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Abstract

We study the crossing angles of geometric graphs in the plane. We
introduce the crossing angle number of a graph G, denoted can(G), which
is the minimum number of angles between crossing edges in a straight-line
drawing of G. We show that an n-vertex graph G with can(G) = O(1) has
O(n) edges, but there are graphs G with bounded degree and arbitrarily
large can(G). We also initiate the study of global crossing angle rigidity
for geometric graphs. We construct bounded degree graphs G = (V,E)
such that for any two straight-line drawings of G with the same crossing
angle pattern, there is a subset V ′ ⊂ V of |V ′| ≥ |V |/2 vertices that are
embedded into similar point sets in the two drawings.
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1 Introduction

A straight-line drawing of a graph G = (V,E) is a representation of G in which
the vertices are mapped into distinct points in the plane, and the edges are
drawn as straight-line segments between the corresponding vertices that do not
pass through any other vertex. A geometric graph is a graphG = (V,E) together
with a straight-line drawing.

The rectilinear crossing number of a graph G (i.e., the minimum number
of crossings pairs of edges in any straight-line drawing of G) has been stud-
ied intensely for decades [1]. However, angle conditions for the crossing edges
have only been recently considered. The motivation comes from cognitive ex-
periments showing that having small crossing angles is negatively correlated to
path-tracking ability in a graph drawing [17].

In this paper, we consider two combinatorial aspects of crossing angles in
the straight-line drawings of graphs: (1) What is the maximum size of a graph
that admits a straight-line drawing with a certain number of different angles
between crossing edges? (2) Do the angles between the crossing edges determine
the straight-line drawing of a graph (completely or at least partially) up to
similarity?

e
f1 f2

v

Figure 1: Left: The undirected angles ∠{e, f1} and ∠{e, f2} are both π/4, with
∠{f1, f2} = π/2. However, the directed crossing angles between these edges
are different: we have ∠(e, f1) = π/4 and ∠(e, f2) = 3π/4. Right: A straight-
line drawing of K7. The edges incident to v are crossing free, hence v can be
relocated without changing the crossing angles in the drawing.

We define both directed and undirected crossing angles. The (undirected)
crossing angle between two crossing edges e and f in a straight-line drawing of a
graph is the minimum angle ∠{e, f} ∈ (0, π2 ] between the supporting lines of the
two edges. The directed crossing angle of two crossing edges e and f is the angle
∠(e, f) ∈ (0, π) such that a counterclockwise rotation through this angle carries
the supporting line of e to that of f . Refer to Fig. 1(left). Given a straight-line
drawing of an edge e and the (undirected) crossing angle ∠{e, f} 6= π

2 , then the
edge f may have two possible directions. The drawing of e and the directed
crossing angle ∠(e, f) uniquely determine the direction of f .

Crossing Angle Number. The crossing angle number of a graph G, denoted
can(G), is the minimum number of crossing angles in any straight-line drawing of
G. In Section 2, we show that every n-vertex graph G has less than (6 can(G) +
3)n edges. We also show that for every ε > 0, there are n-vertex graphs of
maximum degree O(1/ε) such that can(G) = Ω(n1/2−ε).
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Global crossing angle rigidity. Motivated by analogous results in rigidity
theory, we ask whether the (directed) crossing angles determine a straight-line
drawing of a graph uniquely up to similarity. Recall that a straight-line drawing
D = D(G) of a graph G = (V,E) is rigid if every straight-line drawing of G
with the same (Euclidean) edge lengths as in D is congruent to D (i.e., the
drawing D is unique up to congruence). A graph G = (V,E) is globally rigid in
the plane if for every function ` : E → R+, any two straight-line drawings of
G in which the Euclidean length of each edge e ∈ E is `(e) are congruent. In
other words, the edge lengths determine at most one straight-line drawing up
to congruence. For instance, it is not difficult to see that every complete graph
with 3 or more vertices is globally rigid.

Consider a straight-line drawing D of a graph G = (V,E), and assume we
have complete information about the directed crossing angles between the edges:
we know which pairs of edges cross, and we also know the directed crossing angle
of every two crossing edges. Is this information enough to reconstruct D up to
similarity? (Since similarities preserve both angles and the intersection pattern
of the edges, the best we can hope for is uniqueness up to similarity.) The
answer to this question is negative. If no two edges cross (hence D is a plane
drawing), then D is clearly not unique up to similarity. It is not difficult to
see that even the complete graphs Kn have straight-line drawings that are not
uniquely determined by the crossing angles: It is possible that no edge incident
to a vertex v crosses any other edges in D (Fig. 1, right), and then v can be
relocated without changing the crossing angles. This motivates the definition
of global crossing angle rigidity (see below), where we require that at least a
constant fraction of the vertices be uniquely determined up to similarity.

Let G = (V,E) be a graph. A directed crossing angle pattern is a function
α : E2 → [0, π) ∪ {?}. We say that a straight-line drawing D(G) is compatible
with α if for every two crossing edges, e and f , the directed crossing angle is
∠(e, f) = α(e, f); and for every two noncrossing edges, we have α(e, f) = ?. We
can now define the analogues of rigidity and global rigidity for crossing angles:
A straight-line drawing D1 of a graph G is crossing angle rigid if in every
straight-line drawing D2 of G, if D1 and D2 have the same directed crossing
angle pattern, then at least |V |/2 vertices are mapped to similar point sets in
the two drawings. A graph G = (V,E) is globally crossing angle rigid if for every
function α : E2 → [0, π)∪{?}, and for every two straight-line drawings, D1 and
D2, compatible with α, there is a vertex set V ′(α) ⊂ V of size |V ′(α)| ≥ |V |/2
that are mapped to similar point sets in the two drawings.

