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Abstract

We consider the (r, l)-Partization problem of finding a set of at most
k vertices whose deletion results in a graph that can be partitioned into r
independent sets and l cliques. Restricted to perfect graphs and split
graphs, we describe sequacious fixed-parameter tractability results for
(r, 0)-Partization, parameterized by k and r. For (r, l)-Partization where
r + l = 2, we describe an O∗(2k) algorithm for perfect graphs. We then
study the parameterized complexity hardness of a generalization of the
Above Guarantee Vertex Cover by a reduction from (r, l)-Partization.
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1 Introduction

We consider only simple, finite, connected and undirected graphs. Given an
undirected graph G and integers k, r and l, we define the (r, l)-Partization prob-
lem as follows.

(r, l)-Partization
Input: 〈G, k, r, l〉 where k, r and l are non-negative integers
Parameter: k, r, l
Question: Does there exist S ⊆ V (G), |S| ≤ k such that V (G \ S) can be
partitioned into l cliques and r independent sets?

The (r, l)-Partization problem generalizes many classical problems. For in-
stance, Vertex Cover is (1, 0)-Partization, Odd Cycle Transversal (OCT) is
(2, 0)-Partization and r-Coloring, Clique Cover are (r, 0)-Partization, (0, l)-
Partization, respectively, with k = 0 [GT1, GT21, GT4, GT15 in [12]]. Ver-
tex Cover and OCT have been widely studied in the parameterized complexity
framework. Vertex Cover was one of the first problems to be shown as fixed-
parameter tractable (FPT). Research on this problem has led to new research
directions in parameterized complexity [18]. An OCT of a graph is a sub-
set of vertices whose deletion makes the graph bipartite. The fixed-parameter
tractability of OCT was shown only quite recently [32]. Interestingly, none of
the already known techniques for designing FPT algorithms were able to ascer-
tain the fixed-parameter tractability of OCT. A technique referred to as iterative
compression was introduced for this purpose. This was a breakthrough in pa-
rameterized algorithmics and led to the design of FPT algorithms for many
other problems [17]. The algorithm for OCT reported in [32] runs in O∗(3k)
time. After nearly a decade, this bound was improved to O∗(2.3146k) [24].

The r-Coloring problem can be thought of as partitioning the graph into r
color classes with each class being an independent set. Clearly, if a graph is
r-colorable, then its complementary graph can be partitioned into r cliques. As
a natural generalization, the r-Cocoloring problem is to determine if a graph
can be partitioned into r sets each of which is a clique or an independent set.
The cochromatic number z(G) of G is the minimum number r of sets (each of
which is either a clique or an independent set) that V (G) can be partitioned
into. Brandstädt showed that determining if V (G) can be partitioned into r ≤ 2
independent sets and l ≤ 2 cliques is polynomial-time solvable [3]. However, the
problem is NP-complete if either r ≥ 3 or l ≥ 3 as it includes 3-Coloring as
a special case. Thus, (r, l)-Partization is trivially para-NP-hard (i.e. NP-hard
even for constant k). Further, (r, 0)-Partization, which we subsequently refer to
as r-Partization, is at least as hard as r-Coloring which is W -hard when param-
eterized by the number of colors r [28]. Thus, on general graphs, r-Partization
is W -hard when parameterized by k and r.

Perfect graphs is a well-studied special graph class that subsumes many in-
teresting graph classes like chordal graphs, split graphs, bipartite graphs, com-
parability graphs and parity graphs [14]. Perfect graphs can be recognized in
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polynomial time [5] and problems such as Maximum Independent Set, Minimum
Coloring and Maximum Clique are polynomial-time solvable using the classical
algorithm of Grötschel, Lovász and Schrijver [15]. None of these polynomial-
time solutions are purely combinatorial. They employ polyhedral combinatorics
and semidefinite programming. Recently, on perfect graphs, (r, l)-Partization
with k = 0 was shown to be FPT with r + l as the parameter [20]. Also, r-
Partization is known to be NP-complete on split graphs in which Vertex Cover
and OCT are polynomial-time solvable. Further, for each fixed r, r-Partization
is polynomial-time solvable on chordal graphs using dynamic programming in
O(nr) time [6, 35]. For perfect graphs, Vertex Cover is polynomial-time solvable
using polyhedral combinatorics [16] and OCT is NP-complete by a recent result
[2]. Thus, r-Partization on perfect graphs is W -hard when parameterized by r.

Our Results: On perfect graphs and split graphs, we show that r-Partization
is FPT with respect to k and r as parameters. The algorithms have run-times
O∗((r+1)k) on perfect graphs and O∗(2k+r) on split graphs. For perfect graphs,
on which OCT is known to be NP-complete, we describe an O∗(2k) algorithm
using iterative compression. The property of perfectness of the graph enables an
algorithm better than the O∗(2.3146k) time algorithm reported in [24] for gen-
eral graphs. Also, we study (r, l)-Partization in perfect graphs when r + l = 2.
We refer to this problem as Bicochromatization.
Roadmap: In Section 2, we study r-Partization in perfect graphs and split
graphs. In Section 3, we show that Bicochromatization on perfect graphs ad-
mits an O∗(2k) algorithm. Finally, in Section 4, we explore the relationship
between (r, l)-Partization and Vertex Cover.

