cycle v1, v1v2, v2, v2v3, . . . , vdv1, v1 in
the resulting graph is called the replaced cycle corresponding to the vertex v of
Γ.

Let G be a planar graph, and Γ be an arbitrary plane embedding of G.
The plane graph Γ divides the plane into connected regions called faces. The
unbounded region is called the outer face of Γ, and is denoted by Fo(Γ). We
sometimes denote by Fo(Γ) the contour of the outer face for the sake of simplic-
ity. For a cycle C of Γ, we call the plane subgraph of Γ inside C (including C)
the inner subgraph ΓI(C) for C, and we call the plane subgraph of Γ outside
C (including C) the outer subgraph ΓO(C) for C. An edge which is incident to
exactly one vertex of a cycle C and located outside C is called a leg of C. The
vertex of C to which a leg is incident is called a leg-vertex of C. A cycle C in
Γ is called a k-legged cycle of Γ if C has exactly k legs and there is no edge
which joins two vertices on C and is located outside C [12]. In each of Figs.
2(a) and 2(b), a 3-legged cycle is drawn by thick lines. We call a face F of Γ a
peripheral face for a 3-legged cycle C in Γ if F is in ΓO(C) and the contour of
F contains an edge on C. Clearly there are exactly three peripheral faces for
any 3-legged cycle in Γ. In Fig. 2(b), F1, F2, F3 are the three peripheral faces
for the 3-legged cycle C drawn by thick lines. A k-legged cycle C is called a
minimal k-legged cycle if ΓI(C) does not contain any other k-legged cycle of Γ.
The 3-legged cycle C drawn by thick lines in Fig. 2(b) is not minimal, while the
3-legged facial cycle C′ in Fig. 2(b) is minimal. We say that cycles C and C′

in Γ are independent if ΓI(C) and ΓI(C
′) have no common vertex. A set S of

cycles is independent if every pair of cycles in S are independent. A cycle C in
Γ is called regular if the plane graph Γ− ΓI(C) has a cycle. Similarly an edge
of Γ which is incident to exactly one vertex of a cycle C in Γ and located inside
C is called a hand of C. The vertex of C to which a hand is incident is called a
hand-vertex of C. A cycle C is called a k-handed cycle if C has exactly k hands
in Γ and there is no edge which joins two vertices on C and is located inside
C. A k-handed cycle C is called a maximal k-handed cycle if ΓO(C) does not
contain any other k-handed cycle of Γ. We call a k-handed cycle C a regular
k-handed cycle if Γ− ΓO(C) contains a cycle.
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We now give some definitions regarding a box-rectangular drawing of a plane
graph Γ [11]. We say that a vertex of graph Γ is drawn as a degenerated box in
a box-rectangular drawing D if the vertex is drawn as a point in D. We often
call a degenerated box in D a point and call a nondegenerated box a real box.
We call the rectangle corresponding to Fo(Γ) the outer rectangle, and we call a
corner of the outer rectangle simply a corner. A box in D containing at least
one corner is called a corner box. A corner box may be degenerated. If n = 1,
that is, Γ has exactly one vertex, then the box-rectangular drawing is trivial:
the drawing is just a degenerated box corresponding to the vertex. Thus in the
paper, we can assume that n ≥ 2.

Rahman at al. [11] gave a necessary and sufficient condition for a plane
graph Γ to have a box-rectangular drawing, and developed a linear algorithm
for finding a drawing of Γ if it exists, as stated in the following lemma.

Lemma 1 [11] Let G be a connected planar graph with ∆ ≤ 3, and let Γ be a
plane embedding of G. Assume that Γ has neither a vertex of degree 1 nor a
1-legged cycle. Then Γ has a box-rectangular drawing if and only if Γ satisfies
the following two conditions:

(br1) every 2- or 3- legged cycle in Γ contains an edge on Fo(Γ); and

(br2) 2c2+ c3 ≤ 4 for any independent set ξ of cycles in Γ, where c2 and c3 are
the numbers of 2- and 3- legged cycles in ξ respectively.

In the problem box-rectangular drawing of a plane graph Γ for ∆ ≥ 4 Rah-
man et al. [11] constructed a new plane graph Φ from Γ by replacing each vertex
v of degree four or more in Γ by a cycle. Thus ∆(Φ) ≤ 3. The following lemma
is their main result for ∆ ≥ 4.

Lemma 2 [11] Let Γ be a plane connected graph with ∆ ≥ 4, and let Φ be the
graph transformed from Γ as above. Then Γ has a box-rectangular drawing if
and only if Φ has a box-rectangular drawing.