In Section 3, we prove that the complete graph Kn is globally crossing angle
rigid for n ≥ 24 (Theorem 2), and we also construct an infinite family of globally
crossing angle rigid graphs with maximum degree 47, diameter O(log n), and
n ≥ 24 vertices (Theorem 3).

Related Work. Previous research on crossing angles focused on the crossing
resolution [8, 16] of straight-line (or polyline) drawings, that is, the minimum
angle at which crossing edges meet. Didimo et al. [10] consider graphs that
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admit straight-line drawings where crossing edges meet at a right angle. Such
drawings are called right angle crossing (for short RAC ) drawings. They prove
that every n-vertex graph that admits a RAC drawing has at most 4n−10 edges,
and this bound is best possible. Argyriou et al. [2] show that it is NP-hard to
decide whether a given graph admits a RAC drawing. Refer to [7, 9, 14] for
recent results on RAC drawings. Note that if a graph G admits a RAC drawing,
then its crossing angle number is can(G) ≤ 1 (all edge crossings are at angle
π/2). By contrast, we show (Observation 1) that a graph G with can(G) = 1
may have 4.5n − O(

√
n) edges. Dujmović et al. [13] generalize RAC-drawings

and consider so-called α angle crossing (αAC) graphs, for 0 < α ≤ π
2 . These

are straight-line drawings where crossing edges meet at an angle at least α.
They prove that an n-vertex αAC graph has at most (π/α)(3n − 6) edges for
0 < α < π/2 and at most 6n− 12 edges for 2π/5 < α < π/2.

The rectilinear crossing number has been studied for decades, but its exact
value is not even known for the complete graph [1]. It is known, however, that
there are families of bounded degree graphs (even cubic graphs [25]) for which
the rectilinear crossing number is unbounded [6]. Our results imply (Corollary 2)
that there exist families of bounded degree graphs for which the crossing angle
number is unbounded.

The crossing angle number is also related to the slope number of a graph
G, introduced by Wade and Chu [29]. It is the smallest integer s(G) such that
G has a straight-line drawing in which the edges have s(G) distinct slopes.
The slope number gives an easy upper bound for the crossing angle number,
can(G) ≤

(
s(G)

2

)
, since the slopes of two crossing edges in a straight-line drawing

determine the crossing angle of the two edges. Mukkamala and Pálvölgyi [23]
show that every cubic graph has slope number at most 4. On the other hand,
Pach et al. [24] show that there are graphs of maximum degree d ≥ 5 with
arbitrarily large slope numbers. Dujmović et al. [12] improve the lower bound
on slope number for d ≥ 9 and showed that for every ε > 0, there are ∆-regular
graphs with slope number at least n1−(8+ε)/(∆+4). For planar graphs, Keszegh
et al. [22] show that for every d ∈ N, there is a constant f(d) = 2O(d) such
that every planar graph with maximum degree at most d admits a straight-line
drawing with at most f(d) slopes.

For background information on rigidity theory, refer to the excellent sur-
vey by Whiteley [30]. Saxe [27] showed that it is strongly NP-hard to decide
whether a graph is globally rigid. Jackson and Jordan [18, 20, 21] gave a sim-
ple combinatorial characterization of generic global rigidity, where the edge
lengths determine at most one straight-line drawing (up to congruence) if the
vertices are in general position. They also extended this notion to a so-called
length-direction rigidity [19], where each edge has either a prescribed length or
a prescribed direction vector. Angle constraints between intersecting circles are
considered by Saliola and Whiteley [26], in the context of computer aided design
(CAD), and are modeled by distance constraints between points in Euclidean
3-space.
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2 Graphs with bounded crossing angle numbers

The geometric thickness [11] of a graph, denoted gth(G), is the smallest num-
ber of layers such that one can draw G in the plane with straight-line edges
and assign each edge to a layer so that no two edges on the same layer cross.
We establish a relation between the geometric thickness and the crossing angle
number.

Theorem 1 For every graph G, we have gth(G) ≤ 2 can(G) + 1.

Proof: Consider a straight-line drawing D of a graph G = (V,E) with can(G)
crossing angles. We begin by partitioning the edges of G as follows. We define
a binary relation on the edges of G where two edges are related if and only
if they cross in the drawing D. The transitive closure of this relation is an
equivalence relation. The set of edges in an equivalence class is a called block
of G with respect to D. (See Fig. 2 for examples.) We partition the edges of G
into blocks.

Let k = can(G). We partition each block of G into the union of at most
2k+1 subsets, each of which is crossing-free in D. Let A = {α1, . . . , αk} denote
the set of crossing angles in the drawing D. We construct a (possibly infinite)
graph H whose vertices are the elements in A′ = 〈α1, . . . , αk〉, the Abelian group
generated by the angles αi where addition is performed modulo π. Two vertices
of H are adjacent if and only if their difference is ±αi for some αi ∈ A.

For a fixed α ∈ A and β ∈ A′, there exists a unique β′ ∈ A′ such that
β − β′ = α. Hence, the degree of each β ∈ H is at most 2k and there exists a
proper coloring of the vertices of H with at most 2k+ 1 colors. Moreover, each
color class is an independent set in H. We use the color classes to partition each
block of G into planar subgraphs.

Consider a block of G and assume without loss of generality that one edge
has slope zero in D. Thus, every edge in the block has a direction in 〈α1, . . . , αk〉.
(An edge has direction α ∈ [0, π) if it can be rotated clockwise through angle
α to horizontal position.) Thus, if βi and βj are in a color class of V (H), then
edges with directions βi and βj do not cross. We may partition the edges in
each block independently to obtain a partition of all edges of G into subgraphs,
each of which is planar in the drawing D. �

We show that every n-vertex graph with bounded crossing angle number has
O(n) edges. Recall that a planar graph with n ≥ 3 vertices has at most 3n− 6
edges.

