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Abstract
Let R(Ka,b, Kc,d) be the minimum number n so that any n-vertex

simple undirected graph G contains a Ka,b or its complement G′ con-
tains a Kc,d. We demonstrate constructions showing that R(K2,b, K2,d)
> b + d + 1 for d ≥ b ≥ 2. We establish lower bounds for R(Ka,b, Ka,b)
and R(Ka,b, Kc,d) using probabilistic methods. We define R′(a, b, c) to
be the minimum number n such that any n-vertex 3-uniform hypergraph
G(V, E), or its complement G′(V, Ec) contains a Ka,b,c. Here, Ka,b,c is
defined as the complete tripartite 3-uniform hypergraph with vertex set
A∪B∪C, where the A, B and C have a, b and c vertices respectively, and
Ka,b,c has abc 3-uniform hyperedges {u, v, w}, u ∈ A, v ∈ B and w ∈ C.
We derive lower bounds for R′(a, b, c) using probabilistic methods. We
show that R′(1, 1, b) ≤ 2b + 1. We have also generated examples to show
that R′(1, 1, 3) ≥ 6 and R′(1, 1, 4) ≥ 7.
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1 Introduction

Let R(G1, G2) denote the smallest integer such that for every undirected graph
G with R(G1, G2) or more vertices, either (i) G contains G1 as subgraph, or
(ii) the complement graph G′ of G contains G2 as subgraph. In particular
R(Ka,b,Ka,b) is the smallest integer n such that any n-vertex simple undirected
graph G or its complement G′ must contain the complete bipartite graph Ka,b.
Equivalently, R(Ka,b,Ka,b) is the smallest integer n of vertices such that any
bicoloring of the edges of the n-vertex complete undirected graph Kn would
contain a monochromatic Ka,b. The significance of such a number is that it
gives us the minimum number of vertices needed in a graph so that two mutually
disjoint subsets of vertices with cardinalities a and b can be guaranteed to have
the complete bipartite connectivity property as mentioned. In the analysis of
social networks it may be worthwhile knowing whether all persons in some subset
of a persons share b friends, or none of the a persons of some other subset share
friendship with some set of b persons. This can also be helpful in the analysis
of dependencies, where there are many entities in one partite set, which are all
dependent on entities in the other partite sets; we need to achieve consistencies
that either all dependencies exist between a pair of partite sets, or none of the
dependencies exist between possibly another pair of partite sets.

1.1 Existing results

From the definition ofR(Ka,b,Ka,b), it is clear thatR(K1,1,K1,1)=2 andR(K1,2,
K1,2)=3. To see that R(K1,3,K1,3) ≥ 6, observe that we need at least 4 vertices
and neither a 4-cycle nor its complement has a K1,3. Further, observe that
neither a 5-cycle in K5, nor its complement (also a 5-cycle) has a K1,3. The
numbers R(K1,b,K1,b) are however known exactly, and are given by Burr and
Roberts [3] as R(K1,b,K1,b) = 2b − 1 for even b, and 2b, otherwise. Chvátal
and Harary [5] were the first to show that R(C4, C4) = 6, where C4 is a cord-
less cycle of four vertices. As K2,2 is identical to C4, R(K2,2,K2,2) = 6. Note
that R(K2,3,K2,3) = 10 [2], R(K2,4,K2,4) = 14 [7], and R(K2,5,K2,5) = 18
[7]. The values of R(K2,2,K2,n) are known to be exactly 20, 22, 25, 26, 30 and
32 for n = 12, 13, 16, 17, 20 and 21, respectively [12]. For integers n such that
12 ≤ n ≤ 16, the values of R(K2,n,K2,n) are known to be exactly 46, 50, 54, 57
and 62, respectively [12]. Harary [8] proved that R(K1,n,K1,m) = n + m − x,
where x = 1 if both n and m are even and x = 0 otherwise. These Ram-
sey numbers are different from the usual Ramsey numbers R(Ka,Kb), where
R(Ka,Kb) is the smallest integer n such that any undirected graph G with
n or more vertices contains either a Ka or an independent set of size b. We
know that R(K3,K3) = 6, R(K3,K4) = 9, R(K3,K8) = 28, R(K3,K9) = 36,
R(K4,K4) = 18, and R(K4,K5) = 25 (see [12, 14, 13]).
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1.2 Our contribution
We derive lower bounds for (i) the unbalanced diagonal case for R(Ka,b,Ka,b)
and (ii) the unbalanced off-diagonal case for R(Ka,b,Kc,d). In Section 2 we also
establish a lower bound of 2b + 1 for R(K2,b,K2,b) for all b ≥ 2. We provide
an explicit construction and use combinatorial arguments. Note that Lortz and
Mengersen [9] conjectured that R(K2,b,K2,b) ≥ 4b − 3, for all b ≥ 2. Exoo et
al. [7] proved that R(K2,b,K2,b) ≤ 4b − 2 for all b ≥ 2, where the equality
holds if and only if a strongly regular (4b − 3, 2b − 2, b − 2, b − 1)-graph exists.
(A k-regular graph G with n vertices is called strongly regular graph (n, k, p, q),
if every adjacent pair of vertices shares exactly p neighbours and every non-
adjacent pair of vertices shares exactly q neighbours.) In Sections 2 and 3, we
consider Ramsey numbers R(Ka,b,Ka,b) and R(Ka,b,Kc,d) respectively, where a,
b, c and d and integers, establishing lower bounds using probabilistic methods.
In Section 3, we also demonstrate a construction showing that R(K2,b,K2,d)
> b + d + 1 for d ≥ b ≥ 2. In Section 4 we extend similar methods for 3-
uniform tripartite hypergraphs, deriving lower bounds for the Ramsey numbers
R′(a, b, c); we are unaware of any literature concerning such lower bounds for
such hypergraphs. Here, R′(a, b, c) is the minimum number n such that any n-
vertex 3-uniform hypergraph G(V,E), or its complement G′(V,Ec) contains a
Ka,b,c. Here, Ka,b,c is defined as the complete tripartite 3-uniform hypergraph
with vertex set A ∪ B ∪ C, where the A, B and C have a, b and c vertices
respectively, and Ka,b,c has abc 3-uniform hyperedges {u, v, w}, u ∈ A, v ∈ B
and w ∈ C. In Section 4, we also show that R′(1, 1, b) ≤ 2b + 1. Further, we
present our generated examples to show that R′(1, 1, 3) ≥ 6 and R′(1, 1, 4) ≥ 7.
In Section 5 we conclude with a few remarks.

