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Abstract

Network visualization is essential for understanding the data obtained
from huge real-world networks such as flight-networks, the AS-network
or social networks. Although we can compute layouts for these networks
reasonably fast, even the most recent display media are not capable of
displaying these layouts in an adequate way. Moreover, the human viewer
may be overwhelmed by the displayed level of detail. The increasing
amount of data therefore requires techniques aiming at a sensible reduc-
tion of the visual complexity of huge layouts.

We consider the problem of computing a generalization of a given
layout reducing the complexity of the drawing to an amount that can be
displayed without clutter and handled by a human viewer. We take a first
step at formulating graph generalization within a mathematical model
and we consider the resulting problems from an algorithmic point of view.
We show that these problems are NP-hard in general, and provide efficient
approximation algorithms as well as efficient and effective heuristics. We
also showcase some sample generalizations.
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1 Introduction

As a natural consequence of the increasing amount of available data we are
frequently facing large and even huge networks such as road and flight networks,
the Internet and social networks with millions of vertices. Visualization of these
networks is a key to assessing the inherent graph-based information via human
inspection. There are several methods for computing layouts of huge graphs
with millions of vertices within a few minutes [28, 31, 25].

But, how do we display such layouts? Modern HD displays feature roughly
2 Mio pixels and a standard A4 page allows roughly 8.7 Mio dots at a resolution
of 300 pixels per inch. Although these numbers do sound adequate for large-
scale graph visualization at first glance, both media are not at all suited for
displaying huge graphs with millions of vertices. Even if we require only a
minimal distance of 10 pixels or dots between the vertices of the graph, which
yields a distance between vertices of roughly 3 millimeters on the screen and less
than 1 millimeter on paper, then we can display only several thousand vertices,
and not too many edges. If we additionally seek to display graph structure and
keep visual clutter low, the number of vertices we can display degrades even
further and may go down to less than a hundred for dense graphs.

Even worse, the human perception is not capable of extracting detailed infor-
mation from huge layouts with millions of vertices. Since, by a simple counting
argument, there are incompressible adjacency matrices [32], a graph with only
1 Mio vertices may encode incompressible information of up to 125 Gigabytes.
This exceeds by a factor of 3.6 the average daily information consumption of an
average American estimated at 34 (highly compressible) Gigabytes of informa-
tion in the current report on American Consumers [6].

To get around these fundamental barriers in visualizing graphs, we propose
to compute and display generalizations of graphs that appropriately reduce the
amount of information that is displayed in a drawing such that the result can be
properly perceived by the viewer and still contains the major parts of the original
information. In particular, we seek to reduce the amount of incompressible detail
information that the user is not capable of absorbing anyway due to cognitive
limitations. We stress that a generalization of a graph with a fixed layout is
again a (usually much smaller) graph together with a fixed layout that preserves
both visual appearance and graph-theoretical properties of the original, such as
density, connectivity, and planarity.

Our model is based on the fact that vertices have a fixed size and edges
have a fixed width on the screen. Visual clutter refers to an agglomeration of
overlapping visual features in a limited area that renders these features indis-
tinguishable. Our goal is to either avoid or reduce visual clutter. We identify
three types of clutter.

Vertex-Clutter occurs when two or more vertices are too close to each other.
It may render the drawing unusable due to hidden edge information; see
Fig. 1a.

Edge-Clutter occurs when too many edges cross a limited area. Even if ver-
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(a) Vertex-Clutter (b) Edge-Clutter (c) Vertex-Edge-Clutter

Figure 1: Illustration of the different types of visual clutter.

tices are far enough apart, edge clutter may lead to indistinguishable edge
information; see Fig. 1b.

Vertex-Edge-Clutter occurs when a vertex is too close to an edge. In this
case, we are unable to tell, whether the vertex is incident to the edge or
not; see Fig. 1c.

The generalization should maintain the spirit of the drawing of the graph
and preserve the prominent features while reducing the amount of detailed in-
formation to an amount that can be displayed without clutter and handled by
a human viewer.

Related Work Known approaches to coping with the huge amount of data
by allowing for some kind of abstraction can be categorized into structural and
geometric methods. While structural methods create a new layout for the data,
typically using a clustering of the graph, geometric methods are applied to a
given layout maintaining the user’s mental map [35].

Graph-theoretic clustering methods, which can be used to cluster the graph
for visualization are discussed in [20]. Eades and Feng [17] describe a multilevel
visualization method for clustered graphs with the aim of visualizing network-
based data that has been clustered hierarchically at different levels of abstraction
induced by the hierarchy of the clustering. A force-directed layout algorithm
based on a hierarchical decomposition of the graph is given by Quigley and
Eades [37]. This method allows for visualizing the graph at different levels
of abstraction by computing a layout based on a hierarchical grouping of the
vertices of the graph. Harel and Koren [27] present a multi-scale algorithm with
the purpose of producing nice drawings on large and small scale, respectively.
Different levels of abstraction of the graph are obtained by iteratively coarsening
the graph. Other scalable force-directed drawing algorithms based on the multi-
scale paradigm are given by Gajer and Kobourov [21], Gajer et al. [21] and
Walshaw [42]. Multi-scale drawing methods are combined with fisheye views
by Gansner et al. [22]. Their approach is to compute a layout of a graph
whose level of detail deteriorates with increasing distance to the focal node
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of the layout, that is, they provide a topological version of classical fisheye
visualization techniques. Abello el al. [4] discuss graph sketches for very large
graphs based on mapping clusters of the graph to certain regions of the screen.
Their notion of a sketch is based on a hierarchical clustering of the graph and is
mainly focused on exploring the graph via a detail-on-demand strategy without
providing a good approximation of the graph’s structure and geometry. Rafiei
and Curial [38] study the generalization of graphs by sampling.