It is not difficult to derive a characterization of a connected planar graph to
have a box-rectangular drawing if we know a characterization of a biconnected
planar graph to have a box-rectangular drawing. We can assume in our paper
that, G is connected and has neither a vertex of degree 1 nor a 1-legged cycle;
otherwise the planar graph G does not have a box-rectangular drawing as all
the faces of the graph can not be drawn as rectangles simultaneously. If a
planar graph G has neither a vertex of degree 1 nor a 1-legged cycle, and if
the graph G is 1-connected, then the cut vertex v must be of degree 4 or more.
If G is not a multi graph and has a box-rectangular drawing DG, then all the
cut vertices must reside on the outer face Fo(DG) of the drawing DG, and all
the biconnected components with respect to cut vertices have box-rectangular
drawings separately. If any of the biconnected components contains exactly one
cut vertex, then that component must have a box-rectangular drawing where
the cut vertex is drawn as a corner box containing two corners. If any of the
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biconnected components contains two cut vertices, then that component must
have a box-rectangular drawing where each corner vertex is drawn as a corner
box and each corner box contains exactly two corners. No component contains
3 or more cut vertices; otherwise no box-rectangular drawing exists for G since
the outer face Fo(G) must be a rectangle in the drawing. We can obtain a
box-rectangular drawing DG of G by merging the box-rectangular drawings of
the biconnected components.
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Figure 3: Box-rectangular drawing of a planar graph G with cut vertices.

Figure 3(a) illustrates such a simple planar graph G where c1, c2, and c3
are the cut vertices, and G1, G2, G3, and G4 are the biconnected components
of G with respect to cut vertices. G1 and G4 contain one cut vertex each, and
G2 and G3 contain two cut vertices each. DG1

, DG2
, DG3

and DG4
are the

box-rectangular drawings of the biconnected components G1, G2, G3, and G4,
respectively as illustrated in Fig. 3(b). Finally a box-rectangular drawing DG

of the simple planar graph G is illustrated in Fig. 3(c). One can observe that a
box-rectangular drawing also exists for G, even if G is a multigraph satisfying
the above conditions. Throughout this paper we thus assume that the planar
graph G is biconnected.

3 Box-Rectangular Drawings of Planar Graphs

with ∆ ≤ 3

In this section we give a necessary and sufficient condition for a planar graph
G with ∆ ≤ 3 to have a box-rectangular drawing. We first consider the case
where G is a subdivision of a planar 3-connected cubic graph. G has an O(n)
number of embeddings, one for each face chosen as the outer face. Examining
by the linear algorithm in Lemma 1 whether the two conditions (br1) and (br2)
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hold for each of the O(n) embeddings, one can examine in time O(n2) whether
the planar graph G has a box-rectangular drawing. However, we obtain the
following necessary and sufficient condition for G to have a box-rectangular
drawing, which leads to a linear-time algorithm to examine whether G has a
box-rectangular drawing. We also give a linear-time algorithm to find a drawing
if it exists.

Theorem 1 Let G be a subdivision of a planar 3-connected cubic graph, and
let Γ be an arbitrary plane embedding of G.

(a) Suppose first that G is cyclically 4-edge-connected, that is, Γ has no regular
3-legged cycle. Then the planar graph G has a box-rectangular drawing.

(b) Suppose next that G is not cyclically 4-edge-connected, that is, Γ has a
regular 3-legged cycle C. Let F1, F2, and F3 be the three peripheral faces
for C, and let Γ1, Γ2, and Γ3 be the plane embeddings of G taking F1, F2,
and F3 respectively as the outer face. Then the planar graph G has a box-
rectangular drawing if and only if at least one of the three embeddings Γ1,
Γ2, and Γ3 has a box-rectangular drawing.

We only prove here Theorem 1(a), the proof of Theorem 1(b) is similar to that
of Theorem 3.1(b) in [12]. Before giving a proof of Theorem 1(a), we need the
following Lemmas 3 and 4. Lemma 3 is needful to prove the Lemma 4.

Lemma 3 Let G be a subdivision of planar 3-connected cubic graph, and Γ be
an arbitrary plane embedding of G. If G is cyclically 4-edge-connected, then
2c2 + c3 ≤ 2 for any independent set ξ of cycles in Γ, where c2 and c3 are the
numbers of 2- and 3-legged cycles in ξ, respectively.