Graph Theoretic Preliminaries: Graph theoretic terminologies are as de-
fined in [14, 34]. For a graph G, V (G) and E(G) denote the vertex set and
edge set, respectively. Let |V (G)| = n, |E(G)| = m and NG(v) = {u | {u, v} ∈
E(G)}. The graph G is referred to as an r-partite graph if V (G) can be parti-
tioned into r independent sets. The clique number ω(G) and the independence
number α(G) are the cardinalities of a largest clique and independent set, re-
spectively, in G. The size of a maximum matching in G is denoted as µ(G) and
the chromatic number of G is denoted by χ(G). Also, G is said to be r-colorable
if χ(G) ≤ r.

Clearly, χ(G) ≥ ω(G). A graph G in which for every induced subgraph H,
χ(H) = ω(H) holds, is called perfect. It is also known that G is perfect if and
only if G is perfect. One of the first classes of graphs to be recognized as being
perfect is the class of chordal (triangulated) graphs [14]. Chordal graphs are
graphs in which every induced cycle is a triangle and co-chordal graphs are the
corresponding complementary graphs. A graph G is a spilt graph if V (G) can
be partitioned into a clique and an independent set. Also, G is split if and only
if G and G are both chordal. Since an independent set in G is a clique in G
and vice-versa, it follows that G is a split graph if and only if G is also a split
graph. Further, a split graph is a 2K2-free chordal graph.
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Parameterized Complexity Preliminaries: The goal in parameterized com-
plexity is to identify parameters that cause the inherent hardness of NP-complete
problems and design algorithms with run-times bounded by f(k)|x|O(1), where
x is the input instance and f is any arbitrary computable function dependent
only on the problem-specific parameter k. The running time f(k)|x|O(1) of a
parameterized algorithm is generally denoted as O∗(f(k)) by suppressing the
polynomial terms. Parameterized problems for which such algorithms exist are
referred to as fixed-parameter tractable (FPT). For a parameterized problem,
a kernelization algorithm is a polynomial-time pre-processing procedure that
transforms an instance of the problem into an equivalent instance, called a prob-
lem kernel, whose size depends only on the input parameter(s). By obtaining a
kernel, the problem is clearly FPT. An active area of research in parameterized
algorithmics is to obtain as small kernels as possible or establish the infeasibility
of such kernels under standard complexity theoretic assumptions.

A central tool in the analysis of parameterized and exact exponential algo-
rithms is the Exponential-Time Hypothesis: 3-SAT cannot be solved in 2o(n)

time [21]. By reductions preserving subexponential time complexities, prob-
lems like 3-Coloring and Maximum Independent Set do not have subexponen-
tial time algorithms under Exponential-Time Hypothesis [22]. In order to clas-
sify parameterized problems as fixed-parameter tractable (denoted as FPT) or
intractable (referred to as W -hard), Downey and Fellows [9] defined the W-
hierarchy FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P ] ⊆ XP using Boolean circuits and
the notion of parameterized reductions. A parameterized problem P is param-
eterized reducible to a parameterized problem Q if there is a FPT algorithm
that transforms an instance 〈x, k〉 of P into an instance 〈x′, k′〉 of Q such that
〈x, k〉 ∈ P ⇔ 〈x′, k′〉 ∈ Q and k′ = g(k) for some function g. A parameterized
problem P to which all problems in W[1] can be reduced by a parameterized
reduction is referred to as W[1]-hard and believed not to be FPT. W[1]-hard
problems in W[1] are called W[1]-complete. For the other classes in the W-
hierarchy, hardness and completeness are analogously defined.

Design Techniques for FPT Algorithms: The parameterized algorithms
described in this work largely use the following two popular design paradigms.
1. Depth-bounded Search Trees: This technique [28] involves a system-
atic exploration of the solution space of a parameterized problem in a tree-like
fashion. The depths of such search trees are usually upper-bounded by values
depending on the parameter. The idea is to find a small subset of the input
instance in polynomial time such that at least one element of this subset is part
of an optimal solution to the problem. A search tree is now built with nodes
corresponding to recursive calls on smaller problems accompanied by smaller
parameters.
2. Iterative Compression: This technique, introduced in [32], typically
works for minimization problems parameterized by the solution size. The idea
is to begin with a solution of size (k + 1) and attempt to compress it (in FPT
time) to a solution of size k. The compression version of a parameterized prob-
lem is: Given a graph G, a non negative integer k, a (k + 1) size solution S′ of
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G, does there exist a solution, S of G such that |S| ≤ k? The compression algo-
rithm takes as input a triple (G[v1, · · · , vi=k+1], {v1, · · · , vi=k+1}, k) and either
reports that G[v1, · · · , vi] has no solution of size k or returns a k-size solution S.
In the former case, we declare that G has no k sized solution. In the latter case,
we call the compression algorithm with input (G[v1, · · · , vi, vi+1], S ∪ {vi+1}, k)
and proceed iteratively. The iterative run of the compression routine termi-
nates when either a solution of size k is obtained for the entire graph, or if an
intermediate instance turns out to be incompressible. If a k-size solution exists
for G, we are guaranteed to find it after n− k compressions. The template for
iterative compression is as described in Algorithm 1.