2 The unbalanced diagonal case : R(Ka,b, Ka,b)
R(Ka,b,Ka,b) is the minimum number n of vertices such that any bicoloring
of the edges of the n-vertex complete undirected graph Kn would contain a
monochromatic Ka,b. The following lower bound proof for R(K2,b,K2,b) in-
volves an explicit construction. We are not aware of better lower bounds for
R(K2,b,K2,b) in the literature.

2.1 A constructive lower bound for R(K2,b, K2,b)
Theorem 1 R(K2,b,K2,b) > 2b+ 1, for all integers b ≥ 2.

Proof: For b ≥ 2, there always exists a graph G with 2b + 1 vertices, such
that neither G nor its complement G′ has a K2,b. The entire construction is
illustrated in Figure 1. Let the vertices be labelled v1, v2, ..., v2b+1 for b = 4.
Connect v2b+1 to each of the other 2b vertices. Let B1 be the set of vertices v1,
v2, ..., vb and B2 be the set of vertices vb+1, vb+2, ..., v2b. We wish to connect
every vertex in B1 to at most b − 1 vertices in B2. There are

(
b
b−1
)

= b such
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Figure 1: (a) Edges of G connecting v2b+1, (b) Edges of G between vertices of
B1 and B2, (c) the complement graph G′ of G, wherein B1 and B2 are a Kb

each, and B1 and B2 have a perfect matching.

distinct subsets of B2 of size b − 1. Now each vertex vi of B1 is connected to
b−1 vertices of B2, leaving out only the vertex v2b+1−i of B2. We claim that the
degree of every vertex except v2b+1 is b. Firstly, every vertex of B1 is connected
to b−1 vertices of B2, and the single vertex v2b+1. Secondly, every vertex of B2
(i) is connected to v2b+1, and (ii) also present in exactly b− 1 separate groups,
where each group is connected to exactly one vertex of B1. So, every vertex vj
of B2 is connected to every vertex of B1 except the vertex v2b+1−j (in B1). So,
every vertex of B1 ∪B2 has degree b. However, no two vertices in B1 ∪B2 have
all b identical neighbours. Therefore, G is K2,b-free.

Now consider G′. Since v2b+1 is connected to every other vertex in G, it is
isolated in G′. Since each vertex in G is connected to b− 1 vertices other than
v2b+1, the number of neighbours for each vertex in G′ is precisely (2b−1)−(b−1)
= b, as illustrated in Figure 1. We show that for any two vertices in G′, their
neighbouring sets of b vertices in G′ differ in at least one vertex. Observe
that in G′, B1 and B2 include complete graphs Kb, and the edges between B1
and B2 form a perfect matching. Consequently, the neighbouring sets of any
two vertices differ by at least one vertex in G′. Since the number of common
neighbours between any two vertices is no more than b−1, G′ is also K2,b-free.2
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2.2 Probabilistic lower bounds for R(Ka,b, Ka,b)
In the first Section 2.2.1 we use the probabilistic method that Erdós applied to
prove lower bounds on the original Ramsey numbers [6]. In the Section 2.2.2,
we demonstrate improved lower bounds using the Loväsz local lemma.

2.2.1 Application of the probabilistic method

The best known lower bound on R(Ka,b,Ka,b) due to Chung and Graham [4] is

R(Ka,b,Ka,b) >
(

2π
√
ab
)( 1

a+b )(a+ b

e2

)
2

ab−1
a+b (1)

Table 1: Lower bounds for R(Ka,b, Ka,b) from Inequality 1(left), Theorem 2
(middle) and Theorem 3 (right)

b 4 5 6 7 8 14 15 16
a
1 2,3,4 3,4,5 3,5,6 3,5,7 3,6,8 5,10,17 5,11,18 6,12,19
2 3,5,6 4,6,7 5,7,9 5,8,10 6,9,12 9,17,23 10,18,24 10, 19, 26
3 5,7,8 6,8,9 7,10,12 8,12,14 9,14,16 16,26,32 17,29,35 18,31,37
4 6,9,10 8,11,12 10,14,15 12,16,18 14,19,22 26,41,46 28,45,50 30,49,55
5 11,14,16 13,18,20 16,22,24 19,27,29 40,60,65 43,67,72 47,74,80
6 17,23,25 21,29,31 26,35,38 59,87,93 66,98,104 72,109,116
7 27,37,39 34,46,48 86,123,129 96,139,147 106,156,165
8 43,58,61 119,168,178 136,193,204 152,219,232
14 556,755,820 678,922,1005 817,1113,1219
15 836,1136,1246 1019,1385,1525
16 1254,1704,1886

We derive a tighter lower bound using the probabilistic method as follows.

Theorem 2 R(Ka,b,Ka,b) >
(aabb2π

√
ab)(

1
a+b )2(

ab−1
a+b )

e , for natural numbers a
and b.