Classical fisheye visualizations [19, 40], on the other hand, can be directly
applied to a given layout and apply a distortion to a given layout to emphasize
the structure of the drawing in a certain area of interest. The resolution of
the drawing deteriorates towards the boundary of the drawing and parts of the
drawing in this area are usually densely cluttered. Abello et al. [3] study the
visualization of large graphs with compound-fisheye views and treemaps, em-
ploying hierarchical clustering and a treemap representation of this clustering.
Edge Bundling techniques [41, 29] aim at reducing the complexity of layouts by
bundling similar edges.

Generalization differs from structural methods in that it takes as input a
fixed layout of a graph, rather than creating one that may be particularly well-
suited to displaying the graph at different levels of granularity. Just like geo-
metric methods, generalization can thus be applied to any given layout. The
geometric methods, however, usually preserve the graph structure completely
and only modify the view on the given layout to display detail information in
certain focus areas, often leading to substantial amounts of clutter outside. Gen-
eralization has received considerable attention in cartography [34]. Mackaness
and Beard [33] highlight the potential of graph theory for map generalization.
Saalfeld states the map generalization problem as a straight-line graph drawing
problem [39] and formulates a number of challenges resulting from this perspec-
tive. Among others, he asks for a rigorous mathematical model for graph-based
generalizations and provable guarantees. We are not aware of any work aiming
at assessing this problem to its full extent.

Contribution and Outline We devise a framework that allows for comput-
ing generalizations by eliminating, or at least reducing, all types of clutter in
an incremental way by modeling the elimination or reduction of each type of
clutter as an optimization problem, which we analyze in terms of complexity.
We show that these problems are NP-hard in general and we provide approxi-
mation algorithms as well as effective and efficient heuristics that can be applied
to huge graphs within reasonable time.

A key to assessing the problem of computing a suitable generalization is to
find an adequate measure of the quality or appropriateness of a generalization.
It is essential to understand the geometric and combinatorial features result-
ing in the visual complexity of geometric graphs and how they affect human
perception. The geometric features of the drawing include, among others, the
distributions of points and edges as well as the distribution of crossings, the
shapes of the faces of the arrangement, especially the outer face, as well as
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symmetries and other peculiarities of the drawing. The combinatorial features
include connectivity, structure and length of shortest paths as well as, for in-
stance, planarity. Although we are far from fully understanding the impact
of these features on the human perception, we try to incorporate a carefully
selected set of these features into our model of a generalization. This consti-
tutes a first step towards establishing a mathematical model for the problem of
generalizing geometric graphs.

In Section 2, we consider the problem of reducing vertex-clutter. We dis-
cuss our model for the generalization of the vertex set and show NP-hardness
of the corresponding optimization problem. We further show that the size of
the generalized pointset can be approximated efficiently and we devise an effi-
cient heuristic for further optimization. In Section 3, we study the reduction of
edge-clutter. We show that it is in general NP-hard to find a sparse or short
subset of the edges maintaining monotone tendencies. When the original graph
is complete, however, or if we are not restricted to use edges of the original
graph, we can efficiently compute a sparse graph approximately representing
monotone tendencies of the edges. In Section 4, we model the problem of re-
ducing vertex-edge clutter and we show how to compute a drawing that allows
for unambiguously deciding whether an edge is incident to a vertex or not, thus
effectively eliminating vertex-edge clutter. We present a brief experimental eval-
uation and showcase some sample generalizations in Section 5 and conclude with
a short discussion as well as open problems in Section 6.

Preliminaries. A geometric graph is a pair G = (P,E) such that P ⊆ R2 is
a finite set of n points in the plane and E is a set of m straight-line segments
with endpoints in P . Unless stated otherwise, graph refers to a geometric graph
throughout this paper. Throughout the paper distance refers to the Euclidean
metric. For p ∈ P and a non-negative number r ∈ R+

0 , we denote by B(p, r)
the disk with center p and radius r. We model the finite resolution of a screen
by assuming that each entity of the drawing, namely points and edges, indeed
occupies a small neighborhood around it. Clutter is avoided by ensuring that
the corresponding generalizations adhere to spacing constraints that avoid or
reduce overlaps of these regions appropriately.

A generalization of G is a pair (H,ϕ) where H = (Q,F ) is a geometric graph
with Q ⊆ P such that ϕ : P → Q maps vertices of G to vertices of H and F is
a subset of edges resulting from a contraction of G according to ϕ. We also call
the pair (H,ϕ) a generalized graph. Since the subgraph induced by ϕ−1({q}) is
contracted into a single vertex, we call this subgraph the cluster of q, denoted
by Cq. Given Q ⊆ P , we denote by ν : P → Q the Voronoi mapping, which
maps p ∈ P to its closest neighbor in Q with respect to the Euclidean metric.
We call the corresponding clusters Voronoi clusters. We especially focus on this
mapping since it minimizes

∑
p∈P d(p, ϕ(p)) and, hence, seems to be a natural

mapping.
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2 Generalizing the Vertex Set without Vertex-
Clutter