Corollary 1 A graph G with n ≥ 3 vertices has at most (2 can(G) + 1)(3n− 6)
edges.

Barát et al. [5] proved that for every ∆ ≥ 9, ε > 0 and n ∈ N, there is a ∆-
regular graph with at least n vertices and geometric thickness Ω(

√
∆n1/2−∆/4−ε).

Corollary 2 For every ∆ ≥ 9, ε > 0 and n ∈ N, there is a ∆-regular graph G
with at least n vertices and can(G) = Ω(

√
∆n1/2−∆/4−ε).



406 Arikushi and Tóth Crossing Angles of Geometric Graphs

Figure 2: Left: A section of a hexagonal lattice with 54 vertices. The 6 diagonals
in each hexagon form a block (even though not all pairs of diagonals cross).
Right: A straight-line drawing of K12 where the vertices form a regular polygon.

We note here that the class of graphs G with can(G) = 1 is strictly larger
than the class of graphs that admit RAC drawings (i.e., straight-line drawings
in which crossing edges meet at a right angle).

Observation 1 For every n ∈ N, there exist an n-vertex graph Gn with 4.5n−
O(
√
n) edges and can(G) = 1.

Proof: We construct an infinite graph G = (V,E). Refer to Fig. 2(left). Let V
be the set of points in a hexagonal lattice, and let E consist of the edges of all
hexagons, and all 6 diagonals between second neighbors in each hexagon. The
degree of every vertex is 3 + 3 · 2 = 9 in G. The edges of the hexagons form a
plane graph; the diagonals of distinct hexagons do not cross; and two diagonals
of the same (regular) hexagon are either parallel or meet at an angle of π/3.

Let o be a point in general position with respect to V . For every n ∈ N,
let On be a the smallest disk centered at o that contains exactly n point in V ;
and let Gn be the subgraph of G induced by the n vertices in On. The vertex
degree is 9 for all but O(

√
n) vertices around the boundary of On. Hence Gn

has n vertices and 4.5n−O(
√
n) edges. �

We also note that the crossing angle number of the n-vertex complete graph
Kn is less than n

2 .

Observation 2 For n ≥ 2, we have can(Kn) ≤ bn/2c − 1.

Proof: We say that an edge of G has direction α ∈ [0, π) if it can be rotated
clockwise through angle α to horizontal position. Consider the straight-line
drawing of Kn such that the vertices are represented by the vertices of a regular
n-gon with a horizontal side (Fig. 2, right). The set of directions of the edges
in this drawing is {iπ/n : 0 ≤ i < n}. Consequently, the (undirected) angle
between the supporting lines of any two edges is in the set U = {iπ/n : 0 ≤
i ≤ n/2}, where |U | = bn/2c+ 1. However, if the angle between two edges is 0,
then the two edges are parallel; and if the angle is π/n, then they do not cross.
Hence, this drawing of Kn has only |U | − 2 crossing angles, as claimed. �
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The bound in Observation 2 is tight for n = 2, 3, and 5, but can(K4) = 0 and
can(K6) = 1. Determining can(Kn) for n ≥ 7 is left for future research. For
comparison, the slope number of Kn, n ≥ 3, is known to be exactly n [29].

3 Globally angle-rigid graphs

Assume that we are given a graph G = (V,E) together with a directed crossing
angle pattern α : E2 → [0, π)∪{?}, and we consider straight-line drawings D(G)
compatible with α. That is, whenever α(e, f) = ?, then the relative interiors of
the edges e and f are disjoint (although, they may share a common endpoint);
and whenever α(e, f) ∈ (0, π/2], then e and f cross at angle α(e, f). We assume
that the position of some vertices is given and we wish to determine the position
of additional vertices based on α. We start with a simple observation.

Proposition 1 Let G = (V,E) be a graph with edges pp1, pp2, p1p2, e1, e2 ∈ E,
and let α be a crossing angle pattern such that α(pp1, e1) 6= ? and α(pp2, e2) 6= ?
(Fig. 3). Then in any straight-line drawing compatible with α, the position of p
is determined by the slopes of e1 and e2, and the position of p1 and p2.

p2p1

p

e1
e2

Figure 3: Edges pp1 and pp2 each cross some other edges of the graph.

Proof: The slope of e1 and the crossing angle ∠(pp1, e1) determine the slope of
edge pp1. This slope together with the location of p1 determines the supporting
line of pp1. Similarly, ∠(pp2, e2), the slope of e2, and the location of p2 determine
the supporting line of pp2. Note that pp1 and pp2 cannot be collinear, otherwise
an edge would pass through a vertex in the straight-line drawing of G. Hence,
p is the unique intersection point of the supporting lines of pp1 and pp2. �

3.1 Tools from Combinatorial Geometry

Assuming that we already know the position of some of the vertices in a straight-
line drawing of the complete graph (resp., a complete bipartite graph), in this
subsection, we develop basic tools for determining how many points can evade
Proposition 1.