Proof: First we find the probability p of existence of a particular monochro-
maticKa,b and then sum that probability over all such possible distinct complete
bipartite graphs to estimate an upper bound on the probability of existence of
some monochromatic Ka,b. To get a lower bound on R(Ka,b,Ka,b), we choose
the largest value of n, keeping the probability p strictly less than unity. This
would ensure the existence of some graph G with n vertices such that both G
and G′ are free from any monochromatic Ka,b. Let n be the number of vertices
of graph G. Then the total number of distinct Ka,b’s possible is

(
n
a

)(
n−a
b

)
. Each

Ka,b has exactly ab edges. Each edge can be either of two colors with equal
probability. The probability that a particular Ka,b will have all ab edges of a
specific color is

( 1
2
)ab. So, the probability that a particular Ka,b is monochro-

matic is 2
( 1

2
)ab = 21−ab. The probability p that some Ka,b is monochromatic is(

n
a

)(
n−a
b

)
21−ab. Our objective is to choose as large n as possible with p < 1. So,
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choosing n > (aabb2π
√
ab)(

1
a+b )2(

ab−1
a+b )

e , for natural numbers a and b, and using
Stirling’s approximation (replacing a! by

√
2π a

a+ 1
2

ea and b! by
√

2π b
b+ 1

2
eb ), we get

p < 1. This guarantees the existence of an n-vertex graph for which some edge
bicoloring would not result in any monochromatic Ka,b. 2

See Table 1 for the first two lower bounds for R(Ka,b,Ka,b) for each pair
(a, b), due to Inequality 1 and Theorem 2, respectively. Taking the ratio of
our lower bound in Inequality 2, and Chung and Graham’s lower bound as in
Inequality 1, we get

x =
(aabb2π

√
ab)(

1
a+b )2(

ab−1
a+b )

e

(2π
√
ab)(

1
a+b )(a+b)2(

ab−1
a+b )

e2

=
(
aabb

) 1
a+b

a+ b
e

When a = b, we get x = a

2a ∗ e = e

2 ≈ 1.359. When a << b, as a + b ≈ b,

we get x = b

b
∗ e ≈ e. So our lower bound gives an improvement that varies

between 1.35 to e depending upon the values of a and b.

2.2.2 A lower bound for R(Ka,b,Ka,b) using Lovász local lemma

We are interested in the question of existence of a monochromatic Ka,b in any
bicolouring of the edges of Kn. Since the same edge may be present in many
distinct Ka,b’s, the colouring of any particular edge may effect the monochro-
maticity in many Ka,b’s. This gives the motivation for the use the Corollary 1 of
Lovász local lemma (see [11]) to account for such dependencies in this context.

Lemma 1 Lovász Local Lemma [11] Let G(V,E) be a dependency graph for
events E1, ...En in a probability space. Suppose that there exists xi ∈ [0, 1] for
1 ≤ i ≤ n such that
Pr [Ei] ≤ xi

∏
{i,j}∈E(1− xj) , then Pr

[⋂n
i=1 Ei

]
≥
∏n
i=1(1− xj).

A direct corollary of the lemma states the following.

Corollary 1 [11] If every event Ei, 1 ≤ i ≤ m is dependent on at most d other
events and Pr [Ei] ≤ p, and if ep(d+ 1) ≤ 1, then Pr

[⋂n
i=1 Ei

]
> 0.

Theorem 3 If e
(
21−ab) (ab( n−2

a+b−2
)(
a+b−2
b−1

)
+ 1
)
≤ 1 then R(Ka,b,Ka,b) > n.

Proof: We consider a random bicolouring of the complete graph Kn in which
each edge is independently coloured red or blue with equal probability. Let S
be the set of edges of an arbitrary Ka,b, and let ES be the event that all edges
in this Ka,b are coloured monochromatically. For each such S, the probability
of ES is P (ES) = 21−ab. We enumerate the sets of edges of all possible Ka,b’s
as S1,S2,...,Sm, where m =

(
n
a

)(
n−a
b

)
and each Si is the set of all the edges of
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the ith Ka,b. Clearly, each event ESi is mutually independent of all the events
ESj from the set Ij = {ESj : |Si ∩ Sj | = 0}. We show that for each ESi , the
number of events outside the set Ij satisfies the inequality |{ESj

: |Si ∩ Sj | ≥
1}| ≤ ab

(
n−2
a+b−2

)(
a+b−2
b−1

)
, as follows. Every Sj in this set shares at least one edge

with Si, and therefore such an Sj shares at least two vertices with Si. We can
choose the rest of the a+b−2 vertices of Sj from the remaining n−2 vertices of
Kn, out of which we can choose b−1 for one partite set of Sj , and the remaining
a − 1 to form the second partite set of Sj , yielding a Ka,b that shares at least
one edge with Si. We apply Corollary 1 to the set of events ES1 ,ES2 ,...,ESm

,
with p = 21−ab and d = ab

(
n−2
a+b−2

)(
a+b−2
b−1

)
, enforcing the premise ep(d+ 1) ≤ 1,

resulting in the lower bound for n, so that Pr
[⋂m

i=1 ESi

]
> 0. This non-zero

probability (of none of the events ESi occurring, for 1 ≤ i ≤ m) implies the
existence of some bicolouring of the edges of Kn with no monochromatic Ka,b,
thereby establishing the theorem. 2

Solving the inequality in the statement of Theorem 3, we can compute lower
bounds for R(Ka,b,Ka,b), for natural numbers a and b. Such lower bounds for
some larger values of a and b show significant improvements over the bounds
computed using Theorem 2 (see Table 1). Simplifying the inequality in the
statement of Theorem 3, we get the following lower bound for R(Ka,b,Ka,b).

R(Ka,b,Ka,b) >
((

(a−1)(a−1)(b−1)(b−1)2π
√

(a−1)(b−1)
)

eab

)( 1
a+b−2 )

2(
ab−1

a+b−2 )
e .

3 The unbalanced off-diagonal case: R(Ka,b, Kc,d)
R(Ka,b,Kc,d) is the minimum number n so that any n-vertex simple undirected
graph G must contain a Ka,b or its complement G′ must contain the complete
bipartite graph Kc,d. Equivalently, R(Ka,b,Kc,d) is the minimum number n
such that any 2-coloring of the edges of an n-vertex complete undirected graph
would contain a monochromatic Ka,b or a monochromatic Kc,d.

3.1 A constructive lower bound for R(K2,b, K2,d)
Now we present a constructive lower bound as follows by designing an explicit
construction.

Theorem 4 R(K2,b,K2,d) > b+ d+ 1, for all integers d ≥ b ≥ 2.