In this section we consider the problem of computing a generalization (H,ϕ)
without vertex clutter for a geometric graph G = (V,E), where H = (Q,F ).
We focus on the case that ϕ is the Voronoi mapping assigning each vertex in P
to its nearest neighbor in Q. In order to avoid vertex-clutter, we require a
minimal distance r ∈ R+

0 between the vertices of a generalized geometric graph.
We model this minimal distance by a function % : P → R+

0 that assigns to each
point p ∈ P a positive real number %(p) ≥ r. We will later propose variants
for choosing %, which at least allow to give approximate guarantess. For each
vertex p ∈ Q in the generalized graph we require that the disk B(p, %(p)) does
not contain any other point from Q. We call a pointset Q with this property a
%-set of P . Note that the empty set or a singleton subset of P is trivially a %-set
of P . Thus, this prerequisite must be balanced with additional quality measures
such as the size of the %-set, the clustering {ϕ−1({p}) | p ∈ P} induced by ϕ
and the distribution of the points in Q in order to avoid trivial solutions such as
a single vertex. Clearly, it is desirable to maximize the size of a %-set in order
to retain as many vertices of the original graph as possible. That is, even in the
presence of other optimization goals we may assume that the vertex set Q of
the generalization constitutes an inclusion-maximal %-set of the original point
set P .

Choosing % ≡ r uniformly for all points p ∈ P may have a severe effect
on the distribution of the points when maximizing the size of a %-set since the
distances to the nearest neighbors in an inclusion-maximal %-set tend to be
uniformly distributed regardless of the original distribution. However, it may
be more appropriate to approximate the distribution of the original pointset.
In order to approximate this distribution by an inclusion-maximal %-set we can
choose % as follows. Let p0 be the point that maximizes the number of points
in B(p, r) ∩ P over all p ∈ P and let k = |B(p0, r) ∩ P | − 1 denote the number
of points in this disk that are different from p0. For each p ∈ P let dk(p) ≥ r
denote p’s distance to its k-nearest neighbor in P . Choosing %(p) = dk(p) ≥ r
preserves the original distribution of the point set better. Although clearly the
pointset is stil thinned out until the minimum distance between any two points
is r, it additionally ensures a larger spacing and thus fewer points in sparser
areas of the input. Taking an (inclusion-)maximal %-set with respect to this
function additionally ensures that areas are not sparsened more than necessary
to achieve the required spacing. In this sense a maximal %-set approximately
preserves the distribution of the original pointset.

Since, in general, it is not clear which behavior is more appropriate, we
introduce a parameter α ∈ [0, 1] to control it by setting %(p) := max{r, αdk(p)}.
That is, the user can choose between retaining as many points in areas with low
clutter as possible (α = 0) and approximating the distribution of the pointset
(α = 1) as well as interpolations between the two extremes. Note that % = %r,α
depends on r and α. For reasons of brevity we omit the subscripts.
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We consider two measures to assess the quality of a %-set Q. While the size
of Q is a measure of the amount of data that is retained, the quality of the
clustering induced by ϕ is a measure for the amount of data that is lost due to
the contraction of the vertices. There are several established ways of assessing
the quality of clusterings, such as coverage, performance, conductance [20], and
modularity [9]. Since the information contained in the inter-cluster edges is re-
tained in the generalization, we concentrate on assessing the quality of the clus-
ters based on the intra-cluster edges. We consider a measure similar to coverage,
which we adapt to our purpose as follows. For each cluster Cq let nq denote the
number of vertices and mq denote the number of edges in Cq, respectively. We
define the local coverage of a cluster Cq by lcov(Cq) = 2mq/(nq(nq − 1)). The
intuition is that the local coverage corresponds to the amount of intra-cluster
coherence that is explained by the intra-cluster edges. Hence, a natural goal is
to maximize this quantity. The local coverage of the generalization is defined
as lcov(H,ϕ) = minq∈Q lcov(ϕ−1({q})) .

We consider the following multi-objective optimization problem. Given a
geometric graph G = (P,E), a non-negative radius r ∈ R+

0 and α ∈ [0, 1] the
Local Coverage Cluster Packing (LCCP) problem is to compute a %-
set Q ⊆ P and a mapping ϕ : P → Q that maximizes both |Q| and lcov(H,ϕ).

Problem Local Coverage Cluster Packing (LCCP)

Instance: Geometric graph G = (P,E), r ∈ R+
0 , α ∈ [0, 1]

Solution: %-set Q ⊆ P , mapping ϕ : P → Q

Goal: maximize lcov(H,ϕ), maximize |Q|

First we show that several single-criteria optimization variants of this multi-
criteria optimization problem are NP-hard. Then we show how to approximate
the size of a %-set efficiently and we devise an efficient heuristic for balancing
the size of a %-set with the quality of the induced local coverage.

2.1 Complexity

We note that the decision problem corresponding to LCCP is obviously in NP,
since, for any choice of parameters r and α, we can guess a set Q ⊆ P and a
corresponding mapping ϕ : P → Q and then verify in polynomial time that Q
is indeed a %-set and that its local coverage and size exceed the target values
defined by the decision problem. In the following we show that LCCP is in fact
NP-hard (and thus NP-complete), even if we only seek to maximize either the
size or the local coverage of the %-set.

The problem of computing a %-set of maximum size for α = 0 can be re-
duced to the problem of computing a maximum independent set in the inter-
section graph of the disks with radius r/2 centered at the points in P . Clark et
al. [13] prove that this problem is NP-hard in unit-disk graphs, even if the disk
representation of the graph is given.
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Theorem 1 Maximizing the size of a %-set is NP-hard for α = 0.