Crossing Free and Almost Crossing Free Vertices. We say that a vertex
p in a straight-line drawing of a graph is crossing free if no edge incident to p
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Q

p

Q

P

(a) (b)

Q

P

Q

P

(c) (d)

Figure 4: (a) Point p sees 5 vertices of the convex hull conv(Q). (b) P and Q
are convexly avoiding (but not mutually avoiding). (c) P avoids Q (but Q does
not avoid P ). (d) P and Q are mutually avoiding (but not convexly avoiding).

crosses any other edge; and p is almost crossing free if exactly one edge incident
to p crosses other edges. A point p sees a vertex qi of a convex polygon (q1, . . . qk)
if the line segment pqi is disjoint from the interior of (q1, . . . qk). Two point sets,
P and Q, are convexly avoiding if for every p ∈ P and q ∈ Q, the segment
pq is disjoint from the interior of both convex hulls conv(P ) and conv(Q). See
Fig. 4(a)–(b). Note that if P and Q are convexly avoiding, then P and Q are
each in convex position. We show that in any drawing of a complete graph with
5 or more vertices, at most one vertex is crossing free or almost crossing free.

Proposition 2 Consider a straight-line drawing of the complete graph Kn =
(V,E) with n ≥ 5 vertices. If p ∈ V is a crossing free vertex in this drawing, then
p is a vertex of the convex hull conv(V ), the set V \ {p} is in convex position,
and p sees all vertices of conv(V \ {p}).

Proof: Suppose that p lies in the interior of conv(V ). By Carathéodory’s
theorem, there are vertices q1, q2, q3 ∈ V on the boundary of conv(V ) such that
p lies in the interior of the triangle conv({q1, q2, q3}). Since |V | ≥ 5, there is
another vertex r ∈ V . The segments pq1, pq2 and pq3 decompose conv(V ) into
3 sectors, and we may assume without loss of generality that r lies in the sector
bounded by pq1 and pq2. The path pq1 ∪ pq2 decomposes conv(V ) into two
regions, and points r and q3 are in different regions by construction. Hence the
segment rq3 crosses either pq1 or pq2. This contradicts our assumption that p
is crossing free. Therefore, p is a vertex of the convex hull conv(V ).

Now suppose that p does not convexly avoid V \ {p}. Then there is a vertex
r1 on the boundary of conv(V \ {p}) such that pr1 intersect the interior of
conv(V \ {p}), and so pr1 crosses some edge r2r3 on the boundary of conv(V \
{p}). This contradicts our assumption that p is crossing free. �
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Proposition 3 Consider a straight-line drawing of the complete graph Kn =
(V,E) with n ≥ 6 vertices. If p ∈ V is an almost crossing free vertex where
edge pq crosses some other edges of the graph, then p is a vertex of conv(V ),
V \ {p, q} is in convex position, and p sees all vertices of conv(V \ {p, q}).

Proof: By definition, there is exactly one edge incident to p, namely pq, that
crosses other edges. If we delete vertex q, we obtain a straight-line embedding
of Kn−1, n− 1 ≥ 5, where p is crossing free. Proposition 2 completes the proof.

�

Mutually Avoiding Sets. Let P and Q be two point sets in the plane. We
say that P avoids Q if the supporting line of any two points in P is disjoint
from conv(Q); and P and Q are mutually avoiding if P avoids Q and Q avoids
P . See Fig. 4(c)–(d). Aronov et al. [4] proved that any two point sets, P and
Q, of size |P | = |Q| = n/2 contain two mutually avoiding subsets P ′ ⊆ P and
Q′ ⊆ Q of size |P ′|, |Q′| ≥

√
n/24. We strengthen their results when P or Q is

in convex position.

Proposition 4 Let P and Q be disjoint point sets in the plane such that |P | ≥ 5
and every q ∈ Q sees at least |P | − 1 vertices of conv(P ). Then,

(i) there is a subset P ′ ⊆ P of size |P ′| ≥ |P |−3 in convex position such that
P ′ avoids Q, and every point q ∈ Q sees all vertices of conv(P ′); and

(ii) there is a subset P ′′ ⊆ P of size |P ′′| ≥ |P | − 1 in convex position and a
subset Q′′ ⊆ Q of size |Q′′| ≥ d|Q|/3e such that P ′′ avoids Q′′ and every
point q ∈ Q′′ sees all vertices of conv(P ′′).

q0

p1
p2

p3pt−3
pt−2

pt−1

`1 `2+ +− −

pt

q7

p1

p8

p9
p7

p2
`3 +

−
q1

p3

Figure 5: Case 1 (left) and Case 2 (right) in the proof of Proposition 4.

Proof: Let t = |P | ≥ 5. Since every q ∈ Q sees at least |P | − 1 vertices of
conv(P ), the convex hull conv(P ) has either t − 1 or t vertices. We consider
these two cases separately.

Case 1: conv(P ) has t − 1 vertices. In this case, every point q ∈ Q sees all
vertices of conv(P ). Pick an arbitrary point q0 ∈ Q. Label the points in P such
that conv(P ) = (p1, . . . , pt−1) where q0p1 and q0pt−1 are tangent to conv(P ).
Refer to Fig. 5 (left). Let P ′ = {p2, . . . , pt−2}. It is clear that P ′ is in convex
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position and every point q ∈ Q sees all vertices of conv(P ′). It remains to show
that P ′ avoids Q.

First assume that t = 5. In this case, P ′ = {p2, p3}, and conv(P ′) is the
line segment p2p3. Let `1 be a directed line spanned by p2p3 such that q0 ∈ `+
and p1, p2 ∈ `−. For every point q′ ∈ `−, the segment p2q or p3q intersects the
interior of conv(P ). Consequently, every point q ∈ Q lies in `+, and so P ′ avoids
Q.