Proof: For d ≥ b ≥ 2, we demonstrate the existence of a K2,b-free graph with
b + d + 1 vertices, such that its complement graph does not contain any K2,d.
The construction is illustrated for specific values of b and d in Figure 2. We
have the following three exhaustive cases.
Case 1:

If b = 2m for an integer m, then arrange all the vertices around a circle,
numbering vertices as v0, v1, v2, ..., vb+d, and connect each vertex to itsm nearest
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Figure 2: (i) R(K2,4,K2,6) > 11: (a) graph G1 is K2,4-free, and and (b) graph
G′1 is K2,6-free, (ii) R(K2,3,K2,4) > 8: (c) graph G2 is K2,3-free, and and (d)
graph G′2 is K2,4-free, (iii) R(K2,3,K2,5) > 9: (e) graph G3 is K2,3-free, and (f)
graph G′3 is K2,5-free.
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neighbours in clockwise (as well as counterclockwise) directions along the circle.
See graph G1 in Figure 2(a) for an example with b = 4 and d = 6. Observe that
the constructed graph G is b-regular, and its complement graph is therefore d-
regular. We claim that G does not have a K2,b since no two vertices in G share
more than b− 2 neighbours.

We first show that for all i, 0 ≤ i ≤ b + d, the vertex vi shares exactly
2(m − 1) = b − 2 neighbours with vi+1. Here and henceforth, all arithmetic
operations on indices of vertices are modulo b+ d+ 1. There are exactly m− 1
neighbours common to vi and vi+1 in the clockwise (respectively, counterclock-
wise) direction of vi (vi+1), resulting in a total of 2(m − 1) common vertices.
Similarly, the number of vertices shared by vi with its neighbouring clockwise
vertex vi−1 is also b − 2. Now consider the remaining counterclockwise neigh-
bours vi+k of vi in G, 2 ≤ k ≤ m. Observe that vertices vi and vi+k share
exactly 2(m − k) + (k − 1) = 2m − k − 1 = b − k − 1 neighbours; m − k ver-
tices clockwise (respectively, counterclockwise) of vi (respectively, vi+k), and
k−1 vertices clockwise of vi+1 and counterclockwise of vi. So, the total number
of shared neighbours between vi and vi+k (and symmetrically, between vi and
vi−k), is certainly no more than 2(m − 1) = b − 2. For the d non-adjacent
vertices vj of vi, clearly vj and vi do not share more than m < b − 2 common
neighbours. This implies that the graph G is K2,b-free.

Now consider the complement graph G′ of G. Since we have b + d + 1
vertices, the complement graph G′ is d-regular if and only if the graph G is
b-regular. See Figure 2(b) for the complement graph G′1 of G1, for b = 4 and
d = 6. The complement graph G′ can have a K2,d only if two vertices share
all their neighbours. Each pair of vertices differ in at least two vertices in their
neighbourhood in G, since any pair of two vertices can share at most b − 2
vertices in the b-regular graph G. This ensures that no two vertices can have all
neighbours common inG′. For any vertex pair (vi,vj), even if the neighbourhood
of vi includes vj , vi still has some neighbour vk that is not a neighbour of vj in
G, and (similarly) vj has some neighbour vl that is not a neighbour of vi in G.
In G′ therefore, vk is a neighbour of vj but not a neighbour of vi, and vl is a
neighbour of vi but a neighbour of vj . Therefore, G′ is K2,d-free.
Case 2:

If b = 2m + 1 for an integer m, and b + d + 1 is even (i.e., d is even),
then arrange and name the vertices around a circle as in Case 1, and connect
each vertex to its m nearest neighbours in counterclockwise as well as clockwise
directions around the circle. Also, connect each vertex vi to the vertex vi+ b+d+1

2
,

directly opposite to it on the circle; note that no two vertices share such a
common directly opposite neighbour. The resulting graph G is b-regular. As
shown in Case 1, this graph G does not have any K2,b as no two vertices share
more than 2(m−1) = b−3 < b−2 common neighbours. The complement graph
G′ is again d-regular, as in Case 1. The construction is illustrated for the case
of R(K2,3,K2,4) in Figure 2(c) and (d). The only way G′ can have a K2,d is
if two vertices share all their neighbours in G′. Since two vertices G share less
than b − 2 vertices in G, they cannot have all neighbours common in G′. This
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can be shown in a manner similar to that in Case 1. So, G′ is K2,d-free.
Case 3:

If b = 2m + 1 for some integer m, and b + d + 1 is odd (i.e., d is odd),
then arrange and name the vertices around a circle as in Cases 1 and 2, and
connect (i) each vertex to its m nearest neighbours in counterclockwise as well
as clockwise directions, and (ii) connect each vertex vi to vertex vi+b b+d+1

2 c, for
all i, 1 ≤ i ≤ b b+d+1

2 c − 1. This results in a graph G with b + d vertices of
degree b and one vertex vb+d of degree b − 1. Observe that as in Cases 1 and
2, the number of common neighbours for any two vertices in G is no more than
2(m− 1) = b− 3 < b− 2. This graph G is therefore free from any K2,b.

We now show that G′ is K2,d-free. Observe that every vertex of the comple-
ment graph G′ has degree d, except vb+d whose degree is d+1. The construction
is illustrated for the case of R(K2,3,K2,5) in Figure 2(e) and (f). The only way
G′ can have a K2,d is (i) if some d-degree vertex shares all its neighbours with
some other d-degree vertex in G′ (as in Cases 1 and 2), or (ii) if any d of the d+1
neighbours of the d+ 1-degree vertex vb+d, are shared with a d-degree vertex in
G′. Two d-degree vertices disagreeing on at least two neighbours cannot yield
a K2,d, as seen in Cases 1 and 2. So, we need to consider only the later case
involving vertex vb+d, whose degree is d+1 in G′. Consider a d-degree vertex vi
of G′ and the vertex vb+d. Since these two vertices share at most b− 2 vertices
in G, there is at least one neighbouring vertex vj of vb+d in G, that is not a
common neighbour in G for vi and vb+d. So, vj not connected to vi in G and
therefore a vj is a neighbour of vi in G′. Also, vj is connected to vb+d in G and
therefore not a neighbour of vb+d in G′. So, G′ does not have a K2,d where vi
and vb+d should share d neighbours. 2

Now we derive a lower bound on such numbers using the probabilistic method.