Algorithm 1 IC(G(V,E), k)

Consider an arbitrary order v1, v2, · · · , vn of vertices of G
Define V ′ = {v1, v2, · · · , vk+1}
S ← ∅, i← 1
S′ ← V ′ /*Initialize current (k + 1)-size solution S′ of G[V ′]*/
while i ≤ n− k do
S ← COMPRESS(G[V ′], S′, k) /* k-size solution of G[V ′] */

i← i+ 1, S′ ← S ∪ {vk+i} and V ′ ← V ′ ∪ {vk+i}
end while
return S

For more details on parameterized complexity, we refer the reader to [9, 11, 28].

2 r-Partization in Special Graph Classes

As r-Partization in general graphs is trivially para-NP-hard and W -hard when
paramaterized by k and r, we focus our study to special graph classes. In
particular, we consider perfect graphs, split graphs and bounded tree-width
graphs.

2.1 r-Partization in Perfect Graphs

Any r-colorable graph cannot have Kr+1 as a subgraph and this condition is
sufficient for perfect graphs. Also, for a perfect graph G, there is a polynomial-
time algorithm to determine whether χ(G) is at most r [16]. The following
characterization of r-colorable perfect graphs was provided in [6, 35] which we
rephrase and present below for completeness.

Lemma 1 A perfect graph G is r-colorable if and only if G forbids Kr+1 as a
subgraph. Further, an r-partization solution for G is to find a set S ⊂ V (G)
such that for each clique C in G, |C ∩ S| ≥ |C| − r.

As an r-partization solution for G is to find a minimum set of vertices that
intersects all cliques of size (r + 1) in G, we obtain a parameterized algorithm
using a depth-bounded search tree technique.
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Theorem 1 Given a perfect graph G and integers k, r, there is an algorithm
to decide whether G has an r-partization solution of size at most k in time
O∗((r + 1)k).

Proof: Choose a Kr+1 in G. Since at least one of the (r + 1) vertices are in
any solution, the size of the graph and the parameter drop by 1 in each of the
(r + 1) branches. Recurse on the remaining graph till no Kr+1 is found or the
parameter budget is exhausted. Note that since G is perfect, ω(G) and a clique
on (r + 1) vertices (if one exists) can be obtained in polynomial time using the
Lovász theta function [16]. As the depth of the search tree is upper-bounded
by k, the algorithm runs in O∗((r + 1)k) time. �

Theorem 2 For every fixed r, r-Partization in perfect graphs, parameterized
by k admits an O(kr) size kernel.

Proof: For each fixed r, in O(nr+1) time, an r-Partization instance 〈G, k〉 can
be transformed into an (r+ 1)-uniform Hitting Set instance 〈U = V (G), C = K,
k′ = k〉, where K denotes the set of cliques of size (r+ 1) in G. Thus, we obtain
an O(kr) size kernel using the kernelization techniques employed in [1]. �

Theorem 3 The Maximum Induced r-Colorable Subgraph problem in perfect
graphs admits a polynomial-time r-approximation algorithm.

Proof: Observe that if 〈G, k, r〉 is an YES instance of r-Partization, we have
α(G) ≥ n−k

r . Thus, a maximum independent set I of G, which can be obtained
in polynomial time for perfect graphs [16], is a maximum induced r-colorable
subgraph of G with at least n−k

r vertices. Thus, for perfect graphs, this is an r-
approximate solution for the dual of r-Partization, referred to as the Maximum
Induced r-Colorable Subgraph problem [35]. �

2.2 r-Partization in Split Graphs

Recall that a graph G is a split graph if V (G) can be partitioned into a clique
and an independent set. A split graph G′(K ′ ∪ I ′, E) can be transformed into
an equivalent split graph G(K ∪ I, E) such that |K| = ω(G′) = ω(G) in linear
time. For rest of the discussion, we will assume that this property is satisfied
by any split graph.

Lemma 2 For a split graph G(K∪I, E), there exists an optimum r-Partization
solution S such that S ⊆ K.