Next, we show that, even if we use the Voronoi mapping to define the induced
clustering, then it is NP-hard to find a %-set Q that (i) maximizes the local
coverage of the induced clusters or (ii) maximizes the size of Q subject to a
lower bound on the local coverage. In fact, we will show that it is even NP-
complete to decide whether a graph admits a perfect %-set, that is a %-set with
local coverage 1. Note that the local coverage of a cluster is 1 if and only if it
forms a clique. Thus, a %-set Q of a geometric graph G is perfect if and only
if the graphs induced by the vertices in each of the Voronoi faces defined by Q
are cliques. We will use the following lemma.

Lemma 1 Let C be a clique of a geometric graph G, such that C has a vertex
whose neighborhood is contained in C. Every perfect ρ-set of G contains a vertex
of C.

Proof: Assume for a contradiction that Q is a perfect %-set and Q ∩ C = ∅.
Let p ∈ C whose neighborhood is contained in C. It follows that p is in the
cluster Cq of some vertex q of G with q /∈ C. In particular p is not adjacent
to q, and thus Cq does not form a clique. Hence lcov(Q) ≤ lcov(Cq) < 1,
contradicting the assumption that Q is perfect. �

We are now ready to present the NP-hardness result.

Theorem 2 Maximizing lcov(H, ν) of a generalization (H, ν) is NP-hard for
α = 0.

Proof: The proof is by reduction from the NP-hard problem Planar Mono-
tone 3-sat [15]. Let U = {x1, . . . , xn} be a set of boolean variables and let
C = C1∧C2 · · ·∧Cm be a 3-sat formula. Then C is called monotone if all clauses
consist only of positive or only of negative literals. Let G = (U ∪ C, E) be the
bipartite graph, on the clauses and variables, where E contains the edge (xi, Cj)
if and only if the literal xi or its negation is contained in Cj . A monotone
rectilinear representation of a monotone 3-sat formula is a rectilinear drawing
of G such that the following conditions are met, as illustrated in Figure 2.

(i) The variables and clauses are drawn as axis-aligned non-overlapping boxes
of uniform height such that all variable boxes are positioned on the x-axis,
clauses containing only positive literals are positioned above the x-axis,
and clauses containing only negative literals are positioned below the x-
axis.

(ii) The edges are drawn as vertical line segments connecting the corresponding
boxes.

(iii) The drawing does not contain any crossings.

An instance of Planar Monotone 3-sat consists of a monotone rectilinear
representation of a planar monotone 3-sat instance and we wish to decide,
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whether the corresponding 3-sat instance is satisfiable. Given a monotone
rectilinear representation of a planar monotone 3-sat formula we will construct
a corresponding instance I = (G = (P,E), %) of problem LCCP such that I
contains a perfect %-set if and only if the 3-sat formula is satisfiable. For reasons
of simplicity our construction is based on a disconnected graph with collinear
points, but the construction can be modified in a straightforward way to obtain
similar results for connected graphs with vertices in general position. We return
to this at the end of the proof. We choose % ≡ 1.25 and we construct G from
a set of variable/literal gadgets, transmitter/bend gadgets and clause gadgets,
which we will describe subsequently.

Variable/Literal Gadget. We distinguish between basic and extended variable
and literal gadgets, respectively. The basic variable gadgets incorporate the
functionality needed to correctly represent the variables. These gadgets can be
extended to transmit their state along the transmitters. Each basic variable
gadget consists of three vertically aligned cliques of size three, four, and three,
respectively, as illustrated in Figure 3. Each clique consists of vertically aligned
points at distance 1, and the cliques are separated by a vertical gap of 0.5.

Due to Lemma 1 a perfect %-set of G must contain at least one vertex in each
of the cliques. Note that we cannot choose two vertically consecutive vertices
in any of the cliques, since they do not constitute a %-set. For two consecutive
cliques C and C ′ we define their bisector as the bisector between their closest
points. Let p and q be vertices of C and C ′ in a perfect %-set. We claim that
it follows from the chosen vertical positions of the points that p and q must be
positioned symmetrically with respect to the bisector of C and C ′. Assume they
are not positioned symmetrically, as for example in Figure 3d. Then the bisector
of these points intersects the edges of one of the cliques, which implies that one
of the clusters contains vertices from both C and C ′. The corresponding cluster
then has local coverage strictly less than 1. Furthermore, even though they
are symmetric to the bisector of C and C ′, we cannot choose the two vertices
closest to the gap for p and q, since they do not constitute a %-set. Hence,
there are only two valid %-sets of the basic variable gadget, corresponding to the
true and false state of the corresponding variable, as illustrated in Figure 3b
and 3c, respectively. To be able to transmit the states of variables, we need

x1 x2 x3 x4

x1 ∨ x2 ∨ x3

x1 ∨ x3 ∨ x4

x2 ∨ x3 ∨ x4

Figure 2: Monotone rectilinear representation of the 3-sat formula (x1 ∨ x2 ∨
x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4).
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to connect them to transmitter gadgets. To make this possible, we extend the
variable gadgets by substituting the cliques of size 3 where we want to copy the
state by a clique of size 4; see the places where variable states are copied in
Figure 6. In this way, the situation of two 4-cliques meeting is the same both
inside the variable gadget and at the meeting point of the variable gadget and
the transmitter.