3.2 A probabilistic lower bound for R(Ka,b, Kc,d)
Theorem 5 For all n ∈ N and 0 < p < 1, if(

n

a

)(
n− a
b

)
pab +

(
n

c

)(
n− c
d

)
(1− p)cd < 1 , (2)

then R(Ka,b,Kc,d) > n.

Proof: Consider a random bicolouring of the edges of Kn with colours red
and blue with probabilities p and 1 − p, respectively. The probability that a
particular red Ka,b exists is pab. So, the probability that any red Ka,b exists
is
(
n
a

)(
n−a
b

)
pab. Similarly, the probability that a particular blue Kc,d exists is

(1− p)cd, and the probability that any red Kc,d exists is
(
n
c

)(
n−c
d

)
(1− p)cd. So,

the probability that the bicoloured Kn contains any red Ka,b or any blue Kc,d is(
n
a

)(
n−a
b

)
pab+

(
n
c

)(
n−c
d

)
(1− p)cd. The theorem follows by setting this probability

to less than unity. 2

Corollary 2 For all n ∈ N and 0 < p < 1, if
(
n
a

)(
n−a
a

)
pa

2 +
(
n
b

)(
n−b
b

)
(1− p)b

2
<

1, then R(Ka,a,Kb,b) > n.
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3.3 A lower bound for R(Ka,b, Kc,d) using Lovász local lemma
We are interested in the question of existence of a monochromatic Ka,b or a
monochromatic Kc,d in any bicolouring of the edges of Kn. Since the same
edge may be shared by many distinct Ka,b’s and Kc,d’s, the colouring of any
particular edge may affect the monochromaticity in many Ka,b’s and Kc,d’s.
This gives the motivation for the use of the Corollary 1 of Lovász local lemma
in this context.

Table 2: Lower bounds for R(Ka,b, Kc,d) from Inequality 2 (left) and Theorem 6
(right)
c,d 10,11 10,12 10,13 11,12 11,13 12,13 12,14 13,14 14,15 15,16
a,b

10,11 182,179
0.5,0.5

200,194
0.49,0.49

215,207
0.48,0.48

222,217
0.48,0.48

241,232
0.47,0.47

266,256
0.46,0.47

285,289
0.46,0.46

317,324
0.45,0.45

376,373
0.43,0.44

446,436
0.42,0.42

10,12 200,194
0.51,0.51

220,218
0.5,0.5

238,233
0.49,0.49

245,245
0.49,0.49

268,262
0.48,0.48

296,288
0.47,0.47

316,316
0.46,0.47

350,359
0.46,0.46

423,410
0.44,0.45

498,504
0.43,0.43

10,13 215,207
0.52,0.52

238,233
0.51,0.51

261,263
0.5,0.5

266,263
0.5,0.5

294,297
0.49,0.49

327,327
0.48,0.48

353,345
0.47,0.47

384,385
0.46,0.47

471,471
0.45,0.45

542,577
0.44,0.44

11,12 222,217
0.52,0.52

245,245
0.51,0.51

266,263
0.5,0.5

275,277
0.5,0.5

300,297
0.49,0.49

333,327
0.48,0.48

355,358
0.48,0.48

398,409
0.47,0.47

482,471
0.45,0.45

573,584
0.5,0.44

11,13 241,232
0.53,0.53

268,262
0.52,0.52

294,297
0.51,0.51

300,297
0.51,0.51

332,337
0.5,0.5

370,373
0.49,0.49

399,394
0.48,0.48

435,440
0.47,0.48

540,544
0.46,0.46

628,669
0..45,0.45

11,14 256,256
0.53,0.53

286,279
0.53,0.52

318,312
0.52,0.52

320,315
0.52,0.51

358,355
0.51,0.51

402,405
0.50,0.50

443,451
0.49,0.49

489,490
0.48,0.48

586,613
0.47,0.47

690,709
0.45,0.46

12,13 266,256
0.54,0.53

296,288
0.53,0.53

327,327
0.52,0.52

333,327
0.52,0.52

370,373
0.51,0.51

415,426
0.5,0.5

450,451
0.49,0.49

492,490
0.48,0.48

611,629
0.47,0.47

708,752
0.46,0.46

12,14 285,289
0.54,0.54

316,316
0.54,0.53

353,345
0.53,0.53

355,358
0.52,0.52

399,394
0.52,0.52

450,451
0.51,0.51

500,518
0.5,0.5

555,565
0.49,0.49

662,690
0.5,0.48

793,801
0.46,0.47

12,15 315,312
0.55,0.55

348,356
0.54,0.54

376,385
0.53,0.53

395,408
0.53,0.53

431,440
0.51,0.52

481,490
0.51,0.51

535,540
0.51,0.51

606,622
0.50,0.50

722,732
0.48,0.48

895,927
0.47,0.47

13,14 317,324
0.55,0.55

350,359
0.54,0.54

384,385
0.54,0.53

398,409
0.53,0.53

435,440
0.53,0.52

492,490
0.52,0.51

555,565
0.51,0.51

623,652
0.5,0.5

730,757
0.49,0.49

910,928
0.47,0.47

13,15 348,337
0.56,0.56

387,386
0.55,0.55

423,439
0.54,0.54

441,443
0.54,0.54

485,504
0.53,0.53

544,563
0.52,0.52

588,598
0.52,0.51

670,683
0.51,0.51

827,852
0.49,0.49

1010,1078
0.48,0.48

14,15 376,373
0.57,0.56

423,410
0.56,0.55

471,471
0.55,0.55

482,471
0.55,0.55

540,544
0.54,0.54

611,629
0.53,0.53

662,690
0.52,0.52

730,757
0.51,0.51

935,994
0.5,0.5

1105,1166
0.49,0.49

14,16 401,417
0.57,0.57

444,468
0.56,0.56

500,503
0.56,0.55

509,537
0.55,0.55

571,580
0.55,0.54

652,650
0.54,0.53

737,753
0.53,0.53

828,878
0.52,0.52

995,1029
0.51,0.51

1226,1280
0.49,0.49

15,16 446,436
0.58,0.58

498,504
0.57,0.57

542,577
0.56,0.56

573,584
0.56,0.56

628,669
0.55,0.55

708,752
0.54,0.54

793,801
0.54,0.53

910,928
0.53,0.53

1105,1166
0.51,0.51

1399,1509
0.51,0.50

Theorem 6 If for some 0 < p < 1,
{
ab
(
n−2
a−1
)(
n−a−1
b−1

)
+ 1
}
pabe1+ ab

cd ≤ 1 and{
cd
(
n−2
c−1
)(
n−c−1
d−1

)
+ 1
}
e−pcde1+ cd

ab ≤ 1, then R(Ka,b,Kc,d) > n.