Proof: Consider a minimal solution S and let x ∈ S∩I. As G\S is r-colorable
and S is minimal, x is adjacent to at least one vertex in every color class of
G \ S. Consider a color class C of G \ S. Since N(x) ⊆ K, x is adjacent to
exactly one vertex (say v) in C. Replace x by v in S. By iteratively processing
such vertices in S, it follows that the resultant solution S obtained is a subset
of K. �
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Using Lemma 2, we describe Algorithms 1 and 2 that employ structured iterative
compression. The idea is to build an iterative algorithm, and at each iteration,
compress the current solution, which is a clique, into a smaller one unless it is
optimal.

Algorithm 2 COMPRESS(G′, S′, k)

Transform G′(K ′ ∪ I ′, E′) to G(K ∪ I, E) such that |K| = ω(G′) = ω(G)
Preprocess S′ such that S′ ⊆ K /* Linear time pre-processing */

/* K ′ ∪ I ′ denotes V (G) \ S′ */
for all Y ⊆ S′{Iterate over sets Y to be retained in solution S} do
/* G[S′ \ Y ] is r-colorable */

If ∃x ∈ I ′ that is in a Kr+1 in G[V \Y ] then skip to the next choice of Y
for all X ⊆ K ′ with |X| ≤ k − |Y | do
If G[V \ (X ∪ Y )] is r-colorable then return X ∪ Y

end for
end for
Declare 〈G, k, r〉 as a NO instance

Lemma 3 Given a split graph G and integers k, r, Algorithms 1 and 2 decide
whether G has an r-partization solution of size at most k in time O∗(2k+r).

Proof: Delete isolated vertices from I as these vertices cannot be a part of
any optimal solution. Consider a (k + 1)-size solution S′. Denote V (G) \ S′ as
K ′ ∪ I ′, where K ′ is a maximum clique and I ′ is an independent set. Let S be
the required k-size solution such that S∩S′ = Y . Since G[V \S′] is r-colorable,
|K ′| ≤ r. Observe that S′ is a clique. As G[S′ \ Y ] is r-colorable, G[S′ \ Y ]
is a clique on at most r vertices. If |Y | = i then |S′ \ Y | = k + 1 − i. Since
G[S′\Y ] is an r-colorable clique, k+1−i ≤ r. Therefore, the number of ways of

choosing Y from S is
(
k+1
k+1−r

)
+ · · ·+

(
k+1
k

)
=
∑k
i=k+1−r

(
k+1
i

)
. After choosing

Y , a subset X ⊆ K ′ such that |X| ≤ k − |Y | and G[V \ (X ∪ Y )] is r-colorable
can be found by an exhaustive search among the

(
r

k−|Y |
)

choices. The run-time

of the algorithm is bounded by
∑k
i=0

(
k+1
i

)(
r
k−i
)
≤
(
k+r+1
k

)
≤ 2k+r+1. Thus,

the required solution, if one exists, is obtained in O∗(2k+r) time. �

Remark: r-Partization on chordal graphs (and hence for split graphs) is known
to be polynomial-time solvable for each fixed r, using dynamic programming
in O(nr) time [6, 35]. We observe that the run-time

∑k
i=0

(
k+1
i

)(
r
k−i
)

of our

algorithm can also be bounded by
(
k+r+1
r+1

)
≤ (k+ r+ 1)r+1. Thus, we obtain a

new polynomial-time algorithm for each fixed r on split graphs.

2.3 r-Partization in Treewidth-Bounded Graphs

It is known that any problem expressible in monadic second order logic is FPT
when parameterized by the treewidth [7]. Atomic predicates V (x) and S(v)
denote x ∈ V (G) and v ∈ S, S ⊆ V (G), respectively. Inc(x, e) represents the
incidence relation between x ∈ V (G) and e ∈ E(G).
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φ = ∃S(AtMostk(S) ∧ Setsr ∧ Coloringr)

AtMostk(S) : ∀s1, · · · ,∀sk+1

∨
1≤i 6=j≤k+1(si = sj) is true if and only if |S| ≤ k.

Setsr : ∃X1∃X2 · · · ∃Xr(∀x(V (x)∧¬S(x))→ ((X1(x)∨ · · · ∨Xr(x))∧∀1≤i6=j≤r
¬∃x(Xi(x)∧Xj(x))) is true if and only if V (G)\S can be partitioned into r sets.

Coloringr : ∀x∀y((V (x) ∧ V (y) ∧ ¬S(x) ∧ ¬S(y) ∧ (x 6= y)) ∧ ∃z(Inc(x, z) ∧
Inc(y, z)) →

∧
1≤i≤r ¬(Xi(x) ∧ Xi(y))) is true if and only if G[V \ S] can be

properly colored using r colors.

By expressing r-Partization in monadic second order logic, we conclude that
the problem parameterized by treewidth and r is FPT.