The literal gadgets are composed of basic and extended variable gadgets that
are horizontally aligned. The horizontal gap between the gadgets is variable
and can be chosen to be 1 or 1.5, as illustrated in Figure 4. The different
possible spacings allow us to slightly stretch the construction in order to realize
all distances correctly. This is necessary since the transmitter and clause gadgets
are quite rigid.

Note that, due to the monotonicity of the formula, it is sufficient that our
variables pass their state to the top and the negation of that state to the bottom.
In particular, we do not need a gadget for producing the negation of a given
state.

Transmitter/Bend Gadget. Similar to the variable gadget, the transmitter
gadgets consist of two vertically aligned cliques of size 4 with consecutive vertices
at distance 1 such that the cliques are separated by a gap of 0.5. When stacked
upon the extended variable gadgets with a vertical gap of 0.5 the transmitter
gadgets can be in one of two valid states corresponding to the assignment of the
variable. The bend gadgets consist of one vertical and one horizontal transmitter
gadget as illustrated in Figure 5. The positions are such that the coordinates
of the two closest vertices of the two transmitter gadgets differ by 0.5 in both
the x- and y-coordinate.

Figure 5c illustrates that the state cannot change at the transition between
the horizontal and the vertical transmitter segment. Such a change would result
in local coverage strictly smaller than 1.

Clause Gadget. Finally, the clause gadget is constructed as illustrated in
Figure 5. It consists of three small gadgets, called connectors, each consisting
of two cliques of size three and four, respectively, that are arranged in a T -
shaped fashion. The connectors are constructed exactly as the topmost two
cliques of the basic variable gadget. The functionality of the clause is realized
by a small triangle (which is a clique of size 3) arranged in the middle of the
T-shaped figure. The vertices of the triangle are positioned as follows. The
left vertex is positioned on the same horizonal line as the left connector and
has distance slightly larger than 1, say 1.1, from the rightmost vertex of the
left connector. The right vertex is positioned symmetrically, at distance 1.1 to
the left of the leftmost vertex of the right connector. The bottom vertex of the
triangle is positioned vertically above the lower connector at distance 1.1 from
its topmost vertex. If all literals corresponding to the clause are false, then
each of the triangle’s vertices is contained in the %-disk of one of the vertices
contained in the corresponding %-set. Hence, none of the vertices of the triangle
may be contained in the %-set and, thus, the vertices of the triangle are mapped
to a neighboring point resulting in local coverage strictly less than 1. This is
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(a) Basic
variable

(b) True (c) False (d) Illegal

Figure 3: Variable gadget

(a) True (b) False (c) Illegal

Figure 4: Literal gadget

illustrated in Figure 5e. If, on the other hand, at least one of the variables is
in a true state, then one of the triangle’s vertices can be included in the %-set.
The positions of the vertices of the triangle are chosen in such a way that the
bisector between any of these vertices and the closest vertex corresponding to a
true assignment does not intersect any of the cliques of the clause. As illustrated
in Figure 5d, this leads to a Voronoi diagram that does not intersect the edges
of G, resulting in a perfect %-set.

Clearly, a satisfying assignment of the 3-sat formula can be transformed into
a perfect %-set of G. Conversely, assume that we are given a perfect %-set of G.
As argued, the variable gadgets can be in one of two states, as illustrated in
Figure 3. This state is likewise represented in the adjacent transmitters and will
thus be transmitted without error to the clauses. Since the %-set is perfect, one
of the central triangle’s vertices of each clause gadget must be in the set. Hence,
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(a) True (b) False (c) Illegal State

(d) satisfied (e) unsatisfied

Figure 5: (5a)–(5c) Bend gadget, (5d)–(5e) Clause gadget.

at least one of the adjacent transmitters must be in a true state, corresponding
to the assignment of one of the literals. Hence the states of the variables as in
Figure 3 correspond to a satisfying assignment of the 3-sat formula. A sample
reduction is illustrated in Figure 6.

We now argue that, given a monotone rectilinear representation of a for-
mula ϕ where the variable-clause graph is embedded on a grid can be converted
into the described graph G in polynomial time. By suitably blowing up the grid,
we create sufficient space to position the variable and clause gadgets. Note that
a polynomial factor suffices, since each variable occurs only polynomially often.
Moreover, for each clause, we may have to additionally stretch some variables
to ensure that the corresponding transmitters start at x-coordinates that allow
them to meet exactly as specified in the construction of the clause gadget. This
is achieved by exploiting the two possible spacing values between variable gad-
gets of the same literal. Since the amount of space we have to bridge in this way
is bounded by the width of two 4-cliques in the horizontal part of the left/right
transmitters, a constant blowup per clause is sufficient. Thus, the overall con-
struction has only polynomial size, and it can be carried out in polynomial time.
This completes the proof. We add two more remarks.

Since the reduction is based on deciding whether the given graph contains
a perfect %-set whose size is equal to the number of cliques in G it yields that
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both the maximization of local coverage as well as the maximization of the size
of the %-set with given minimum local coverage are NP-hard.

