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Abstract

We prove that there exists a set S of n points in the plane such that
every n-vertex planar graph G admits a planar drawing in which every
vertex of G is placed on a distinct point of S and every edge of G is drawn
as a circular arc.
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1 Introduction

It is a classic result of graph theory that every planar graph has a planar
straight-line drawing, that is, a drawing where vertices are mapped to points
in the plane and edges to straight-line segments connecting the corresponding
points (achieved independently by Wagner, Fáry, and Stein). Tutte [21] pre-
sented the first algorithm, the barycentric method, that produces such drawings.
Unfortunately, the barycentric method can produce edges whose lengths are ex-
ponentially far from each other. Therefore, Rosenstiehl and Tarjan [19] asked
whether every planar graph has a planar straight-line drawing where vertices lie
on an integer grid of polynomial size. De Fraysseix, Pach, and Pollack [7] and,
independently, Schnyder [20] answered this question in the affirmative. Their
(very different) methods yield drawings of n-vertex planar graphs on a grid of
size Θ(n)×Θ(n), and there are graphs (the so-called “nested triangle graphs”)
that require this grid size [11].

Later, it was apparently Mohar (according to Pach [8]) who generalized the
grid question to the following problem: What is the smallest value f(n) of a
universal point set for planar straight-line drawings of n-vertex planar graphs,
that is, the smallest size (as a function of n) of a point set S such that every
n-vertex planar graph G admits a planar straight-line drawing in which the
vertices of G are mapped to points in S? The question is listed as problem #45
in the Open Problems Project [8]. Despite more than twenty years of research
efforts, the best known lower bound for the value of f(n) is linear in n [6, 18],
while only an O(n2) upper bound is known, as first established by de Fraysseix
et al. [7] and Schnyder [20]. Very recently, Bannister et al. [2] showed a universal
point set with n2/4−Θ(n) points for planar straight-line drawings of n-vertex
planar graphs. Universal point sets for planar straight-line drawings of planar
graphs require more than n points whenever n > 15 [5]. Universal point sets
with o(n2) points have been proved to exist for planar straight-line drawings of
several subclasses of planar graphs, including simply-nested planar graphs [1, 2],
planar 3-trees [15], and graphs of bounded pathwidth [2].

Universal point sets have also been studied with respect to different drawing
standards. For example, Everett et al. [14] showed that there exist sets of n
points that are universal for planar poly-line drawings with one bend per edge
of n-vertex planar graphs. On the other hand, if bends are required to be placed
on the point set, universal point sets of size O(n2/ log n) exist for drawings with
one bend per edge, of size O(n log n) for drawings with two bends per edge, and
of size O(n) for drawings with three bends per edge [12].

However, smooth curves may be easier for the eye to follow and more aes-
thetic than poly-lines. Graph drawing researchers have long observed that poly-
lines may be made smooth by replacing each bend with a smooth curve tangent
to the two adjacent line segments [9, 16]. Bekos et al. [3] formalized this observa-
tion by considering smooth curves made of line segments and circular arcs; they
define the curve complexity of such a curve to be the number of segments and
arcs it contains. A poly-line drawing with s segments per edge may be trans-
formed into a smooth drawing with curve complexity at most 2s− 1, but Bekos
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et al. [3] observed that in many cases the curve complexity can be made smaller
than this bound. For instance, replacing poly-lines by curves in the construction
of Everett et al. [14] would give rise to a drawing with curve complexity 3, but
in fact every set of n collinear points is universal for smooth piecewise-circular
drawings with curve complexity 2, as can be derived from the existence of topo-
logical book embeddings of planar graphs [3, 10, 17]. A monotone topological
book embedding of a graph is a drawing of that graph such that the vertices lie on
a horizontal line, called the spine, and the edges are represented by non-crossing
curves, monotonically increasing in the direction of the spine. Di Giacomo et
al. [10] and, independently, Giordano et al. [17] showed that every planar graph
has a monotone topological book embedding where each edge crosses the spine
exactly once and is represented by the union of two semi-circles that lie below
and above the spine (see Figure 2).