Proof: Let G be a subdivision of planar 3-connected cubic graph, and Γ be an
arbitrary plane embedding of G. Assume that G is cyclically 4-edge-connected.
We first show that Γ does not have two or more independent 2-legged cycles.
Assume for a contradiction that Γ has two independent 2-legged cycles, C1 and
C2. Then removal of the two legs of either C1 or C2 leaves a graph with two
connected components, each of which has a cycle, contrary to the definition of a
cyclically 4-edge-connected graph. Similarly we can prove that Γ can not have
two independent 3-legged cycles. Similarly we can also prove that Γ can not
have two cycles, one is 2-legged, and another is 3-legged, which are independent.
That is, 2c2 + c3 ≤ 2 for any independent set ξ of cycles in Γ, where c2 and c3
are the numbers of 2- and 3-legged cycles in ξ, respectively. �

Lemma 4 Let G be a subdivision of planar 3-connected cubic graph. If G is
cyclically 4-edge-connected, then all the plane embeddings of the planar graph
G, satisfy (br1) and (br2) of Lemma 1.

Proof: Let Γ be a plane embedding of G. We first show that Γ satisfies (br1) in
Lemma 1. Assume for a contradiction that a 2-legged or a 3-legged cycle C has
no edge on the outer face of Γ. Then the removal of the legs of C will result in
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two connected components having cycles, and G would not be a cyclically 4-edge
connected graph, a contradiction. By Lemma 3, Γ satisfies (br2) of Lemma 1.

�

Proof of Theorem 1(a). By Lemma 4, every plane embedding Γ ofG satis-
fies Conditions (br1) and (br2) of Lemma 1; and hence Γ has a box-rectangular
drawing by Lemma 1. Therefore the planar graph G has a box-rectangular
drawing. �

We now consider the other case. It can be trivially shown that every bicon-
nected planar graph G having two vertices of degree 3 has a box-rectangular
drawing. We may thus assume that G has three or more vertices of degree 3.
Then any planar embedding Γ of G has a regular 2-legged cycle; otherwise, G
would be a subdivision of a 3-connected cubic graph. In this case we have the
following theorem.

Theorem 2 Let G be a planar biconnected graph with ∆ ≤ 3 which is not a
subdivision of a planar 3-connected cubic graph. Let Γ be a planar embedding
of G such that every 2-legged cycle in Γ has leg-vertices on Fo(Γ), let Γ have
exactly two independent 2-legged cycles, and let C1 and C2 be the two minimal
2-legged cycles in Γ. Let Γ1(= Γ), Γ2, Γ3, and Γ4 be the four embeddings of G
obtained from Γ by flipping ΓI(C1) or ΓI(C2) around the the leg vertices of C1

and C2. Then G has a box-rectangular drawing if and only if at least one of the
four embeddings Γ1, Γ2, Γ3, and Γ4 has a box-rectangular drawing.

Using a method similar to that used in the proof of Theorem 3.4 in [12], we
can prove Theorem 2. Note that G does not always have such an embedding Γ;
if G has no such embedding, then G has no box-rectangular drawing.

4 Box-Rectangular Drawings of Planar Graphs

with ∆ ≥ 4

In this section we give a necessary and sufficient condition for a planar graph
G with ∆ ≥ 4 to have a box-rectangular drawing. We also give a linear-time
algorithm to find a drawing if it exists. In Subsection 4.1 we consider the case
where G is a subdivision of a planar 3-connected graph with ∆ ≥ 4 and in
Subsection 4.2 we consider the other cases.

4.1 Case for a Subdivision of a Planar 3-Connected Graph

with ∆ ≥ 4

Let G be a subdivision of a planar 3-connected graph with ∆ ≥ 4, and Γ be an
arbitrary plane embedding of G. We construct a new planar graph H from Γ
by replacing each vertex v of degree four or more in Γ by a cycle.

Figures 5(a), 5(b), and 5(c) illustrate G, Γ, and H respectively. A replaced
cycle corresponds to a real box in a box-rectangular drawing of G. We do not
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replace a vertex of degree 2 or 3 by a cycle since a vertex of degree 3 may be
drawn as a point, and a vertex of degree 2 is always drawn as a point. Thus
∆(H) ≤ 3. The following theorem is the main result of this subsection.

Theorem 3 Let G be a subdivision of a planar 3-connected graph with ∆ ≥ 4,
and Γ be an arbitrary plane embedding of G. Let H be the graph transformed
from Γ as above. Then G has a box-rectangular drawing if and only if the planar
graph H has a box-rectangular drawing.