Proof: We consider a random bicolouring of the complete graph Kn in which
each edge is independently coloured red or blue with probabilities p and (1− p)
respectively. Let S be the set of edges of an arbitrary Ka,b,T be the set of edges
of an arbitrary Kc,d, . let ES be the event that all edges in the Ka,b S are
coloured monochromatically red and let ET be the event that all edges in the
Kc,d T are coloured monochromatically blue. For each such S, the probability
of ES is P (ES) = pab. Similarly For each such T , the probability of ET is
P (ET ) = (1− p)cd. We enumerate the sets of edges of all possible Ka,b’s and
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Kc,d’s as A1,A2,...,Am, wherem =
(
n
a

)(
n−a
b

)
+
(
n
c

)(
n−c
d

)
. Clearly, each event EAi

is mutually independent of all the events EAj
from the set {EAj

: |Ai∩Aj | = 0};
since for any such Aj , Ai and Aj share no edges. Now again as the events can
be a monochromatic Ka,b or Kc,d, Let Aab denote a Ka,b and Acd denote a Kc,d.

For each EAab
, the number of events outside this set satisfies the inequality

|{EAj : |Aab∩Aj | ≥ 1}| ≤ ab{
(
n−2
a−1
)(
n−a−1
b−1

)
+
(
n−2
c−1
)(
n−c−1
d−1

)
}; every Aj in this set

shares at least one edge with Aab, and therefore such an Aj shares at least two
vertices with Aab. If this Aj is aKa,b, then We can choose the rest of the a+b−2
vertices of Aj from the remaining n−2 vertices ofKn, out of which we can choose
a−1 for one partite set of Aj , and the remaining b−1 to form the second partite
set of Aj , yielding a Ka,b that shares at least one edge with Aab. On the other
hand, if this Aj is a Kc,d, then We can choose the rest of the c+ d− 2 vertices
of Aj from the remaining n− 2 vertices of Kn, out of which we can choose c− 1
for one partite set of Aj , and the remaining d − 1 to form the second partite
set of Aj , yielding a Ka,b that shares at least one edge with Aab. Similarly,
For each EAcd

, the number of events that shares atleast one edge satisfies the
inequality |{EAj : |Acd ∩ Aj | ≥ 1}| ≤ cd{

(
n−2
a−1
)(
n−a−1
b−1

)
+
(
n−2
c−1
)(
n−c−1
d−1

)
}. By

applying Theorem 1, we want to show that

Pr

[
m⋂
i=1

EAi

]
> 0. (3)

This non-zero probability (of none of the events EAi occurring, for 1 ≤ i ≤ m)
implies the existence of some bicolouring of the edges of Kn with no red Ka,b

or blue Kc,d, thereby establishing the theorem. The Inequality 3 is satisfied if
the following conditions hold.

Pr [EAab
] ≤ xab (1− xab)ab(

n−2
a−1)(n−a−1

b−1 ) (1− xcd)ab(
n−2
c−1)(n−c−1

d−1 )

Pr [EAcd
] ≤ xcd (1− xab)cd(

n−2
a−1)(n−a−1

b−1 ) (1− xcd)cd(
n−2
c−1)(n−c−1

d−1 ), (4)
for some xab, xcd.

Choosing xab = 1
ab(n−2

a−1)(n−a−1
b−1 )+1

, xcd = 1
cd(n−2

c−1)(n−c−1
d−1 )+1

and using the in-

equalities (1− p)cd ≤ e−pcd and
(

1− 1
d+1

)d
≥ e, we get{

ab

(
n− 2
a− 1

)(
n− a− 1
b− 1

)
+ 1
}
pabe1+ ab

cd ≤ 1, and{
cd

(
n− 2
c− 1

)(
n− c− 1
d− 1

)
+ 1
}
e−pcde1+ cd

ab ≤ 1. (5)

To get a lower bound on R(Ka,b,Kc,d), we choose the largest value of n, such
that both of these conditions are satisfied. 2

Solving the inequality in the statement of Theorem 6, we can compute lower
bounds for R(Ka,b,Kc,d), for natural numbers a, b, c and d. Such lower bounds
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for some larger values of the arguments a, b, c and d show significant improve-
ments over the bounds computed using Theorem 5 (see Table 2). These lower
bounds in Table 2 are computed using the inequalities in Theorems 5 and 6;
this is done by incrementing the value of the probability parameter p by the
hundredths of a decimal and determining the largest resulting lower bounds
from the inequalities for each set of values for the arguments a, b, c and d. The
values of such probabilities are tabulated below the corresponding lower bound
entries in the table.

Corollary 3 If for some 0 < p < 1,
{
a2(n−2

a−1
)(
n−a−1
a−1

)
+ 1
}
pa

2
e1+ a2

b2 ≤ 1 and{
b2(n−2

b−1
)(
n−b−1
b−1

)
+ 1
}
e−pb

2
e1+ b2

a2 ≤ 1, then R(Ka,a,Kb,b) > n.

4 Lower bounds for Ramsey numbers for com-
plete tripartite 3-uniform subgraphs

Let R′(a, b, c) be the minimum number n such that any n-vertex 3-uniform hy-
pergraph G(V,E), or its complement G′(V,E) contains a Ka,b,c. An r-uniform
hypergraph is a hypergraph where every hyperedge has exactly r vertices. (Hy-
peredges of a hypergraph are subsets of the vertex set. So, usual graphs are
2-uniform hypergraphs.) Here, Ka,b,c is defined as the complete tripartite 3-
uniform hypergraph with vertex set A ∪B ∪ C, where the A, B and C have a,
b and c vertices respectively, and Ka,b,c has abc 3-uniform hyperedges {u, v, w},
u ∈ A, v ∈ B and w ∈ C. It is easy to see that R′(1, 1, 1) = 3; with 3 vertices,
there is one possible 3-uniform hyperedge which either is present or absent in
G.