The difficulty of constructing a universal point set of linear size for straight-
line drawings, the aesthetical properties of smooth curves, the recent develop-
ments on drawing planar graphs with circular arcs (see, for example, [4, 13]), and
the existence of universal sets of n points for planar drawings of planar graphs
with curve complexity 2 [14] naturally give rise to the question of whether there
exists a universal set of n points for drawings of planar graphs with curve com-
plexity 1, that is, for planar drawings in which every edge is drawn as a single
circular arc. In this paper, we answer this question in the affirmative.

We prove the existence of a set S of n points on the parabola P of equation
y = −x2 such that every n-vertex planar graph G can be drawn with the vertices
mapped to S and the edges mapped to non-crossing circular arcs. Our proof is
constructive and allows us to specify the planar embedding1 of G. We draw G in
two steps, in the same spirit as Everett et al. [14]. In the first step, we construct
a monotone topological book embedding of G. In the second step, we map the
vertices of G to the points in S in the same order as they appear on the spine
of the book embedding.

2 Circular Arcs Between Points on a Parabola

In this section, we investigate geometric properties of circular-arc drawings
whose vertices lie on the parabola P. Let P+ be the part of P to the right
of the y-axis, that is, P+ = {(x, y) : x > 0, y = −x2}.

In the following, when we say that a point is to the left of another point, we
mean that the x-coordinate of the former is smaller than that of the latter. We
say that an arc is to the left of a point q, when the horizontal line through q
intersects the arc and all the intersection points are to the left of q. We define
similarly to the right, above, and below, and we naturally extend these definitions
to non-crossing pairs of arcs.

1A planar embedding of a planar graph is a representation of the graph in which its vertices
are identified to distinct points in the plane and its edges are associated to simple arcs that
do not intersect except at common vertices.
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Figure 1: Three configurations of relative position of the circular arcs C0,3,4

(red) and C1,2,5 (blue) defined by six points p0, . . . , p5 lying in that order on P+

(black). For readability, the figure is not to scale.

We denote by C(p, q, r) the circle through three points p, q, and r. Also, we
denote by Cp,q,r the circular arc in C(p, q, r) delimited by p and r and containing
q; in the sequel, a variant of this notation will also be used: Ci,j,k, for three
points pi, pj , and pk. For any point p, we denote by xp and yp its x- and
y-coordinates.

We start by stating a property of parabolas and circles.

Lemma 1 For every three points p, q, and r on P+ with xp < xq < xr, the
circle C(p, q, r) intersects the parabola P in p, q, r and in a point of x-coordinate
−xp−xq −xr. Furthermore, the circular arc Cp,q,r is below P between p and q,
and above P between q and r.

Proof: The equation of C(p, q, r) is∣∣∣∣∣∣∣∣
xp −x2

p x2
p + x4

p 1
xq −x2

q x2
q + x4

q 1
xr −x2

r x2
r + x4

r 1
x y x2 + y2 1

∣∣∣∣∣∣∣∣ = 0.

Substituting y by −x2 gives

(xp − xq) (xp − xr) (xq − xr) (x− xp) (x− xq) (x− xr) (x + xp + xq + xr) = 0,

which yields the first claim.
Let s denote the point on P with x-coordinate −xp−xq −xr. It is straight-

forward to see that the arc of C(p, q, r) between s and r and not containing p is
below P. The second claim follows. �

Consider six points p0 = (x0, y0), . . . , p5 = (x5, y5) on P+, with x0 6 x1 <
x2 < x3 < x4 6 x5. Also, consider the following two circular arcs (see Figure 1):
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C0,3,4 (red) goes through the ordered points p0, p3, p4 and C1,2,5 (blue) goes
through p1, p2, p5.