It is rather easy to prove the necessity of Theorem 3.
Proof for Necessity of Theorem 3. Let Γ be an arbitrary plane embed-
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Figure 4: Illustration of G, Γ, H , Γ′, Φ, DΓ′ , DΦ, and the two transformations.

ding of the planar graph G. G and Γ are illustrated in Figs. 4(a) and 4(b),
respectively. Assume that G has a box-rectangular drawing for any plane em-
bedding Γ′ as in Fig. 4(d) of G. Therefore, Γ′ has a box-rectangular drawing
DΓ′ in which every vertex of degree 4 or more is drawn as a real box [11], as
illustrated in Fig. 4(f). Then, as illustrated in Fig. 4(g), one can obtain a
box-rectangular drawing DΦ for the plane graph Φ as in Fig. 4(e) from DΓ′ by
the following transformation, where Φ is actually a plane graph of the planar
graph H as illustrated in Fig. 4(c):

(i) regard each noncorner real box in DΓ′ as a face in DΦ;

(ii) if a corner box in DΓ′ corresponds to a vertex of degree 3 in Γ then regard
it as a corner box in DΦ; and

(iii) if a corner box in DΓ′ corresponds to a vertex of degree four or more in Γ,
then transform it to a drawing of a replaced cycle with one or more real
boxes as illustrated in Figs. 4(h) and 4(i) where the box in DΓ′ contains
one corner in Fig. 4(h) and contains two corners in Fig. 4(i).
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�

Figures 4(f) and 4(g) illustrate DΓ′ and DΦ, respectively. Box h in DΓ′ is a
noncorner real box, and it is regarded as a face in DΦ. Corner boxes c and f in
DΓ′ correspond to vertices of degree 3, and they remain as boxes in DΦ. Corner
box g in DΓ′ corresponds to a vertex of degree 2, it remains as a degenerated
box in DΦ. Corner box d in DΓ′ correspond to a vertex of degree four or more
is transformed to a drawing of a replaced cycle with one real box in DΦ as
illustrated in Fig. 4(h).
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Figure 5: Illustration for a box-rectangular drawing of a subdivision of a planar
3- connected graph G with ∆ ≥ 4.

We need some definitions before proving the sufficiency. We replace the
vertices of degree 4 or more in Γ by cycles. Each vertex of degree 2 or 3 in Γ
has a corresponding vertex of the same degree in H , and we call such a vertex
in H an original vertex. A vertex on a replaced cycle is called a replaced vertex.
Now each vertex in H is either a replaced vertex or an original vertex.

Assume that, an arbitrary plane embedding Φ of the planar graph H has a
box-rectangular drawing DΦ. Therefore, Φ satisfies (br1) and (br2) of Lemma
1. We can easily transform DΦ to a box-rectangular drawing DΓ′ for any plane
embedding Γ′ of the planar graph G if only original vertices are drawn as corner
boxes in DΦ, because then each replaced vertex is a point in DΦ, and each
replaced cycle in Φ is a rectangular face inDΦ, and henceDΦ can be transformed
to DΓ′ by regarding each replaced cycle as a box. The problem is the case where
a replaced vertex is drawn as a corner box in DΦ. Because such a drawing DΦ

cannot always be transformed to a box-rectangular drawing DΓ′ of Γ′. However
we show that a plane graph Φ∗ as illustrated in Fig. 5(f) obtained from Φ
as in Fig. 5(d) through an intermediate graph Φ′ as in Fig. 5(e) with slight
modification has a particular box-rectangular drawing DΦ∗ which can be easily
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transformed to a box-rectangular drawing of Γ′ as illustrated in Fig. 5(h).
Transformation is also not possible when the outer face of Φ is a replaced cycle.
However, we are released from the problem by proving the following Lemmas 5
and 6 which are on a planar graph with ∆ ≥ 4. Lemma 5 is needful to prove
the Lemma 6.

Lemma 5 Let G be a planar graph with ∆ ≥ 4, and Γ be an arbitrary plane
embedding of G. Let H be the transformed graph of Γ by replacing each vertex
v of degree four or more in Γ by a cycle, and Φ be an arbitrary plane embedding
of the planar graph H. Denote the total number of 2-legged and 3-legged cycles
in Γ by lΓ, and the total number of 2-handed and 3-handed cycles in Γ by hΓ.
Also denote the total number of 2-legged and 3-legged cycles in Φ by lφ, and the
total number of 2-handed and 3-handed cycles in Φ by hΦ. If pΓ = lΓ + hΓ, and
pΦ = lΦ + hΦ, then pΓ = pΦ.

Proof:

(b)(a)

(d)(c)
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b

c e d

f
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f
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a

d

Figure 6: Illustration of Lemma 5.