3 Bicochromatization in Perfect Graphs

Recall that a graph G is perfect if for every induced subgraph H of G, χ(H) =
ω(H). The Bicochromatization problem in a perfect graph G is to determine
the existence of a set S of at most k vertices satisfying one of the following
properties:

1. G \ S is bipartite. This is to solve for OCT on G.

2. V (G \ S) can be partitioned into 2 cliques. In other words, G \ S is
bipartite. Thus, it suffices to solve OCT on G.

3. G \S is a split graph. Here, V (G \S) can be partitioned into a clique and
an independent set. This is to solve Split Deletion on G.

By the weak perfect graph theorem, G is perfect if and only if G is perfect
[14]. Thus, on perfect graphs, algorithms for OCT and Split Deletion solve
Bicochromatization. We describe the algorithms for OCT and Split Deletion
in Sections 3.1 and 3.2. These algorithms employ the iterative compression
technique with different COMPRESS routines.

3.1 OCT in Perfect Graphs

The problem of finding a maximum independent set in a perfect graph is solvable
in polynomial time using polyhedral combinatorics [16]. However, similar com-
plexity results do not hold for OCT which was recently shown to be NP-hard [2].
Observe that a minimum OCT in a perfect graph is a minimum cardinality set
of vertices that intersects every triangle. Exploiting this fact and the structure
of perfect graphs, we describe an O∗(2k) parameterized algorithm (Algorithms
1 and 3) using iterative compression technique. The key idea is that the COM-
PRESS subroutine first pre-processes the instance as long as possible: let S′

denote the current (k + 1)-size solution and Y be a subset of S′. If there exists
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a K3 in G[V \ Y ] with exactly one vertex v in V (G) \ S′, add v to the solution
and decrease k by 1. After processing such triangles, we reduce the problem to
Vertex Cover in a bipartite graph.

Algorithm 3 COMPRESS(G,S′, k)

/* Iterate over each set Y to be retained in solution S */

for all Y ⊆ S′ do
If G[S′ \ Y ] is not bipartite then skip to next subset of S′

X ← ∅
for all K3 = {u, v ∈ S′ \ Y, x ∈ V \ S′} in G[V \ Y ]

/* Add x to solution and decrease k by 1 */
X ← X ∪ {x}, k ← k − 1

T = set of triangles in G[V \ (X ∪ Y )] and E′ = E(G[V \ S′]) ∩ E(T )
X ′ ← min vertex cover of G(V \ S′, E′)
If |X|+ |X ′| ≤ k − |Y | then return X ∪X ′ ∪ Y

end for
Declare 〈G, k〉 as NO instance

Lemma 4 Given a perfect graph G and an integer k, Algorithms 1 and 3 de-
cide whether G has an OCT of size at most k in time O∗(2k). Further, these
algorithms decide if G has an at most k-size set S such that V (G \ S) can be
partitioned into 2 cliques.

Proof: Consider a (k + 1)-size solution S′. If a smaller solution S exists, it
has an intersection Y (possibly empty) with S′. The COMPRESS subroutine
searches for such a solution S by iterating over all Y ⊆ S′ to be retained in S
and choosing X ⊆ V (G) \ S′ to replace S′ \ Y . We consider only subsets Y for
which G[S′ \Y ] is bipartite. Since G[V \S′] and G[S′ \Y ] are bipartite, G[V \Y ]
is 4-colorable. Thus, ω(G[V \ Y ]) ≤ 4.

k+1 size 
solution
(known)

k size 
solution
(unknown)

Y

S' S

YS'

V\S' (bipartite)

S'\Y (bipartite) Y S'

Add to solution
Add min vertex cover 
of such edges to solution

u u v

For any triangle in G[V \ Y ] that has exactly one vertex v ∈ V (G) \ S′, we
add v to X. After processing such triangles as long as possible, any triangle in
G[V \ Y ], if exists, has two vertices in V (G) \ S′ and one vertex in S′ \ Y . Let



138 Krithika and Narayanaswamy (r, l)-Partization

E′ be the set of edges of such triangles having both endpoints in V (G) \ S′. A
minimum vertex cover X ′ of G(V \S′, E′) essentially intersects every triangle in
G[V \ Y ]. Since G[V \ S′] is bipartite, a minimum vertex cover can be found in
polynomial time [34]. If |X ∪X ′ ∪ Y | ≤ k then S = X ∪X ′ ∪ Y is the required
solution. Such a set S, if one exists, is found by considering all possible 2k+1

partitions of S′ in O∗(2k) time. Further, as G is perfect (since G is perfect),
it suffices to determine the existence of an at most k-size OCT for G to decide
if G has an at most k-size set S such that V (G) \ S can be partitioned into 2
cliques. �

3.2 Split Deletion

The Split Deletion problem of determining the existence of S ⊆ V (G) such that
G[V \S] is a split graph is known to admit an O∗(2k) algorithm in general by a
recent result [13]. We describe the algorithm in this section. For a split graph
G(K ∪ I, E), exactly one of the following conditions holds [14]:

1. |I| = α(G) and |K| = ω(G). Here, the partition V (G) = K ∪ I is unique.