Arcs C0,3,4 and C1,2,5 may not be x-monotone: Consider, for instance, the
limit case in which p0 and p3 lie at the origin and x4 > 1. Then the circle
C(p0, p3, p4) supporting C0,3,4 has its center (0,−r) on the y-axis and radius
r > 1. The rightmost point (r,−r) of that circle lies above P (since −r > −r2)
and thus on the arc C0,3,4 by Lemma 1.

Arcs C0,3,4 and C1,2,5 are, however, y-monotone, as proved in the following
lemma.

Lemma 2 Arcs C0,3,4 and C1,2,5 are y-monotone.

Proof: We prove the statement for C0,3,4; the argument for C1,2,5 is similar. By
Lemma 1, p0 lies on the right half-circle of C(p0, p3, p4). Further, by assumption,
x0 < x3 < x4. Hence, p0, p3, and p4 all lie on the right half-circle of C(p0, p3, p4)
and the statement follows. �

We will prove in the following three lemmata that the arcs C0,3,4 and C1,2,5

do not intersect each other, except possibly at common endpoints, if x0 > 1 and
if xi > 2xi−1 for i = 3, 4. We consider in these lemmata three cases depending
on whether these arcs share one of their endpoints. Refer to Figure 1.

Lemma 3 If p0 6= p1, p4 = p5, and x3 > x1 + x2, the two circular arcs C0,3,4

and C1,2,5 intersect only at p4 = p5.

Proof: Let q0,3,4 be the fourth intersection point between C(p0, p3, p4) and P,
and define similarly q1,2,5. By Lemma 1, q0,3,4 and q1,2,5 have x-coordinates
−x0 − x3 − x4 and −x1 − x2 − x5, respectively. It follows that q0,3,4 coincides
with or is to the left of q1,2,5, because x3 > x1 + x2, x4 = x5, and x0 > 0.

Furthermore, by Lemma 1, the arc of C(p0, p3, p4) between q0,3,4 and p0 and
not containing p4 is above P, and similarly for the arc of C(p1, p2, p5) between
q1,2,5 and p1 and not containing p5. These two arcs are above P and their
endpoints alternate on P, thus they intersect. It follows that the two circles
C(p0, p3, p4) and C(p1, p2, p5) intersect in that point and in p4 = p5. Hence, the
arcs C0,3,4 and C1,2,5 intersect only at p4 = p5. �

Lemma 4 If p0 = p1, p4 6= p5, x0 > 1, x3 > 2x2, and x4 > x0 + x3, the two
circular arcs C0,3,4 and C1,2,5 intersect only at p0 = p1.

Proof: Refer to the middle configuration in Figure 1. We start by stating the
following.

Claim 1 C1,2,5 is to the right of C0,3,4 in a neighborhood of p0.

We first argue that Claim 1 implies Lemma 4. Suppose, for a contradiction,
that C1,2,5 is to the right of C0,3,4 in a neighborhood of p0 and that C0,3,4

and C1,2,5 intersect in a point q other than p0. Since C1,2,5 is above P in a
neighborhood of p5, and C1,2,5 does not intersect P between p4 and p5 (by
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Lemma 1), we have that C1,2,5 is to the right of p4. On the other hand, C0,3,4

and C1,2,5 intersect in no point other than q and p0. Hence, since C0,3,4 and
C1,2,5 intersect at q, their horizontal ordering changes in a neighborhood of q
and thus C1,2,5 is to the left of C0,3,4 in a neighborhood of p0, a contradiction.

In order to prove Lemma 4, it remains to prove Claim 1. We can assume
without loss of generality that p5 is at infinity, which means that C1,2,5 is the
straight ray from p0 = p1 through p2. Indeed, for any point p′5 that lies on P
to the right of p5, point p′5 lies outside C(p1, p2, p5), by Lemma 1. Furthermore,
since p′5 lies below p1 and p2, the arc through p1, p2, and p′5 (in that order)
lies to the left of C1,2,5 between p1 and p2. Hence, if the (blue) arc C1,2,5 is to
the left of C0,3,4 in a neighborhood of p0, it remains to the left if p5 moves to
infinity.