Assume now that t ≥ 6. Let `1 and `2 be the supporting lines of p2p3 and
pt−3pt−2, respectively. Lines `1 and `2 subdivide the plane into 4 wedges. Orient
the lines `1 and `2 such that q lies in the wedge `+1 ∩`+2 . Every point q′ in `+1 ∩`+2
sees the vertices of conv(P ′) in the same circular order. If q′ ∈ `+1 ∩ `−2 (resp.,
q′ ∈ `−1 ∩ `+2 ) then pt−2q

′ (resp., p1q
′) intersects the interior of conv(P ). For

every point q′ ∈ `−1 ∩ `−2 , segment p2q
′ intersects the interior of conv(P ). Hence,

Q ⊂ `+1 ∩ `+2 . Therefore, every point q′ ∈ Q sees the vertices of conv(P ′) in the
same circular order, and so P ′ avoids Q. This proves part (i).

For part (ii), we set P ′′ = {p1, . . . , pt−1}. For every q ∈ Q, consider the
counterclockwise order of the points in P ′′ between two tangent lines from q to
conv(P ′′). Since Q ⊆ `+1 ∩ `+2 , this order is (p1, . . . , pt−1), (p2, . . . , pt−1, p1) or
(pt−1, p1, . . . , pt−2). Partition Q into three subsets based on the order in which
they see the vertices of conv(P ′′). Let Q′′ be the largest subset of Q, of size at
least d|Q|/3e. Now the point set P ′′ avoids Q′′, as required.

Case 2: conv(P ) has t vertices. Let conv(P ) = (p1, . . . , pt) and let B ⊆ P
be the set of points pi ∈ P such that piq intersects the interior of conv(P ) for
some q ∈ Q. If B = ∅, we can take P ′ = P , and then P ′ avoids Q. If |B| = 1,
then the proof of part (i) is analogous to Case 1 with B = {pt}.

Assume that |B| ≥ 2. We show that for any two points in B, the hop
distance along conv(P ) is at most 2. It will follow that |B| ≤ 3. Suppose, to the
contrary, that p1, pi ∈ B, where 4 ≤ i ≤ t−2. Then there exist points q1, qi ∈ Q
such that both p1q1 and piqi intersect the interior of conv(P ). Let `3 be the
supporting line of p2p3 such that p1 ∈ `+3 . Refer to Fig. 5 (right). We have
q1, qi ∈ `−3 , since the line segments between {q1, qi} and {p2, p3} cannot cross
the interior of conv(P ) by our assumptions. Let pj be the vertex of the convex
chain (pi+1, . . . , pt) that lies farthest from the line `3. If j = t, then the segment
pj−1qi intersects the interior of conv(P ). If j < t, then pj+1q1 intersects the
interior of conv(P ). That is, the point q1 or qi sees at most t − 1 vertices of
conv(P ), contradicting our assumptions. It follows that |B| ≤ 3 since the hop
distance between any two points in B is at most two, and t ≥ 5. Let P ′ = P \B
of size |P ′| ≥ |P | − 3. Now P ′ avoids Q by the definition of B. This completes
the proof of part (i).

For part (ii), notice that every point q ∈ Q sees at least |P | − 1 vertices of
conv(P ), namely is sees the vertices in P \{b} for some b ∈ B. Since |B| ≤ 3, we
can partition the points in Q into at most three subsets based on which vertices
of conv(P ) they see. Let Q′′ be a largest subset of Q, and P ′′ the corresponding
set P \ {b}, b ∈ B, that they all see. Then the P ′′ ⊆ P has size t − 1 and it
avoids the set Q′′ of size at least d|Q|/3e. �
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Proposition 5 Let P and Q be disjoint point sets in the plane such that P is
in convex position, every point q ∈ Q sees all vertices of conv(P ), and P avoids
Q. Then, there exist subsets P ′ ⊂ P and Q′ ⊂ Q of size |P ′| ≥ d|P |/2e and
|Q′| ≥ d

√
|Q|e such that P ′ and Q′ are mutually avoiding.

Q

p1

p6

p7

`1 p2

`2

P
m

Q′

p1

p6

p7

`1 p2

`2

P2

m
p4 P1

Figure 6: Left: Every point q ∈ Q sees the same convex arc (p1, . . . , p7) on
the boundary of conv(P ). The supporting lines of p1p2 and p6p7 are `1 and `2,
respectively. Right: A subsequence Q′ = (qki) whose angles θki about m are
monotonically increasing.

Proof: Let t = |P |. Since P avoids Q, every point q ∈ Q sees the same convex
arc on the boundary of conv(P ), say (p1, . . . , pt) in counterclockwise order. Let
`1 and `2 be the supporting lines of p1p2 and pt−1pt, respectively. Refer to Fig. 6.
The points in Q must lie in the wedge between `1 and `2 not containing points
of P . We may assume (after performing an appropriate affine transformation)
that `1 and `2 are orthogonal and parallel to the coordinate axes, P lies in the
1st quadrant and Q lies in the 3rd quadrant.

The midpoint m of the (possibly degenerate) line segment pdt/2epd(t+1)/2e
decomposes the convex arc (p1, . . . , pt) into two arcs: P1 = (p1, . . . , pdt/2e) and
P2 = (pd(t+1)/2e, . . . , pt). Consider the points in Q written in polar coordinates
(r, θ) where m is the origin and θ is measured counterclockwise. Order the
points qi = (ri, θi) ∈ Q in decreasing distance ri from m. By the Erdős-Szekeres
theorem [15], there is a subsequence Q′ = (qki) of length at least d

√
|Q|e whose

angles θki are in either increasing or decreasing order. If they are increasing, we
show that Q′ avoids P1. (Analogously, one can show that Q′ avoids P2 if the
angles are decreasing.) Consider two points qki , qkj ∈ Q′ with i < j. Then qkj
lies below the supporting line of mqki farther from m than qki . Therefore, the
supporting line of qkiqkj intersects the vertical line through m either above m or
below the x-axis `1. Since all points in P1 lie to the right of m, in a horizontal
strip betweenm and `1, the supporting line of qkiqkj avoids conv(P1), as claimed.