2. |I| = α(G) and |K| = ω(G) − 1. Here, there exists a vertex v ∈ I such
that K ∪ {v} is a clique.

3. |I| = α(G) − 1 and |K| = ω(G). Here, there exists a vertex v ∈ K such
that I ∪ {v} is independent.

Therefore, for a split graph G on n vertices, there are at most n+ 1 split parti-
tions which can be enumerated in polynomial time. The algorithm in [13] uses
the iterative compression technique. The working of the COMPRESS routine
is described as Algorithm 4.

Algorithm 4 COMPRESS(G,S′, k)

/* Iterate over sets Y to be retained in solution S */

for all Y ⊆ S′ do
If G[S′ \ Y ] is not a split graph then skip to next subset of S′

X ← ∅
for each split partition KS′ ∪ IS′ of S′ \ Y

for each candidate split partition K ′ ∪ I ′ of G[V \ S′]
for all u ∈ K ′ non-adjacent to a vertex v ∈ KS′

X ← X ∪ {u}, k ← k − 1
for all u ∈ I ′ adjacent to a vertex v ∈ IS′

X ← X ∪ {u}, k ← k − 1
If |X| ≤ k − |Y | then return X ∪ Y

end for
Declare 〈G, k〉 as NO instance

Lemma 5 Given a graph G and an integer k, Algorithms 1 and 4 decide
whether G has a set S of size at most k such that G \ S is a split graph in
time O∗(2k).
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Proof: Consider a (k+1)-size solution S′ and let K ′∪I ′ denote a split partition
of G \ S′. The COMPRESS subroutine searches for a smaller solution S by
iterating over all Y ⊆ S′ to be retained in S and choosing X ⊆ V (G) \ S′ to
replace S′ \ Y . We consider only subsets Y for which G[S′ \ Y ] is a split graph.
For a split partition KS′ ∪IS′ of S′ \Y , we search for a X ⊆ V (G)\S′ such that
in a split partition K∪I of G\S, KS′ ⊆ K and IS′ ⊆ I. For each split partition
KS′ ∪ IS′ of S′ \ Y , we consider all possible split partitions of G[V \ S′]. Let
K ∪ I be one such partition. We now describe the structure of vertices in X.
If a vertex u ∈ K ′ is non-adjacent to a vertex v ∈ KS′ , then u must be in X.
Similarly, if a vertex u ∈ I ′ is adjacent to a vertex v ∈ IS′ , then u must be in
X. Hence, X can be obtained by identifying such vertices in V (G) \ S′. Thus,
we can determine if the set S of at most k vertices exists in O∗(2k) time. �

From Lemmas 4 and 5, we have the following result.

Theorem 4 Given a perfect graph G and an integer k, there is an algorithm
running in time O∗(2k) that decides if G has a bicochromatization solution of
size at most k.

Bicochromatization in Co-chordal Graphs

To solve Bicochromatization in a co-chordal graph G, we have to determine
the existence of a set S of at most k vertices satisfying one of the following
properties: (1) G \ S is bipartite. (2) G \ S is bipartite. (3) G \ S is a split
graph. These can be achieved by solving for OCT on G (co-chordal), OCT
on G (chordal) and Split Deletion on G (chordal), respectively. We show that
Bicochromatization restricted to co-chordal graphs is polynomial-time solvable.
OCT and Split Deletion on chordal graphs are known to be polynomial-time
solvable [6, 10, 35]. We now describe a polynomial-time algorithm for OCT in
co-chordal graphs. In [30], Raman et al. showed that if S is a minimum OCT
of G, then V (G) \ S can be partitioned into a maximal independent set V1 of
G and a maximum independent set V2 of G \ V1. Thus, it follows that OCT is
polynomial time solvable in any graph class in which the maximal independent
sets can be enumerated in polynomial time. Co-chordal graphs are one such
graph class. The number of maximal independent sets in a co-chordal graph
can be enumerated in linear time as the number of maximal cliques in a chordal
graph is at most n [14]. Thus, we obtain an O(n2) time algorithm for OCT
in co-chordal graphs by a simple enumeration technique: Iterate over all K, a
maximal independent set of G. If |K|+ |K ′| ≥ n− k, where K ′ is a maximum
independent set in G \ K then V (G) \ (K ∪ K ′) is the required OCT. If no
maximal independent set K yields such an OCT, we declare 〈G, k〉 as a NO
instance.

4 Generalized Above Guarantee Vertex Cover

In Sections 2 and 3, for perfect graphs, we have described parameterized algo-
rithms for (r, 0)-Partization and (r, l)-Partization with r+ l = 2. We know that
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(r, l)-Partization is W -hard in general. We use this hardness to understand the
parameterized complexity of a generalization of an above guarantee parameter-
ization of Vertex Cover. We define Generalized Above Guarantee Vertex Cover
as follows.