Now, we prove that the tangents at p0 = p1 of C0,3,4 and C1,2,5 never
coincide. With the above assumption, this is equivalent to showing that the
normal to C0,3,4 at p0 is never orthogonal to the segment p1p2. Straightforward
computations (though tedious by hand) give that the dot product of that normal
and p1p2 is equal to

(x4 − x3) (x4 − x0) (x3 − x0) (x2 − x0)·(
(x3 − x2)x2

4 + (x3 − x2) (x0 + x3)x4 +
(
(x2

0 − 1− x3x0 − x2
3)x2 + x3

0 + x0

))
.

The first four factors never vanish. We show that the last factor, seen as a
polynomial in x4, has no root larger than x0 + x3 (it can be shown that this
polynomial has a positive root). For that purpose, we make the change of
variable x4 = t + x0 + x3 which maps the interval (x0 + x3,+∞) of x4 to the
interval (0,+∞) of t and maps the above degree-2 polynomial in x4 to

(x3 − x2) t2 + 3 (x3 − x2) (x0 + x3) t

− (1 + x2
0 + 5x0x3 + 3x2

3)x2 + x0 + 4x0x
2
3 + x3

0 + 2x3
3 + 2x2

0x3

whose first and second coefficients are positive and whose last coefficient is
positive for any x2 ∈ [x0, x3/2] since it is linear in x2 and takes value x3 (3x0 +
2x3) (x3−x0) at x0 and value 1

2x3 (−1+x2
3+3x2

0+3x0x3)+x0+x3
0 at x3/2, which

is positive since x0 > 1. Note that the last coefficient is negative when x2 = x3

which is why we consider x2 in the range [x0, x3/2]. Hence, if x3 > 2x2, all
coefficients of this polynomial are positive, which implies that it has no positive
roots. This, in turn, means that the initial degree-2 polynomial in x4 has no
root larger than x0 + x3.

Hence, there is no position of the points p0 = p1, p2 . . . , p5 such that x3 >
2x2, x4 > x0 + x3, and such that the tangent to C0,3,4 is collinear with p0p2.
Furthermore, at the limit case where p2 = p0, segment p0p2 is tangent to P,
and C0,3,4 is below and to the left of that tangent in a neighborhood of p0, by
Lemma 1. Thus, C0,3,4 is to the left of segment p1p2 in a neighborhood of p0,
and hence to the left of C1,2,5 in a neighborhood of p0. This proves Claim 1 and
hence Lemma 4. �

We are now ready to prove the following.
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Lemma 5 If p0, . . . , p5 are pairwise disjoint, x0 > 1, and xi > 2xi−1 for i =
3, 4, the two circular arcs C0,3,4 and C1,2,5 do not intersect.

Proof: We refer to the right configuration in Figure 1. Unless specified other-
wise, an arc pipj refers to the arc from pi to pj on the arc C0,3,4 or C1,2,5 that
supports both pi and pj . We first prove that the arcs p2p5 and p3p4 do not
intersect. For any point q on P between p4 and p5, the arc p3q on the circular
arc through p0, p3, q lies above the concatenation of the arcs p3p4 of C0,3,4 and
p4q of P (since the circular arcs p3q and p3p4 lie above P, by Lemma 1, and
C(p0, p3, p4) and C(p0, p3, q) intersect only at p0 and p3). It follows that if arc
p3p4 intersects arc p2p5, then arc p3q also intersects arc p2p5 for any position of
q between p4 and p5 on P. This implies that, for the limit case where q = p5,
arc C1,2,5 and the circular arc through p0, p3, and q = p5 intersect in some point
other than q = p5, which is not the case by Lemma 3.