Obviously slightly perturbing the points does not change the combinatorial
structure of the problem, and hence the hardness proof also holds for points
in general position. Moreover, a connected instance can be obtained as follows.
After the reduction, add an additional small triangle (which is a clique of size 3)
far away from the remaining points and connect one of its vertices to one vertex
of each other connected component of G. Note that this preserves the property
that each of the cliques used in the construction of G contains a vertex whose
neighborhood is contained in that clique, and thus Lemma 1 still applies. By
placing the new vertices sufficiently far away, it can be ensured that they do not
interact with the remaining %-set of G. Thus, the NP-hardness result also holds
for connected input graphs. �

2.2 Approximating the Maximum Size of a Generalization

Although it is unlikely that we can efficiently compute a %-set with maximum
size, we show that we can approximate the size of a maximum %-set if the points
are in general position. The approximation ratio depends on the maximum
number k of points contained in any %-ball of a point of the input, excluding the
center point itself. Clearly, if k = 0, then the pointset itself is a %-set, which is
of course optimal. Thus, the following approximation result only makes sense
for k ≥ 1.

Theorem 3 Let G be a geometric graph whose points are in general position
and let r ∈ R+

0 and α ∈ [0, 1] be given. In O(kn+n log n) time we can compute
a generalization H of G that approximates the maximum number of vertices of
a generalization by a factor of (5k+2)/3, where k = maxp∈P |B(p, %(p))∩P |−1
is assumed to be at least 1.

Proof: Let H be the directed graph on the points of G such that pq is a
(directed) edge if and only if q ∈ B(p, %(p)). We prove that the graph H
contains an independent set of size s if and only if G contains a %-set of this
size as follows. Each independent set in H corresponds to a %-set in G, since
each point in H is connected to all points that are closer than %(p) and it is
connected to all points q such that p is in the %(q)-disk around q. On the other
hand, each %-set in G induces an independent set due to this construction.

Note that H is a subgraph of the k-nearest-neighbor graph, whose maxi-
mum degree is bounded by 5k if the points are in general position [8]. Hence,
by a result due to Halldórsson and Radhakrishnan [26], we can approximate
the maximum size of an independent set by a factor of (5k + 2)/3. The al-
gorithm greedily chooses the minimum-degree vertex in each step and can be
implemented to run in time O(kn), given the graph H.

In order to compute H, we first compute the k-nearest-neighbor graph
in O(kn + n log n) time, using a well-separated pair decomposition [10]. Then
we filter out the edges that are not contained in H in O(kn) time. Hence, the
total running time is O(kn+ n log n). �
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Figure 6: Sample reduction of the 3-sat formula (x1∨x2∨x3)∧ (x1∨x3∨x4)∧
(x2 ∨ x3 ∨ x4). The black points constitute a perfect %-set corresponding to the
assignment x1 = true, x2 = true, x3 = true, x4 = false.
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Based on this approximation, we heuristically compute a %-set Q balancing
both the size of Q and the local coverage of the Voronoi clustering induced by Q
as follows. For p ∈ P let m̃(p) denote the number of edges whose endpoints
are both contained in B(p, %(p)/2) and let ñ(p) denote the number of points
in B(p, %(p)). We can use these values to compute an estimate of the local
coverage as summarized in the following lemma.

Lemma 2 Let Q be an inclusion-maximal %-set and let α = 0. Further, let
H = (Q,F ) be the generalization obtained from G = (P,E) by the Voronoi
mapping ν. Then the value

min
q∈Q

{
2m̃(q)

ñ(q)(ñ(q)− 1)

}
is a lower bound for lcov(H, ν).

Proof: For α = 0 we have % ≡ r. Whenever p is chosen as a cluster center in Q,
the points in B(p, r/2) are closer to p than to any other point in Q since the
closest point to p in Q has distance to p at least r. Hence, the edges in B(p, r/2)
are intra-cluster edges of Cp. On the other hand, the number of points in each of
the clusters is bounded by ñ(p) whenever α = 0 and Q is an inclusion-maximal %-
set. To see this, consider any vertex q that is not contained in B(p, r), but is
closer to p than to any other cluster center. Then q is contained in none of the
disks centered in the cluster centers and, thus, q must be a cluster center itself,
since Q is inclusion-maximal. Hence, the claim holds. �

Based on Lemma 2 we propose a heuristic, called Greedy Weight Heuris-
tic, that operates as follows. First we compute an estimate of 2m̃(q)/(ñ(q)(ñ(q)−
1)) for each p ∈ P . Subsequently, we sort the points according to these esti-
mates in O(n log n) time and iteratively consider the points in this order. If the
current vertex is not covered by the %-disk of a previous vertex, then it is chosen
for the %-set, otherwise it is discarded.

Note that computing m̃(p) and ñ(p) exactly would require a circular range
counting query. To get away with simpler data structures, we estimate these
numbers by counting the number of vertices and edges in the bounding boxes
of the disks B(p, %(p)/2), for which simpler data structures are known. To
count the number of edges, we use a 4-dimensional range searching query on
a data structure containing tuples of points corresponding to edges in E with
query time O(log3m) [11]. We use the 2-dimensional counterpart to locate
points. Further, we use a data structure for dynamic nearest neighbor queries
with O(log2 n) query time [5], into which we insert the selected points to decide
whether the current point is covered by a previously selected point. The total
running time is O((n+m) log3m+ n log2 n).

3 Minimizing Edge-Clutter

In order to reduce the clutter resulting from an excess of edges in certain areas
we must filter out some of the edges without destroying the visual appearance
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of the graph. The total length of the edges seems to be a good measure for the
clutteredness of the graph since it is proportional to the ink used for the drawing.
While a minimum spanning tree will minimize this quantity, it is unlikely to
preserve the visual appearance of the graph. We therefore require that monotone
tendencies of the edges are preserved in order to best maintain the mental map
of the adjacencies between vertices of the graph. This also motivated from
a recent work by Huang et al. [30], whose controlled user experiments seem to
suggest that geodesic paths are more likely to be explored when reading a graph
drawing.