Theorem 7 R′(1, 1, 2) = 4.

Proof: Consider the complete 3-uniform hypergraph with vertex set V =
{1, 2, 3, 4} and set of exactly four hyperedgesH = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2,
3, 4}}. Since vertex 1 is present in 3 hyperedges, any (empty or non-empty)
subset S of H, or its complement H \ S must contain at least two hyperedges
containing the vertex 1. Observe that any such set of two hyperedges is a
K1,1,2. 2

The fact that R′(1, 1, 3) > 5 can be established by the counterexample given
in Figure 3, where neither the 3-uniform hypergraph G nor its complement
G′ has a K1,1,3. The vertices are v1, v2, v3, v4, v5 and e1, e2..., e10 represent all
the ten possible 3-uniform hyperedges. The hypergraph G has five hyperedges
viz., e1 ({1, 2, 3}), e2 ({1, 2, 4}), e3 ({1, 3, 5}), e4 ({2, 4, 5}), e5 ({3, 4, 5}). The
complement hypergraphG′ has the remaining five hyperedges, viz., e6 ({1, 2, 5}),
e7 ({1, 3, 4}), e8 ({1, 4, 5}), e9 ({2, 3, 4}), e10 ({2, 3, 5}).

We also show that R′(1, 1, 4) > 6. We found the following counterexample.
Consider the set E = {{1, 2, 4}, {1, 3, 5}, {1, 3, 6}, {1, 4, 5}, {1, 4, 6}, {1, 5, 6}, {2,
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v1 v2
v3

v4

v5

v1 v2
v3

v4

v5

e1

e2

e4

e5

e3

e9

e8
e10

e6

e7

Figure 3: Hypergraph G (left) and its complement G′ (right). Neither G nor
G′ has a K1,1,3

3, 4}, {2, 3, 5}, {2, 3, 6}, {2, 4, 5}} of hyperedges of a 6-vertex 3-uniform hyper-
graph G. The set E′ = {{1, 2, 3}, {1, 2, 5}, {1, 2, 6}, {1, 3, 4}, {2, 4, 6},
{2, 5, 6}, {3, 4, 5}, {3, 4, 6}, {3, 5, 6}, {4, 5, 6}} is the set of of hyperedges of the
complement hypergraph G′ of G. Note that neither G nor G′ has a K1,1,4.

The example in Figure 3 showing R′(1, 1, 3) > 5 was discovered using the fol-
lowing method; we have used the same method also for showing that R(1, 1, 4) ≥
7. As there are

(5
3
)

= 10 distinct 3-uniform hyperedges possible with 5 ver-
tices. So, there are 210 possible 3-uniform hypergraphs. We designated each
of the 10 hyperedges with a distinct number starting from 0 to 9. For exam-
ple, hyperedge {1, 2, 3} is mapped to 0 and {3, 4, 5} is mapped to 9. Then,
we generated every distinct K1,1,3, which are

(5
3
)

= 10 in number. We gen-
erated all the possible 210 hypergraphs and checked for the existence of each
K1,1,3. For example, the hyperedges {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}}, numbered as
0, 1 and 2, respectively, constitute a K1,1,3 denoted as (0 1 2), and the hyper-
edges {{1, 2, 3}, {1, 3, 4}, {1, 3, 5}} constitute a K1,1,3 denoted as (0 4 5). For
generating all possible hypergraphs, we take a 10-bit binary number, where each
bit represents a particular hyperedge (the 0th bit represents {1, 2, 3}, and the
9th bit represents {3, 4, 5}), and generate all its possible combinations. Now for
every 10-bit binary string, we check for the existence of any K1,1,3. For exam-
ple, let the binary string be 000000111. This string represents the hypergraph
with edges {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}} denoting the presence of K1,1,3 denoted
by (0 1 2). If for any hypergraph, no K1,1,3 is present, then we check the exis-
tence of a K1,1,3 in the complement hypergraph. If neither the hypergraph nor
its complement have a K1,1,3, then we get our sought counterexample hyper-
graph. Determining such Ramsey numbers for higher parameters by exhaustive
searching using computer programs is computationally very expensive in terms
of running time.

We have the following upper bound for R′(1, 1, b).

Theorem 8 R′(1, 1, b) ≤ 2b+ 1.
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Proof: Let v1,v2, ..., v2b+1 be the 2b+ 1 vertices. Then, for any pair of vertices
vi, vj , there are 2b−1 possible 3-uniform hyperedges (each hyperedge containing
one distinct vertex from the remaining 2b − 1 vertices). So, by the pigeonhole
principle, either the graph or its complement must include b of these hyperedges
containing both vi and vj . This set of b hyperedges denotes a K1,1,b. 2

Based on our findings R(1, 1, 3) ≥ 6 (see Figure 3), and R(1, 1, 4) ≥ 7, we
state our conjecture for R′(1, 1, b), b ≥ 3, as follows,

Conjecture 1 R′(1, 1, b) ≥ 2b.

Note that settling this conjecture positively would require showing that for
some (2b − 1)-vertex 3-uniform hypergraph G, neither G nor G′ has a K1,1,b.
We related this problem to that of the existence of a t-design. A t-design is
defined as follows. A t-(v, k, λ) design is an incidence structure of points and
blocks with properties (i) v is the number of points, (ii) each block is incident
on k points, and (iii) each subset of t points is incident on λ common blocks [1].

Lemma 2 If there is a 2− (2b− 1, 3, b− 1) design then R′(1, 1, b) ≥ 2b.