(See Fig. 6) Since a 2-legged cycle in any plane embedding of G has a
corresponding 2-legged or a 2-handed cycle in another plane embedding of G,
and a 2-handed cycle in any plane embedding of G has a corresponding 2-handed
or a 2-legged cycle in another plane embedding of G, different plane embeddings
of a same planar graph do not change the number of 2-legged cycles and 2-
handed cycles in total. Similarly, different plane embeddings of a same planar
graph do not change the number of 3-legged cycles and 3-handed cycles in total.
One can easily observe that, the total number of 2-legged and 2-handed cycles
in Φ remains same with the total number of 2-legged and 2-handed cycles in
Γ after transformation. Similarly the total number of 3-legged and 3-handed
cycles in Φ remains same with the total number 3-legged and 3-handed cycles
in Γ, after transformation. Because in Φ every replaced cycle is either a 4- or
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more handed, or a 4- or more legged cycle. Therefore, if pΓ = lΓ + hΓ, and
pΦ = lΦ + hΦ, then pΓ = pΦ. �

Lemma 6 Let G be a planar graph with ∆ ≥ 4, and Γ be an arbitrary plane
embedding of G. Let H be the transformed graph of Γ by replacing each vertex v

of degree four or more in Γ by a cycle. Let ΦR be any arbitrary plane embedding
of the planar graph H, such that Fo(ΦR) is a replaced cycle in H. Then G is
cyclically 4-edge-connected if and only if ΦR has a box-rectangular drawing.

Proof: Necessity. Assume G is cyclically 4-edge-connected. Then H is cycli-
cally 4-edge connected, since H is obtained from a plane embedding Γ of G by
replacing each vertex of degree 4 or more by a cycle. Then by Theorem 1(a),
ΦR has a box-rectangular drawing.

Sufficiency. Assume ΦR has a box-rectangular drawing. That is, ΦR satisfies
both (br1) and (br2) of Lemma 1. There is no 2- or 3-legged cycle in ΦR, which
does not contain an edge on Co(ΦR). Furthermore, Co(ΦR) is also a 4- or more
handed cycle. One can easily observe that removal of any 3 or fewer edges leaves
a graph in ΦR such that exactly one component has a cycle. So ΦR is cyclically
4-edge-connected. Another plane embedding Φ of H , which does not have a
replaced cycle as the outer face is also cyclically 4-edge-connected, as Φ and ΦR

are the two different plane embeddings of the same planar graph H . By Lemma
5, Γ and Φ do not change in total number of 2-legged, 2-handed, 3-legged, and
3-handed cycles. So, Γ is cyclically 4-edge-connected. That is, G is a cyclically
4-edge-connected graph. �

We are now ready to prove the sufficiency of Theorem 3.
Sufficiency of Theorem 3. Assume thatH has a box-rectangular drawing.

ThenH has a plane embedding Φ which has a box-rectangular drawing. We now
show that G has a plane embedding Γ′ which has a box-rectangular drawing.
Before entering into the cases we give a definition. If the outer face of Φ is not
a replaced cycle, then the replaced cycle on Fo(Φ) corresponding to a vertex of
degree 4 or more in G contains exactly one edge on Fo(Φ). We call such an edge
in Φ a green edge. We have two cases to consider.

Case 1. Φ does not contain a replaced cycle as the outer face.
Assume that Φ as in Fig. 5(d) has a box-rectangular drawing. Let Φ′ be

the minimal graph homeomorphic to Φ as illustrated in Fig. 5(e). Since G is a
subdivision of a 3-connected graph, Φ′ is a 3-connected cubic graph and there
is no 2-legged cycle in Φ′. Since Φ has a box-rectangular drawing, Φ satisfies
Conditions (br1) and (br2) in Lemma 1. Hence Φ′ also satisfies Conditions
(br1) and (br2) in Lemma 1. Using the similar approach used in [11], we can
designate four vertices as corner vertices after slight modification in Φ′. Let
Φ∗ be the resulting graph as illustrated in Fig. 5(f). Note that each of the
four designated vertices in Φ∗ is either an original vertex or a dummy vertex of
degree 2 on a green edge of Φ′ [11]. Clearly, every 3-legged cycle in Φ∗ contains
at least one designated vertex and every 2-legged cycle in Φ∗ contains at least
three designated vertices. (Although Φ′ has no 2-legged cycle, Φ∗ may have a
2-legged cycle.) Hence, Φ∗ has a box-rectangular drawing DΦ

∗ with the four
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designated vertices as corner boxes, as illustrated in Fig. 5(g). Inserting the
removed vertices of degree 2 on some vertical and horizontal line segments in
DΦ

∗ and regarding the drawing of each replaced cycle as a box, we immediately
obtain a box-rectangular drawing DΓ′ for a plane embedding Γ′ of the planar
graph G from DΦ