Generalized Above Guarantee Vertex Cover
Input: 〈G,K, k〉, where K is a clique cover of G and k ∈ N
Parameter: k
Question: Does G have a vertex cover of size at most k +

∑
C∈K(|C| − 1)?

As the size of any vertex cover of G is at least the cardinality µ(G) of a maximum
matching in G, a parameterization of Vertex Cover where the parameter is the
difference between the optimum solution size and the guaranteed lower bound
is appropriate to study. Such above guarantee parameterized problems were
first considered by Mahajan and Raman in [25]. Vertex Cover Above Maximum
Matching (also known as Above Guarantee Vertex Cover) is one of the most
popular such parameterizations of Vertex Cover that have been studied in the
literature [8, 19, 24, 26, 27, 29, 31]. The problem is to decide if G has a vertex
cover of size at most µ(G) + k, where k is the above guarantee parameter and
was shown to be FPT by a parameter preserving reduction to Almost 2-SAT
and an O∗(15k) algorithm for the same [27, 31]. The O∗(2.3146k) algorithm in
[24] is the current fastest algorithm for Vertex Cover Above Maximum Matching.
Generalized Above Guarantee Vertex Cover is a generalization of Vertex Cover
Above Maximum Matching in which the lower bound on the size of a minimum
vertex cover is obtained from the contribution of a clique cover. Note that this
bound is a stronger bound as compared to the size of a maximum matching used
in Vertex Cover Above Maximum Matching. While a maximum matching of a
graph can be obtained in polynomial time, this is quite unlikely for a minimum
clique cover [12]. However, the cliques in an arbitrary clique cover K, not neces-
sarily minimum, can be obtained in polynomial time by finding a maximal clique
C in G and recursing on G\V (C) until every vertex of G is in some clique C ∈ K.

Generalized Above Guarantee Vertex Cover is W -hard: We describe a
parameterized reduction from (r, l)-Partization to Generalized Above Guarantee
Vertex Cover by defining the following transformation: given a graph G(V,E)
with V (G) = {v1, v2, · · · , vn} and integers r and l, the graph Gr,l is constructed
by taking r copies G1({v11, · · · ,v1n}, E1), · · ·Gr({vr1, · · · , vrn}, Er) of G and
l copies G1({u11, · · · ,u1n}, E′1), · · ·Gl({ul1, · · · , uln}, E′l) of G. Also, for each
vi ∈ V (G), the vertices {v1i, · · · , vri, u1i, · · · , uli} form a clique. A clique cover
K of Gr,l is {{vij , uhj | 1 ≤ i ≤ r, 1 ≤ h ≤ l} | vj ∈ V (G)}.

Lemma 6 For any k′ ≥ 0, G has an (r, l)-partization solution of size k′ if and
only if Gr,l has a vertex cover of size (r + l − 1)n+ k′.

Proof: Consider a subgraph H of G with V (H) = V (G) \ S, where S ⊆ V (G)
is an (r, l)-partization solution of size k′ in G. Consider a partition of V (H)
into r independent sets V1, · · · , Vr and l cliques U1, · · · , Ul. Define a subset
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Figure 1: (r, l)-Partization ≤fpt Generalized Above Guarantee Vertex Cover

I ⊆ V (Gr,l) as follows: for each vertex vi ∈ Vj , vji ∈ I for 1 ≤ j ≤ r and for
each vertex vi ∈ Uj , uji ∈ I for 1 ≤ j ≤ l. By the construction of Gr,l, for each
{vi, vj} ∈ E(G), {vhi, vpj}, {uh′i, up′j} /∈ E(Gr,l) for all 1 ≤ h 6= p ≤ r, 1 ≤ h′ 6=
p′ ≤ l. Also, for every vi ∈ V (H), exactly one of v1i, · · · , vri, u1i, · · · , uli is in I.
Thus, we have |I| = n−k′ and I is an independent set in Gr,l. Hence, V (Gr,l)\I
is a vertex cover of size (r + l − 1)n+ k′ in Gr,l. Conversely, consider a vertex
cover X of size (r+ l−1)n+k′ in Gr,l. Let I = V (Gr,l)\X be the corresponding
independent set of size n − k′ in Gr,l. Clearly, for any vi ∈ G, 1 ≤ i ≤ n, at
most one of vj′i and uj′i, 1 ≤ j ≤ r, 1 ≤ j′ ≤ l can be in I. Partition I into
V ′1 ∪ · · · ∪ V ′r ∪ U ′1 ∪ · · · ∪ U ′l such that each vij ∈ I ∩ V ′i and each uij ∈ I ∩ U ′i .
Define Vj = {vi | vji ∈ V ′j }, 1 ≤ j ≤ r and Uj = {ui | uji ∈ U ′j}, 1 ≤ j ≤ l. We
claim that G[V1 ∪ · · · ∪Vr] is r-colorable and the complement of G[U1 ∪ · · · ∪Ul]
is l-colorable. On the contrary, if G[V1 ∪ · · · ∪ Vr] is not r-colorable, without
loss of generality, let vj , vh ∈ Vi be adjacent. By the definition of Vi, it follows
that vij and vih are adjacent in V ′i contradicting that I is an independent set in
G. Similarly, if the complement of G[U1 ∪ · · · ∪Ul] is not l-colorable, then there
exists vertices uj , uh ∈ Ui which are non-adjacent in G. Thus, there exist an i′