We now prove, similarly, that the arcs p0p3 and p1p2 do not intersect. For
any point q on P between p0 and p1, the arc qp2 on the circular arc through
q, p2, p5 lies below the concatenation of the arcs qp1 of P and p1p2 of C1,2,5. It
follows that if arc p1p2 intersects arc p0p3, then arc qp2 also intersects arc p0p3
for any position of q between p0 and p1 on P. This implies that, for the limit
case where q = p0, arc C0,3,4 and the circular arc through q = p0, p2, and p5
intersect in some point other than q = p0, which is not the case by Lemma 4.

Finally, arcs p1p2 of C1,2,5 and p3p4 of C0,3,4 do not intersect because they
lie on different sides of P and similarly for arcs p0p3 of C0,3,4 and p2p5 of C1,2,5.
Hence, the two arcs C0,3,4 or C1,2,5 do not intersect. �

3 Universal Point Set for Circular Arc Drawings

In this section, we construct a set of n points on P and, by using the lemmata
of the previous section, we prove that it is universal for planar circular arc
drawings of n-vertex planar graphs.

Consider n2 points2 q0, . . . , qn2−1 on the parabolic arc P+ such that x0 > 1
and xi > 2xi−1 for i = 1, . . . , n2 − 1 and consider as a universal point set the n
points pi = qni for i = 0, . . . , n− 1. The points that belong to q0, . . . , qn2−1 but
are not in the universal point set are called helper points.

Theorem 1 Every n-vertex planar graph can be drawn with the vertices on
p0, . . . , pn−1 and with the edges drawn as circular arcs that do not intersect
except at common endpoints.

Proof: Let G be a planar graph with n vertices. Construct a monotone topo-
logical book embedding Γ of G in which each edge has exactly one spine crossing
[10, 17]. Denote by w0, . . . , wn−1 the order of the vertices of G on the spine in
Γ. We substitute every spine crossing with a dummy vertex and denote by Γ′

the resulting embedded graph. The relative position of any two edges in Γ is as
depicted in Figure 2 (in which two edges may share their endpoints).

2We consider n2 points for simplicity but we do not actually use the last n− 1 of them.
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(a) (b) (c)

wi

dil wj

wkdjk
wl

(e)(d)

Figure 2: Relative positions of two edges in a monotone topological book em-
bedding.

For 0 6 i 6 n − 1, we map vertex wi to point pi. Furthermore, for each
0 6 i 6 n− 2, we map the dummy vertices that lie in between wi and wi+1 on
the spine in Γ′ to distinct helper points in between pi and pi+1, so that the order
of the dummy vertices on P is the same as on the spine in Γ′. (We postpone
the proof that there are enough helper points to map the dummy vertices.) We
finally draw every edge (wi, wj) of G containing a dummy vertex dl as a circular
arc that is delimited by pi and pj , and that passes through the helper point
onto which vertex dl has been mapped. We prove that the resulting drawing is
planar. In the following, we say that the circular-arc drawings of two edges in Γ
or Γ′ do not intersect if they do not intersect except at common endpoints.

By Lemmata 3, 4, and 5, the circular-arc drawings of any two edges whose
relative positions in Γ are as depicted in Figure 2(a) do not intersect.

For the pairs of edges whose relative positions in Γ are as depicted in Fig-
ures 2(b) and 2(c), it is straightforward to check that their circular-arc drawings
do not intersect: any two edges in Γ′ are either separated by the spine or by a
vertical line, hence their circular-arc drawings are either separated by P or by
a horizontal line (since by Lemma 2 the circular-arc drawings are y-monotone).

Consider two edges (wi, wl) and (wj , wk) whose relative position in Γ is as
depicted in Figure 2(d) and consider the corresponding four edges in Γ′ (the
argument for the pairs of edges as in Figure 2(e) is analogous). Denote by dil
and djk the dummy vertices of these edges, and by qil and qjk the helper points
on P onto which they are mapped. Edges (dil, wl) and (wj , djk) are separated
by the spine in Γ′, hence their circular-arc drawings do not intersect since they
are separated by P. The same argument holds for edges (wi, dil) and (djk, wk).
Further, edges (wi, dil) and (wj , djk) are separated by a vertical line in Γ′,
hence their circular-arc drawings do not intersect since they are separated by a
horizontal line (since by Lemma 2 the circular-arc drawings are y-monotone).