∗, as illustrated in Fig. 5(h).
Case 2. Φ contains a replaced cycle as the outer face.
In this case Φ = ΦR, as in Lemma 6. By Lemma 6, if ΦR has a box-

rectangular drawing, then H is cyclically 4-edge connected. Hence by Theorem
1(a), another plane embedding Γ′ of H , whose outer face is not a replaced cycle
has also a box-rectangular drawing D. Thus by using the method used in Case
1 we can obtain a box-rectangular drawing of Γ′. �

4.2 The Other Case for a Planar Graph G with ∆ ≥ 4

It can be trivially shown that every graph G with ∆ ≥ 4 having two vertices has
a box-rectangular drawing. Note that in this case the graph G is a multigraph.

We may thus assume that G is a planar biconnected graph with ∆ ≥ 4 but
not a subdivision of a planar 3-connected graph. In this case the following fact
holds.

Fact 1 Let G be a biconnected planar graph with ∆ ≥ 4. Let Γ1 and Γ2 be
the two arbitrary plane embeddings of G. A minimal 3-legged cycle in Γ1 has
a corresponding minimal 3-legged or a maximal 3-handed cycle in Γ2, and a
minimal 2-legged cycle in Γ1 has a corresponding minimal 2-legged or a max-
imal 2-handed cycle in Γ2. Similarly a maximal 3-handed cycle in Γ1 has a
corresponding maximal 3-handed or a minimal 3-legged cycle in Γ2, and a max-
imal 2-handed cycle in Γ1 has a corresponding maximal 2-handed or a minimal
2-legged cycle in Γ2.

Proof: Let G be a biconnected planar graph with ∆ ≥ 4. Let Γ1 and Γ2 be
the two arbitrary plane embeddings of G. Let C1 be a minimal 3-legged cycle
in Γ1. If any face in ΓI(C1) of Γ1 be the outer face of Γ2, then one can easily
observe that C1 in Γ1 has a corresponding maximal 3-handed cycle C2 in Γ2. If
any face in ΓO(C1) of Γ1 be the outer face of Γ2, then one can easily observe
that C1 in Γ1 has a corresponding minimal 3-legged cycle C2 in Γ2. (Note that
C1 in Γ1 and C2 in Γ2 may be the same cycle.) Similar scenario occurs in all
other cases also. �

Let G be a planar biconnected graph with ∆ ≥ 4 but not a subdivision
of a planar 3-connected graph, and Γ be an arbitrary plane embedding of G.
Let (x1, y1), (x2, y2), . . . , (xl, yl) be all pairs of vertices such that xi and yi,
1 ≤ i ≤ l, are the leg vertices of a regular 2-legged cycle or the hand-vertices
of a regular 2-handed cycle. If there is a plane embedding Γ′ of G having a
box-rectangular drawing, then the outer face Fo(Γ

′) must contain all vertices
(x1, y1), (x2, y2), . . . , (xl, yl); otherwise, Γ

′ would have a 2-legged cycle contain-
ing no vertex on Fo(Γ

′), and Γ′ would not have a box-rectangular drawing.
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Because after replacing the vertices of degree 4 or more by cycles in Γ′, ac-
cording to Lemma 5, 2-legged cycles will remain same and the total number of
2-legged cycles will also remain same. The graph is denoted by Φ after transfor-
mation from Γ′. If Γ′ has a 2-legged cycle containing no vertex on Fo(Γ

′), then
by Lemma 5, Φ also has a 2-legged cycle containing no vertex on Fo(Φ). Hence
by (br1) of Lemma 1, Φ does not have a box-rectangular drawing, and conse-
quently by Lemma 2, Γ′ does not have a box-rectangular drawing. Similarly, if
Γ′ has a box-rectangular drawing, then by Lemma 2, Φ has a box-rectangular
drawing and by [11] exactly two leg vertices of every minimal 3-legged cycle in
Φ are on the outer face of the box-rectangular drawing. Thus by Lemma 5,
Fo(Γ

′) contains exactly two leg vertices of every minimal 3-legged cycle in Γ′.
Hence by Fact 1 exactly two leg vertices of every minimal 3-legged cycle, and
exactly two hand vertices of every maximal 3-handed cycle in Γ must be on the
outer face Fo(Γ

′).