�

Proposition 6 Let P and Q be two convexly avoiding sets of size |P | ≥ 3 and
|Q| ≥ 3. Then there exist subsets P ′ ⊆ P and Q′ ⊂ Q such that |P ′| + |Q′| ≥
|P |+ |Q| − 1, and P ′ and Q′ are mutually avoiding.
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Figure 7: (a) conv(P ∪Q) is a quadrilateral. (b) conv(P ∪Q) is a triangle.

Proof: Since P and Q are convexly avoiding, the convex hulls conv(P ) and
conv(Q) are disjoint, and so conv(P ) and conv(Q) have exactly two common
external tangents. No three consecutive vertices of conv(P ∪Q) are in P or Q,
otherwise the middle vertex would be incident to an edge piqi that intersects
the interior of conv(P ) or conv(Q). Therefore, conv(P ∪Q) is either a triangle
or a quadrilateral.

Assume first that conv(P ∪ Q) is a quadrilateral (Fig. 7(a)). In this case,
we show that P and Q are mutually avoiding. Let conv(P ) = conv(p1, . . . , pt)
in counterclockwise order such that ptp1 lies on the boundary of conv(P ∪ Q).
Suppose, to the contrary, that there are two points pi, pj ∈ P , 1 ≤ i < j ≤ t,
such that the supporting line of pipj intersects conv(Q). Clearly, pipj 6= p1pt,
and we may assume (by applying a reflection if necessary) that j < t. The line
pipj intersects two edges of conv(Q). One of them is an edge of conv(P ∪Q)),
and we denote the other one by qkqk+1. Then the segments pipt, piqk, pipj , and
piqk+1 appear in this counterclockwise order around pi. Therefore, segment piqk
intersects the interior of conv(P ), contradicting our assumption that P and Q
are convexly avoiding.

Assume now that conv(P ∪Q) is a triangle. Without loss of generality, we
may assume conv(P ∪ Q) = (p1, p2, q1). In this case, conv(P ∪ (Q \ {q1})) is
a quadrilateral (Fig. 7(b)). The previous argument readily implies that P and
Q \ {q1} are mutually avoiding. �

3.2 From One Triangle to Another

In this subsection, we show that if we already know the position of 8 vertices
of a complete graph, then the crossing angle pattern uniquely determines the
position of all but at most 4 remaining vertices. It is enough to argue about the
position of one new vertex at a time.

Proposition 7 Let G = Kn be a complete graph on the vertex set V = P ∪Q,
with |P | ≥ 3 and |Q| ≥ 3, and let α be a crossing angle pattern. Consider a
straight-line drawing compatible with α such that P is in convex position, every
point q ∈ Q sees all vertices of conv(P ), and P and Q are mutually avoiding.
Then the position of the vertices in P uniquely determines the position of at
least one vertex in Q.
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Proof: Since P and Q are mutually avoiding, every point q ∈ Q sees the vertices
of conv(P ) in the same (counterclockwise) order. Let p1, p2, p3 ∈ P be three
arbitrary points in P , labeled such that every q ∈ Q sees p1, p2, and p3 in this
(counterclockwise) order. Similarly, let q1, q2, q3 ∈ Q be three arbitrary points
in Q such that every p ∈ P sees them in this (counterclockwise) order. Refer
to Fig. 8(a). The edge p1q1 crosses edges q2p2 and q2p3, and these three edges
bound a triangular region in the plane. Since the crossing angles are known,
∠p2q2p3 is uniquely determined. Similarly, using edge p3q3, angle ∠p1q2p2 is
uniquely determined.

p1

p2

p3

q1

q2
q3

θ2 θ1

(a)

p1

p2

p3

`1

`2

q1
q2

2θ12θ2

C2
C1

q3
`2

(b)

Figure 8: (a) Determining ∠p2q2p3. (b) Inscribed angles.

Let `1 and `2 be the supporting lines of p1p2 and p2p3, respectively. The lines
`1 and `2 subdivide the plane into 4 wedges. Direct the lines `1 and `2 such that
Q lies in `+1 ∩ `+2 (Fig. 8(b)). We use a fact from elementary geometry: given
two points a and b and an angle θ ∈ (0, π), the locus of points c with ∠abc = θ
is the union of two circular arcs that lie on opposite sides of the supporting
line of ab. We invoke this result with c = q2 twice: once for ab = p1p2 and
once for ab = p2p3. Since q2 ∈ `+1 ∩ `+2 , it is enough to use one of the two
circular arcs in each invocations. Thus, q2 lies on the intersection of two circles:
C1 defined by p1, p2,∠p1q2p2, and C2 defined by p2, p3,∠p2q2p3. Two distinct
circles intersect in at most two points. Since p2 ∈ C1 ∩C2, the position of q2 is
uniquely determined unless C1 = C2. If C1 = C2, then p1, p2, p3, and q2 all lie
on a common circle. This case, however, cannot occur, since it would contradict
our assumption that P and Q are convexly avoiding. �

Lemma 1 Let G be the complete graph on the vertex set V = P ∪Q such that
|P | ≥ 8 and |Q| ≥ 5. Let α be a crossing angle pattern. In a straight-line
drawing compatible with α, the position of the vertices in P uniquely determines
the position of at least one vertex in Q.