Hence, it suffices to prove that the circular-arc drawings of the edges (dil, wl)
and (djk, wk) do not intersect. The circular-arc drawing of (djk, wk) is the arc
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(a) (b)

u1 uk

v1 vk
u1 uk

v1 vk

Figure 3: (a) k edges of a monotone topological book embedding that defines
k consecutive dummy vertices (spine crossings). (b) Augmented outerplanar
graph.

qjkpk on C(pj , qjk, pk). Roughly speaking, this arc inflates if pj moves left on
P, by Lemma 1. More formally, for any point r on P+ that is left of pj , the
arc qjkpk on C(r, qjk, pk) lies above the arc qjkpk on C(pj , qjk, pk). Hence, if the
former arc qjkpk does not intersect the circular-arc drawing of (dil, wl), neither
does the latter. By considering r = pi, these arcs do not intersect by Lemma 4
if pk 6= pl and, if pk = pl, they also do not intersect since their supporting circles
are distinct (qil 6= qjk) and intersect in the two points r = pi and pk = pl.

It remains to show that there are enough helper points to map the dummy
vertices. There are n − 1 helper points qni+1, . . . , qn(i+1)−1 between each pair
of points pi = qni and pi+1 = qn(i+1). It thus suffices to prove that there are at
most n− 1 dummy vertices in between vi and vi+1 along the spine in Γ′.

Let (u1, v1), . . . , (uk, vk) be k edges in the book embedding Γ that define
consecutive dummy vertices on the spine (possibly ui = ui+1, for any 1 6 i 6
k − 1; also, possibly vi = vi+1, for any 1 6 i 6 k − 1; however, ui = ui+1 and
vi = vi+1 do not hold simultaneously, for any 1 6 i 6 k − 1). If no vertex
wi lies in between these dummy vertices on the spine in Γ, the k edges are
such that u1, . . . , uk, v1, . . . , vk are ordered from left to right on the spine in Γ;
see Figure 3(a). Now, consider the graph that consists of these edges plus the
edges (ui, ui+1), (vi, vi+1), for i = 1, . . . , k − 1; see Figure 3(b). This graph is
outerplanar. It has at most n vertices and, thus, at most n− 3 chords. On the
other hand, it has exactly k − 2 chords: (u2, v2), . . . , (uk−1, vk−1). This implies
that k − 2 6 n− 3. Hence k 6 n− 1, which concludes the proof. �

In conclusion of this section, we observe that Theorem 1 also holds for a plane
graph, that is, a planar graph provided with a planar embedding. In the above
proof, we compute a monotone topological book embedding of the given plane
graph using an algorithm by Giordano et al. [17]. Their algorithm preserves the
embedding of the given graph, and so does the rest of our construction.

4 Conclusion

We proved the existence of a universal point set with n points for planar circular
arc drawings of planar graphs. The universal point set we constructed has an
area of 2O(n2). It would be interesting, also for practical visualization purposes,
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to construct a universal point set with n points for planar circular arc drawings
of planar graphs within polynomial area. In this direction, we remark that
(relaxing the requirement that the set has exactly n points) a universal point set
with O(n) points and within 2O(n) area for planar circular arc drawings of planar
graphs is Q = {q0, . . . , q4n−7} (as defined in Section 3). To construct a planar
circular-arc drawing of a planar graph G on Q, it suffices to map the n vertices
and the up to 3n−6 dummy vertices of a monotone topological book embedding
of G to the points of Q in the order they appear in the book embedding. The
geometric lemmata of Section 2 ensure that the resulting drawing is planar.
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