Proof: The existence of 2-(2b−1,3,b−1) design would suggest that there exist a
3-uniform hypergraph with 2b−1 vertices such that every pair of vertices forms
a hyperedge with exactly b− 1 other vertices. This implies that the hypergraph
is free of K1,1,b. So, every pair of vertices will also form a hyperedge in the
complement hypergraph with exactly (2b − 1) − 2 − (b − 1) = b − 2 vertices.
Therefore, the complement hypergraph is also free of K1,1,b. 2

Table 3: Lower bounds for R′(a, a, a) by Theorem 9 (left) and Theorem 10
(right)

a 3 4 5 6 7 8
R′(a, a, a) 14,19 84,138 800,1765 11773,35167 269569,1073543 9650620,50616072

Table 4: Lower bounds for R′(a, b, c) by Theorem 9 (left) and Theorem 10 (right)
a=2 a=3 a=3 a=3 a=4 a=4 a=5 a=6 a=6 a=6 a=6

c 5 3 4 5 4 5 5 2 3 4 5
b
2 9,13 8,11 11,16 16,22 18,25 26,36 40,58 11,16 21,29 36,52 59,87
3 16,22 14,19 23,32 35,50 41,61 68,107 124,208 50,74 107,175 209,371
4 26,36 41,61 68,107 84,138 159,281 334,653 277,521 643,1354
5 40,58 124,208 334,653 800,1765 1740,4194

4.1 Probabilistic lower bound for R′(a, b, c)

Theorem 9 R′(a, b, c) >
(
aabbcc

√
(2π)3abc

)( 1
a+b+c )2(

abc−1
a+b+c )

e .
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Proof: Consider the probability of existence of a particular Ka,b,c in G or
G′, where G is a 3-uniform hypergraph and G′ is its complement. The sum
p of such probabilities over all possible distinct Ka,b,c’s is an upper bound on
the probability that some Ka,b,c exists in G or G′. Let n be the number of
vertices of hypergraph G. As in the proof of Theorem 2, we observe that the
number ofKa,b,c’s is no more than

(
n
a

)(
n−a
b

)(
n−a−b

c

)
. EachKa,b,c has exactly abc

hyperedges. Each hyperedge can be present in G or G′ with equal probability.
So, the probability that all hyperedges of a particular Ka,b,c are in G is

( 1
2
)abc.

Therefore, the probability that a particular Ka,b,c is present in either G or G′

is 2
( 1

2
)abc = 21−abc. So, the probability p that some Ka,b,c is either in G or in

G′, is
(
n
a

)(
n−a
b

)(
n−a−b

c

)
21−abc. Using n >

(
aabbcc

√
(2π)3abc

)( 1
a+b+c )2(

abc−1
a+b+c )

e and
Stirling’s approximation as in the proof of Theorem 2, we get p < 1, thereby
ensuring the existence of a hypergraph G of n vertices such that neither G nor
G′ has a Ka,b,c. For details, see [10]. 2

See Tables 3 and 4 for some computed lower bounds based on Theorem 9.

4.2 A lower bound for R′(a, b, c) using Lovász local lemma

Theorem 10 If e
(
21−abc) (abc( n−3

a+b+c−3
)(
a+b+c−3
b−1

)(
a+c−2
c−1

)
+ 1
)
≤ 1 then

R′(a, b, c) > n.

Proof: We perform analysis as done earlier in Section 2.2.2. Consider a ran-
dom bicoloring of the hyperedges of the complete 3-uniform hypergraph of n
vertices, in which each hyperedge is independently colored red or blue with
equal probability. Let S be the set of hyperedges of an arbitrary Ka,b,c, and
let ES be the event that the Ka,b,c is coloured monochromatically. For each
such S, P (ES) = 21−abc. If we enumerate all possible Ka,b,c’s as S1,S2,...,Sm,
where m =

(
n
a

)(
n−a
b

)(
n−a−b

c

)
, and each Si is the set of all the hyperedges of

the ith Ka,b,c, then each event ESi
is mutually independent of all the events

from the set Ij = {ESj
: |Si ∩ Sj | = 0}. We claim that for each ESi

, the
number of events outside the set Ij satisfies the inequality {ESj

: |Si ∩ Sj | ≥
1} ≤ abc

(
n−3

a+b+c−3
)(
a+b+c−3
b−1

)(
a+c−2
c−1

)
, as follows. Every Sj in this set shares

at least one of the abc hyperedges of Si, and therefore Sj shares at least
three vertices with Si. We can choose the rest of the a + b + c − 3 vertices
of Sj from the remaining n − 3 vertices, out of which we can choose b − 1
for the second partite set of Sj , and the remaining c − 1 for the third par-
tite set of Sj , thereby yielding a Ka,b,c which shares at least one hyperedge
edge with Si. Applying Corollary 1 to the set of events ES1 ,ES2 ,...,ESm , with
p = 21−abc and d = abc

(
n−3

a+b+c−3
)(
a+b+c−3
b−1

)(
a+c−2
c−1

)
yields ep(d+ 1) ≤ 1, imply-

ing Pr
[⋂m

i=1 ESi

]
> 0. Since no event ESi

occurs for some random bicoloring
of the hyperedges, no monochromatic Ka,b,c exists in that bicoloring. This
establishes the theorem. 2
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See Tables 3 and 4 for some computed lower bounds based on Theorem 10;
the values based on Theorem 10 to the right in each cell of these tables are much
better than those based on Theorem 9, to the left in the respective cells.

5 Concluding remarks
The probabilistic method is useful in establishing lower bounds for Ramsey num-
bers. It is worthwhile studying the application of Lovász local lemma, possibly
more effectively and accurately, so that higher lower bounds may be determined.
In our work we have considered bicolorings ofKn and the existence of monochro-
matic complete bipartite subgraphs (Ka,b in the unbalanced diagonal case, Ka,b

or Kc,d in the unbalanced off-diagonal case) in arbitrary bicolorings of the edges
of Kn; some authors consider bicolorings of Kn,n instead of bicolorings of Kn,
and derive bounds for corresponding Ramsey numbers. For values and bounds
on such Ramsey numbers see [12]. For computing the lower bounds in Tables
1, 2, 3 and 4, we have used computer programs. The code for these programs
are available from the authors on request. As the sizes of the complete bipartite
graphs (tripartite 3-uniform hypergraphs) grow, the computation time required
for computing the lower bounds becomes prohibitive.
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