Let ` be a line in the plane and let S = (p1, . . . , pk) be a sequence of points.
We say that S is `-monotone if and only if the order of the orthogonal projections
of p1, . . . , pk onto ` is the same as the order of the points in S. Let G = (P,E)
be a geometric graph and let (H,ϕ) be a generalization of G such that H =
(P, F ), i.e., F ⊆ E. We say that H is a monotone generalization of G if for
every edge e ∈ E with endpoints p and q there is a p-q-path πe in H such
that πe is `e-monotone, where `e is the line defined by the endpoints of e.
Given G = (P,E), the problem Shortest Geodesic Subgraph (SGS) asks
for a monotone generalization H of G minimizing the total length of H.

Problem Shortest Geodesic Subgraph (SGS)

Instance: Geometric graph G = (P,E)

Solution: Monotone generalization H = (P, F ) of G

Goal: minimize total length of H

First, we show that Shortest Geodesic Subgraph is NP-hard.

Theorem 4 Shortest Geodesic Subgraph is NP-hard.

Proof: We reduce from Monotone 3-sat, a variant of 3-sat where each
clause contains either only positive or only negative literals. Monotone 3-
sat is NP-complete [23]. Let ϕ be an instance of Monotone 3-sat with
variables x1, . . . , xn and clauses C1, . . . , Cm. We construct the following in-
stance Gϕ of Shortest Geodesic Subgraph. For each variable x we create
a kite consisting of vertices `, r, t and b as shown in Figure 7a. Note that the
angles at b, ` and r are strictly less than 90◦, and the angle at t is strictly larger
than 90◦. The two edges incident to the top vertex t are called top edges, the
edges b` and br are called the left and right side edges, respectively. We place
the kites corresponding to all variables of ϕ so that their bottom vertices are
equally spaced on the x-axis, their top vertices are also equally spaced on a
horizontal line above the x-axis and the kites are disjoint. Denote by s` and sr
the slopes of the left and right side edges of a kite, respectively. Let R+ be the
region below the x-axis and to the right of the line through the bottom point of
the rightmost kite with slope −1/sr (i.e., it is perpendicular to the right sides
of the kites). Further, we denote by L+ the region that is above the horizontal
line defined by the topmost points of the kites and to the left of the line with
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Figure 7: Overview of the reduction from 3-sat to Shortest Geodesic Sub-
graph. A kite with bottom vertex b, top point t and left and right points `
and r (a), and the arrangement of the kites in the reduction with the corre-
sponding regions for clause vertices (b).

R−

L−

L+

R+

x y z

c1i

c2i

Figure 8: Construction for clause Ci = x ∨ y ∨ z

slope −1/sr through the bottom vertex of the leftmost kite. We define R−

and L− analogously, with sr replaced by s`.
It follows immediately from the construction that a path that is monotone

with respect to a line defined by a point in R+ and a point in L+ may not contain
any right edge of a kite as this would imply a turn of more than 90◦, which is
not monotone. Analogously, monotone paths from L− to R− may not contain
left edges of kites. In our reduction the kites will play the role of variables, and
edges from R+ to L+ (from L− to R−) will play the role of clauses with only
positive (only negative) literals.

For each clause Ci consisting of only positive literals, we add a clause ver-
tex c1i into R+ and a clause vertex c2i in L+. We add connector edges that
connect c1i to the bottom vertices of all kites that correspond to variables that
occur in Ci and that connect c2i to all the left points of kites that correspond to
variables that occur in Ci; see Figure 8. Finally, we add the clause edge c1i c

2
i .

We treat the clauses consisting of only negative literals analogously, except that
we place the new vertices in L− and R−, respectively, and we connect the new
vertices in R− to the right kite points instead of to the left.

This completes our construction, and we claim that an optimal solution of
this instance allows us to decide whether the initial formula ϕ was satisfiable.
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R−

L−
cc

L+

R+bb′

x h

Figure 9: Illustration for the proof of the first claim. There is no monotone
path in Gϕ replacing the edge cb since every path avoiding this edge first visits
a bottom vertex b′ of a kite before it visits a point x ∈ L+ whose orthogonal
projection onto the line defined by c and b is to the left of the projection of b′.

We will make this more precise in the following. A subset of edges of Gϕ is
called tight if it contains both top edges of each kite, all connector edges, and
exactly one of the two side edges of each kite. We now claim the following.

Claim 1 Any feasible solution contains a tight edge set.

Proof of claim. First, note that the top vertex of each kite is incident to only
two edges, hence at least one of them must be in any feasible solution. However,
the left edge is not monotone in the direction of the right edge and vice versa.
Hence, a feasible solution necessarily contains both of them.