Proof: The vertex set ofG is P∪Q, with |P | ≥ 8 and |Q| ≥ 5, where the position
of the vertices in P are known. If there is a vertex q ∈ Q such that edges p1q, p2q
cross some edges induced by P for some p1, p2 ∈ P , then the position of q is
determined by Proposition 1. Otherwise, every vertex q ∈ Q is crossing free
or almost crossing free in the subgraph induced by P ∪ {q}. By Proposition 2
or 3, every q ∈ Q convexly avoids a subset of at least |P | − 1 points in P . By
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Propositions 4(i), there is a subset P ′ ⊂ P of size 8 − 3 = 5 such that every
q ∈ Q sees all vertices of conv(P ′) and P ′ avoids Q. By Propositions 5 there
are mutually avoiding subsets P ′′ ⊆ P and Q′′ ⊆ Q, with |P ′′| ≥ d5/2e = 3 and
|Q′′| ≥ d

√
5e = 3, such that every q ∈ Q′′ convexly avoids P ′′. By Proposition 7,

the position of at least one point q ∈ Q′′ is uniquely determined by the position
of P ′′ ⊂ P and the crossing angle pattern α. �

3.3 Complete Graphs Are Globally Crossing Angle Rigid

In Proposition 1 and in Subsection 3.2, we determined the position of a new
vertex assuming that we already know the position of some other vertices. We
can now drop this assumption and show (Theorem 2) that in complete graph
Kn, n ≥ 24, the directed crossing angles always determine the position of at
least n− 4 vertices up to similarity.

Proposition 8 Let G = Kn be the complete graph on n vertices, and let α be a
crossing angle pattern. If the n vertices form a convex polygon P in a straight-
line drawing compatible with α, then the slope of any diagonal of P determines
the slopes of all diagonals of P .

Proof: Assume that we are given the slope of a diagonal e of P , and all directed
crossing angles between diagonals. Let e′ be another diagonal of P . If e crosses
e′, then their crossing angle determines the slope of e′. If e and e′ do not cross
(Fig. 9(a)), then there is a third diagonal f that crosses both e and e′, and the
slope of e′ is determined by the angles ∠(e, f) and ∠(f, e′). �

Szekeres and Peters [28] proved, by an exhaustive computer search, that ev-
ery set of 17 points in the plane, no three of which are collinear, contains 6 points
in convex position. Note that it is easy to test whether a set of vertices is in con-
vex position based on the directed crossing angle pattern α : E2 → (0, π)∪ {?}.
Indeed, (p1, . . . , pk) is a convex polygon in a straight-line embedding compatible
with α if and only if α(pipj , pi′pj′) 6= ? whenever the indices (i, j, i′, j′) cross
combinatorially in the cyclic sequence (1, . . . , k).

Theorem 2 Let G = Kn be a complete graph with n ≥ 24 vertices, and let α be
directed crossing angle pattern. Then in every straight-line drawing compatible
with α, the position of at least n − 4 vertices of G are uniquely determined up
to similarity.

Proof: Denote by V the vertex set of G. Since all vertex pairs are adjacent, no
three vertices are collinear in a straight-line drawing of G. Since |V | ≥ 17+6, we
can successively choose two sets, P ⊂ V and Q ⊆ (V \ P ), each consisting of 6
points in convex position using [28]. Let conv(P ) = (p1, . . . , p6) and conv(Q) =
(q1, . . . , q6).

By Proposition 8, the directed crossing angles determine the slopes of all
diagonals of a convex hexagon up to similarity. For instance, if we fix two
arbitrary vertices in either ∆(p1, p3, p5) or ∆(p2, p4, p6), then the third vertex
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Figure 9: (a) Diagonals of a convex hexagon. (b) If ∆p1p3p5 is fixed, ∆p2p4p6

has one degree of freedom. (c) A point r lies in the interior of conv(P ). (d) A
point r lies in the exterior conv(P ) but does not see all vertices of conv(P ).

of the triangle is uniquely determined. However, if we fix ∆(p1, p3, p5), then
the vertices of ∆(p2, p4, p6) are not necessarily determined (Fig. 9(b)). We first
show that the directed crossing angles determine the position of six points from
P ∪Q up to similarity. We distinguish between three cases.

Case 1: There is a vertex r ∈ V lying in the interior of conv(P ) or conv(Q). As-
sume without loss of generality that r lies in the interior of conv(P ) (Fig. 9(c)).
Fix the position of p1 and p3. This immediately determines the position of p5.
Note that at least two edges in {p1r, p3r, p5r} cross some edges of the triangle
∆(p2, p4, p6). Therefore, by Proposition 1, the position of r is uniquely deter-
mined. The position of p1, p3, p5, and r uniquely determine p2, p4, and p6, by
repeatedly applying Proposition 1.

Case 2: There is a vertex r ∈ V such that r lies in the exterior of conv(P ) and
an edge from r to P intersects the interior of conv(P ), or r lies in the exterior
of conv(Q) and an edge from r to Q intersects the interior of conv(Q). Assume
without loss of generality that p1r crosses the interior of conv(P ) (Fig. 9(d)).
Since p1 enters the interior of conv(P ), it crosses some diagonals of conv(P ).
Fix the position of p1 and p3. This immediately determines the position of p5.
The location of p1 and the directed crossing angles with a diagonal of conv(P )
determine the supporting line of p1r. The supporting line of p1r crosses some
edge of conv(P ), which is incident to a vertex pj , j ∈ {2, 4, 6}. Now the position
of pj is determined by Proposition 1. By repeatedly applying Proposition 1, we
determine the position of p2, p4, and p6.

Case 3: Both conv(P ) and conv(Q) have empty interiors, every vertex in the
exterior of conv(P ) sees all vertices of conv(P ), and every vertex in the exterior
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of conv(Q) sees all vertices of conv(Q). In this case, P and Q are convexly
avoiding. By Proposition 6, P and Q have mutually avoiding subsets P ′ ⊂ P
and Q′ ⊂ Q of total size |P ′| + |Q′| ≥ 11. Without loss of generality, P ′ =
{p1, . . . , p5} and Q′ = {q1, . . . , q6} are mutually avoiding. Fix the position of
p1 and p3, which immediately determines the position of p5. By Proposition 7,
the position of {p1, p3, p5} determines the position of at least one vertex in each
3-element subset of Q′. Hence, {p1, p3, p5} determines the position of at least 3
vertices in Q′.