with ui′j , ui′h ∈ U ′i∩I such that ui′j and ui′h are adjacent contradicting the fact
that I is an independent set in Gr,l. Hence, V (G) \ (V1 ∪ · · · ∪Vr ∪U1 ∪ · · · ∪Ul)
is an (r, l)-partization solution of k′ vertices in G. �

Theorem 5 For input instances of Generalized Above Guarantee Vertex Cover
with cliques sizes at least 3 in the clique cover, the problem is not FPT unless
P = NP.

Proof: Consider an (r, l)-Partization instance 〈G({v1, v2, · · · , vn}, E), k, r, l〉.
The corresponding Generalized Above Guarantee Vertex Cover instance 〈Gr,l,K,
k〉 where K is a clique cover of Gr,l defined as {{vij , ui′j | 1 ≤ i ≤ r, 1 ≤ i′ ≤
l} | vj ∈ V (G)}. By Lemma 6, G has an (r, l)-partization solution of size at
most k if and only if Gr,l has a vertex cover of size at most (r + l − 1)n + k.
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For k = l = 0 and r = 3, it follows that G is 3-colorable if and only if Gr,l has
a vertex cover of size 2n. An O∗(f(k)) algorithm for Generalized Vertex Cover
Above Guarantee results in a polynomial-time algorithm for 3-coloring which is
unlikely unless P = NP. Thus, the problem of determining if G has a vertex
cover whose size is at most k more than the contribution from the clique cover
is unlikely to be FPT unless P = NP. �

As (r, l)-Partization is trivially para-NP-hard for r ≥ 3 or l ≥ 3, this polynomial-
time parameter-preserving reduction shows that Generalized Above Guarantee
Vertex Cover is also para-NP-hard. It is known that the standard parameter-
ized Vertex Cover cannot have subexponential parameterized algorithms under
Exponential-Time Hypothesis [4]. Therefore, it follows that algorithms subexpo-
nential in the parameter are unlikely for Vertex Cover Above Maximum Match-
ing. This result can also be obtained from Theorem 5.

Theorem 6 The problem of deciding if G has a vertex cover of size at most
µ(G) + k, where k is the above guarantee parameter, does not have 2o(k) time
parameterized algorithm under Exponential-Time Hypothesis.

Proof: By the construction of G3,0, we have µ(G3,0) ≥ n+µ(G). Let µ(G3,0) =
n+ µ(G) + c where c ≥ 0. Note that as µ(G3,0) can be obtained in polynomial
time, c can be determined in polynomial time. If there is an 2o(k) algorithm
for Vertex Cover Above Maximum Matching, then a vertex cover of size 2n =
µ(G3,0) + (n− µ(G)− c) can be obtained in 2o(n−µ(G)−c) time for G3,0. Thus,
in time subexponential in n, we can determine if G is 3-colorable or not. This
is unlikely under Exponential-Time Hypothesis. �

As a consequence of this study, we observe the inter-relationship among the
problems addressed in this paper as presented in Figure 2.

ODD CYCLE TRANSVERSAL

generalizes

GENERALIZED ABOVE GUARANTEE 
VERTEX COVER

reduces to

r-PARTIZATION
(Maximum r-Colorable Subgraph)

VERTEX COVER 
ABOVE MAXIMUM MATCHING

reduces to generalizes

(r,l)-PARTIZATION
generalizes

reduces to

Figure 2: Zoo of Problems Addressed
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5 Concluding Remarks

Though a randomized polynomial kernelization algorithm is known for OCT by
a recent result [23], the existence of a deterministic kernelization algorithm is
still open. It is interesting to note that OCT on perfect graphs, being a restricted
3-Hitting Set, has a quadratic vertex kernel [1]. Determining if linear kernels
exists is an interesting direction of research. Also, our O∗(2k) algorithm for OCT
on perfect graphs is a faster algorithm for restricted 3-Hitting Set instances
than the best known O∗(2.0755k) algorithm for 3-Hitting Set in general [33].
Though OCT on perfect graphs is NP-complete, from Lemma 6, it follows that
OCT is polynomial solvable on perfect graphs G if the transformed graphs G2,0
are perfect since Vertex Cover is in polynomial time for perfect graphs using
semidefinite programming [16]. A structural characterization of such graphs is
an exciting study.
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