Let p be the largest integer such that a number p of minimal 2-legged and
maximal 2-handed cycles in Γ are independent with each other, and q be the
largest integer such that a number q of minimal 3-legged and maximal 3-handed
cycles in Γ are independent with each other. If p > 2 or q > 4, then by [11],
there is no plane embedding Γ′ of G for which a box-rectangular drawing exists.
Assume the worst case, that is, p = 2 and q = 4 in Γ. Independent minimal
3-legged and maximal 3-handed cycles in Γ are denoted by C1, C2, C3, and C4.
Let {ak, bk, ck} be the set of leg vertices or hand vertices in Ck, for k = 1, 2, 3,
or 4. We can choose two vertices from each C1, C2, C3, or C4 in 3 ways. The
combinations are {(ak, bk), (bk, ck), and (ck, ak)}, for k = 1, 2, 3 or 4. If we want
to choose eight vertices from the four cycles, C1, C2, C3, and C4, two vertices
from each Ck, for k = 1, 2, 3 and 4, we can choose in 3 x 3 x 3 x 3 = 81 number
of ways. The combinations are S1 = {(a1, b1), (a2, b2), (a3, b3), (a4, b4)}, S2 =
{(a1, b1), (a2, b2), (a3, b3), (b4, c4)}, S3 = {(a1, b1), (a2, b2), (a3, b3), (c4, a4)}, . . . ,
and S81 = {(c1, a1), (c2, a2), (c3, a3), (c4, a4)}.
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Figure 7: Illustration for a box-rectangular drawing of a biconnected graph G

with ∆ ≥ 4 but not a subdivision of a 3-connected graph .
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Let G be a planar biconnected graph with maximum degree 4 or more but
not a subdivision of a planar 3-connected graph, and Γ be an arbitrary plane
embedding of G as in Fig. 7(a). Let (x1, y1), (x2, y2), . . . , (xl, yl) be all pairs of
vertices such that xi and yi, 1 ≤ i ≤ l, are the leg vertices of a regular 2-legged
cycle or the hand-vertices of a regular 2-handed cycle, and {ak, bk, ck} be the
set of leg vertices or hand vertices in Ck, for k = 1, 2, 3 and 4. A dummy vertex
z is added in the outer face of Γ. Construct a graph Γj

+, for any j = 1, 2, 3,
. . . , or 81, by adding dummy edges (xi, z) and (yi, z) for all indices i, 1 ≤ i ≤ l,
and by adding eight dummy edges from z to all vertices in the set Sj . In this
way we can get 81 number of graphs Γj

+, for j = 1, 2, 3, . . ., and 81. Γ1
+ and

Γ2
+ are two such graphs as illustrated in Fig. 7(b) and in Fig. 7(c) respectively.

G may have a box-rectangular drawing, only if, any one of the graphs Γj
+, for

j = 1, 2, 3, . . ., and 81, has a planar embedding such that z is embedded in the
outer face. Γ2P

+ in Fig. 7(c) is such a planar embedding of the graph Γ2
+,

but Γ1
+ in Fig. 7(b) has no such a planar embedding. That is why, the planar

graph G as illustrated in Fig. 7(a) may have a box-rectangular drawing. Delete
the dummy vertex z from Γ2P

+. The graph is then called Γ2P
∗ as in Fig. 7(d).

Lastly by Lemma 2 and by the approach used in [11] we can test in linear time
whether the plane graph Γ2P

∗ has a box-rectangular drawing and find a drawing
if it exists. DΓ2P

∗ is a box rectangular of the plane graph Γ2P
∗ as well as of the

planar graph G, as illustrated in Fig. 7(e).
We thus have the following theorem.

Theorem 4 Let G be a planar biconnected graph with ∆ ≥ 4 which is not a
subdivision of a planar 3-connected graph. Then one can determine whether G

has a box-rectangular drawing or not by checking at most 81 graphs constructed
from G as mentioned above. Furthermore, each of the 81 graphs can be checked
in linear time.

5 Conclusion

In this paper we addressed the problem for finding box-rectangular drawings of
planar graphs. We gave a necessary and sufficient condition for a planar graph
to have a box-rectangular drawing and developed a linear-time algorithm for
finding a drawing if it exists. In this paper we have shown that, at most 81
graphs are required to be checked to take a decision whether a planar bicon-
nected graph with ∆ ≥ 4 has a box-rectangular drawing or not. In future one
may try to minimize the number of graphs required to be checked to take the de-
cision whether the planar biconnected graph with ∆ ≥ 4 has a box-rectangular
drawing or not.

Acknowledgment

This work is done in Graph Drawing & Information Visualization Laboratory of
the Department of CSE, BUET, established under the project “Facility Upgra-



644 Hasan et al. Box-Rectangular Drawings of Planar Graphs

dation for Sustainable Research on Graph Drawing & Information Visualiza-
tion” supported by the Ministry of Science and Information & Communica-
tion Technology, Government of Bangladesh. We acknowledge the supports of
Bangladesh Academy of Sciences and Dutch-Bangla Bank Limited, Bangladesh.