In all three cases, the position of at least 6 vertices are determined up to
similarity. Use Proposition 1 successively to determine as many more vertices as
possible. Let A ⊂ V be the set of vertices whose position is already determined
up to similarity, and let B = V \A. If we already know the position of 8 vertices
in V , then we can use Lemma 1 to determine the position of all but at most 4
vertices in V . It remains to consider the case where 6 ≤ |A| ≤ 7.

If 6 ≤ |A| ≤ 7, then |B| ≥ 24− 7 ≥ 17. Since Proposition 1 is not applicable
for the points in B, they all see at least |A| − 1 ≥ 5 vertices of conv(A) by
Propositions 2 and 3. By Proposition 4(ii), there is a subset A′ ⊆ A of size
|A′| ≥ |A| − 1 ≥ 5 in convex position and a subset B′ ⊆ B of size |B′| ≥
d17/3e = 6 such that A′ avoids B′ and every point b ∈ B′ sees all vertices
of conv(A′′). By Propositions 5 there are mutually avoiding subsets A′′ ⊆ A′

and B′′ ⊆ B′, with |A′′| ≥ d5/2e = 3 and |B′′| ≥ d
√

6e = 3, such that every
b ∈ B′′ sees all vertices of conv(A′′). By Proposition 7, the position of some
point b ∈ B′′ is uniquely determined. Thus A can be incremented until |A| ≥ 8.

�

3.4 Globally Angle-Rigid Graphs of Bounded Degree

For every n ≥ 24, we construct a globally crossing angle rigid graph F = (V,E)
with n vertices, bounded vertex degree, and O(log n) diameter. Refer to Fig. 10.
We start with an auxiliary graph F0 on a vertex set V0 = {v1, . . . , vn0

}, for some
fixed n0 ≥ 2. Let F0 be a binary tree of diameter O(log n0). The graph F is
obtained from F0 by replacing each vertex in V0 with a clique K12, and replacing
each edge of F0 with a biclique K12,12 between the corresponding cliques. (See
Fig. 10 for an illustration.) The vertex set of F is V =

⋃n0

i=1 Vi, where Vi is a
set of 12 vertices corresponding to vi. Hence F has n = 12n0 vertices, and its
maximum degree is 4 · 12− 1 = 47.

Theorem 3 Let D1 be a straight-line drawing of F = (V,E) compatible with
a directed crossing angle pattern α : E2 → [0, π) ∪ {?}. Then there is a subset
V ′(α) ⊂ V of vertices such that (i) V ′(α) contains at least 8 vertices from each
Vi, 1 ≤ i ≤ k, and (ii) for every straight-line drawing D2 of F compatible with
α, a similarity transformation carries all vertices in V ′(α) to the corresponding
vertices in D1.

Proof: Applying Theorem 2 for V1∪V2, we find a subset V ′1 ⊂ V1 of size |V ′1 | = 8
such that the position of all vertices in V ′1 is determined up to similarity by the
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Figure 10: Left: A binary tree F0 with n0 = 9 vertices. Middle: A straight-line
drawing of K12. Right: The graph F constructed from F0.

directed crossing angles. We incrementally choose a vertex set V ′i ⊂ Vi of size
|V ′i | = 8 for all j = 2, . . . , n0. Assume that we have already chosen a subset
V ′i ⊂ Vi, |V ′i | = 8, and vivj is an edge of the auxiliary graph F0. Then F contains
a complete graph on the vertex set V ′i ∪ Vj , where |V ′i | = 8 and |Vj | = 12. By
Lemma 1, we can successively choose 8 elements from Vj whose positions are
each determined by the position of the vertices in V ′i and the crossing angles.
Denote by V ′j the set of these elements, with V ′j ⊂ Vj and |V ′j | = 8. Finally,

let V ′(α) =
⋃n0

i=1 V
′
i . Note that the crossing angle pattern α determines the

position of all vertices in V ′(α) up to similarity, as claimed. �

4 Conclusions

Note that the function α : E2 → [0, π)∪ {?} defined above encodes the directed
crossing angle pattern. It is natural to consider the undirected crossing angle
pattern β :

(
E
2

)
→ (0, π/2) ∪ {?} for unordered pairs {e, f} ∈

(
E
2

)
. Our method

is likely to extend to this variant of the problem, and produce results analogous
to Theorems 2 and 3), with higher vertex degrees. We have not pursued this
direction in this paper.

Our results represent a first step towards a possible combinatorial charac-
terization of globally crossing angle rigid graphs. In our definition of globally
crossing angle rigid graphs, a directed crossing angle pattern α determines at
least half of the vertices up to similarity. In fact, Theorem 3 holds with factor
2
3 in place of one half. For every constant c ∈ (0, 1), there is a threshold ∆(c)
such that there exist infinitely many graphs G = (V,E) of maximum degree
∆(c) where a directed crossing angle pattern α determines at least c|V | vertices
up to similarity. It is left for future research to find the minimum value of the
threshold ∆(c). Several related problems remain open. Is it NP-hard to decide
whether a given straight-line drawing of a graph G = (V,E) is angle-rigid? Is
it NP-hard to find the crossing angle number can(G) of a given graph G? We
do not even know whether the bound can(Kn) ≤ bn/2c − 1 in Observation 2 is
tight for n ≥ 7.
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