JGAA, 17(6) 629–646 (2013) 645

References

[1] T. C. Biedl. Optimal orthogonal drawings of triconnected plane graphs.
In Proceedings of SWAT (96), volume 1097 of Lecture Notes in Com-
puter Science, pages 333–344. Springer-Verlag, Berlin/New York, 1996.
doi:10.1007/3-540-61422-2_143.

[2] A. L. Buchbaum, E. R. Gansner, C. M. Procopiuc, and S. Venkatasubra-
manian. Rectangular layouts and contact graphs. ACM Transactions on
Algorithms, 4(1):8.1–8.28, 2008. doi:10.1145/1328911.1328919.

[3] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing.
Prentice Hall, Englewood Cliffs, New Jersey, 1999.

[4] M. M. Hasan, M. S. Rahman, and M. R. Karim. Box-rectangular draw-
ings of planar graphs. In Proceedings of the 7th International Workshop
on Algorithms and Computation (WALCOM 2013), volume 7748 of Lec-
ture Notes in Computer Science, pages 334–345. Springer-Verlag, 2013.
doi:10.1007/978-3-642-36065-7_31.

[5] X. He. A simple linear time algorithm for proper box rectangular
drawings of plane graphs. Journal of Algorithms, 40(1):82–101, 2001.
doi:10.1006/jagm.2001.1161.

[6] G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica,
16:4–32, 1996. doi:10.1007/BF02086606.

[7] K. Kozminski and E. Kinnen. An algorithm for finding a rectangular
dual of a planar graph for use in area planning for VLSI integrated cir-
cuits. In Proceedings of 21st DAC, Albuquerque, pages 655–656, 1984.
doi:10.1109/DAC.1984.1585872.

[8] T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. Wi-
ley, Chichester, 1990.

[9] S. Munemoto, N. Katoh, and G. Imamura. Finding an optimal floor layout
based on an orthogonal graph drawing algorithm. Journal of Architecture,
Planning and Environmental Engineering (Transactions of AIJ), 524:279–
286, 2000.

[10] T. Nishizeki and M. S. Rahman. Planar Graph Drawing. World Scientific,
Singapore, 2004.

[11] M. S. Rahman, S. Nakano, and T. Nishizeki. Box-rectangular draw-
ings of plane graphs. Journal of Algorithms, 37:363–398, 2000.
doi:10.1006/jagm.2000.1105.

[12] M. S. Rahman, T. Nishizeki, and S. Ghosh. Rectangular draw-
ings of planar graphs. Journal of Algorithms, 50:62–78, 2004.
doi:10.1016/S0196-6774(03)00126-3.

http://dx.doi.org/10.1007/3-540-61422-2_143
http://dx.doi.org/10.1145/1328911.1328919
http://dx.doi.org/10.1007/978-3-642-36065-7_31
http://dx.doi.org/10.1006/jagm.2001.1161
http://dx.doi.org/10.1007/BF02086606
http://dx.doi.org/10.1109/DAC.1984.1585872
http://dx.doi.org/10.1006/jagm.2000.1105
http://dx.doi.org/10.1016/S0196-6774(03)00126-3


646 Hasan et al. Box-Rectangular Drawings of Planar Graphs

[13] R. Tamassia, I. G. Tollis, and J. S. Vitter. Lower bounds for planar orthog-
onal drawings of graphs. Information processing Letters, 39:35–40, 1991.
doi:10.1016/0020-0190(91)90059-Q.

[14] K. Tani, S. Tsukiyama, S. Shinoda, and I. Shirakawa. On area-efficient
drawings of rectangular duals for VLSI floor-plan. Mathematical Program-
ming, 52:29–43, 1991. doi:10.1007/BF01582878.

[15] C. Thomassen. Plane cubic graphs with prescribed face ar-
eas. Combinatorics, Probability and Computing, 1:371–381, 1992.
doi:10.1017/S0963548300000407.

http://dx.doi.org/10.1016/0020-0190(91)90059-Q
http://dx.doi.org/10.1007/BF01582878
http://dx.doi.org/10.1017/S0963548300000407

	Introduction
	Preliminaries
	Box-Rectangular Drawings of Planar Graphs with 3
	Box-Rectangular Drawings of Planar Graphs with 4
	Case for a Subdivision of a Planar 3-Connected Graph with 4
	The Other Case for a Planar Graph G with 4

	Conclusion