Next, we show that all edges from clause vertices in L− or R+ to bottom
vertices of kites must be contained in every solution. Let c be a vertex in L−

(the case where c is in R+ is symmetric) and let b be a bottom vertex of a
kite that is adjacent to c. We now consider the paths from c to b that avoid
the edge cb in our graph. Since G contains no edge connecting two vertices of
different kites, any path from c to b that avoids cb must contain at least one
vertex x 6= c that is in one of the four regions L+, L−, R−, and R+. Note that,
by construction of the region L−, the line orthogonal to cb is at least as steep
as the left side of any kite, and hence the points in R− and in R+ lie to the
right of the line that is orthogonal to cb through b, and thus are not part of
any monotone connection from c to b as illustrated in Figure 9. Now assume
that x is in L+ or L−, and denote by b′ the first vertex after c on a cb-path that
avoids the edge cb. Note that necessarily b′ is left of b, as the path would not
be monotone otherwise. The regions L+ and L− lie to the left of the line h that
is orthogonal to cb through b′. Therefore both the edge cb′ and the subpath
from x to b must cross this line, and hence project to the same point on the line
segment from c to b. This shows that the path is not monotone, and hence cb
must be contained in any feasible solution.

Next, consider a vertex c in L+ and a corresponding edge c` to the left vertex
of a kite (again the case c in R− and edge cr where r is the right vertex of a kite
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Figure 10: Illustration for the proof of the first claim. There is no monotone
path in Gϕ replacing the edge c` since such a path would have to visit a vertex
in one of the four regions L−, L+, R−, R+. By considering the lines h and h′

this leads to a contradiction.

is symmetric); see Figure 10 for an illustration. As before, every path from c
to ` avoiding c` must contain a vertex x 6= c belonging to one of the four regions.
Again, the regions R− and R+ are to the right of the line hx orthogonal to c`
through `, and can thus not be contained in a monotone c`-path. Hence, we can
assume that x is in L+ or L−. Let `′ be the first vertex after c on a c`-path that
avoids the edge c`. If x is in L−, consider the line h′ orthogonal to c` through
the bottom vertex of the leftmost skite. By construction this line is at least as
steep as the right side of a kite, and hence the region L− is to its left. Since any
path from c to x must contain a bottom vertex b of a kite, both the subpath
from c to x and the subpath from x to b must cross this line, and thus project
to the same point on the edge c`. Hence the path would not be monotone and
we can assume that x is in L+. Considering the line orthogonal to c` through
the left point of the leftmost kite as above rules out the existence of such a
monotone path.

It remains to show that at least one side edge of each kite must be in any
feasible solution. Let b be the bottom vertex of a kite K with left point `, right
point r and top point t. We show that G does not contain a monotone b`-path
that avoids both b` and br. First observe that all bottom vertices of kites to the
right of K project before b on the line through b and `, directed from b to `, and
hence cannot be contained in a monotone b`-path. Similarly, all non-bottom
vertices of kites to the left of K project behind ` on this line, and hence are also
not contained in monotone b`-paths. The points in R+ and all points in L+

can be ruled out similarly. Since a monotone b`-path needs to contain an edge
that connects a vertex whose y-coordinate is at most the y-coordinate of b to a
vertex whose y-coordinate is at least the y-coordinate of `, and we cannot use
any edge of a kite, the only option is that it uses an edge from a vertex x in L−

to a vertex x′ in R− as illustrated in Figure 11. However, the line orthogonal to
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R+b
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Figure 11: Illustration for the proof of the first claim. In each of the kites at
least one of the side edges must be present. Otherwise, any replacing path for b`
must use an edge xx′ that is not monotone with respect to b`.

such an edge is steeper than the edge b`, and hence xx′ is not monotone with
respect to b`. This completes the proof of the claim. �

Note that the size, as well as the total length, is the same for all tight edge
sets, and hence this size forms a lower bound for the size of a geodesic subgraph.
We claim that this bound can be met if and only if ϕ is satisfiable.

Claim 2 There exists a tight set that is feasible if and only if ϕ is satisfiable.

Proof of claim. Note that a tight set is completely specified by giving for each
kite the information whether its left or right edge is contained in the set.

Assume that ϕ is satisfiable and take a satisfying assignment. We construct
a tight set F by taking the left side of a kite if and only if the corresponding
variable has the value true in the assignment. We now argue that the corre-
sponding set is feasible. The only edges for which we have to check the existence
of a monotone replacement path are the clause edges. Let c1i c

2
i be a clause edge

with c1i in R+ and c2i in L+. The edge c1i c
2
i by construction corresponds to a

clause Ci with only positive literals. Let xj be a satisfied literal (and thus a
satisfied variable) in Ci, and let Kj denote the corresponding kite with bottom
vertex b and left point `. By construction F contains the edges c1i b, b` and `c2i ,
which together form a monotone c1i c

2
i -path. The argument for a clause edge c1i c

2
i

with c1i in L− and c2i in R−, which corresponds to a clause with only negative
literals, is analogous. This proves that the tight set F is feasible.

Conversely, assume that F is a feasible tight set. We construct a truth
assignment by setting a variable to true if and only if the left edge of the corre-
sponding kite is in F . Now consider a clause Ci containing the variables xu, xv
and xw as positive literals (the case of only negative literals is symmetric). If Ci
is not satisfied by our assignment, then F contains none of the left edges of the
three kites corresponding to xu, xv and xw. However, by definition the edge
set must contain a monotone c1i c

2
i -path. Such a path may not use any right

edge of any kite as this would not be monotone. Hence it necessarily contains
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a left edge of some kite since F does not contain any of the clause edges. This
implies that any monotone path must first visit the bottom vertex of one of
the kites corresponding to xu, xv, xw, then pass on to a vertex x 6= c1i in L−

or R+ and from there to the bottom vertex of another kite. By construction all
points in R+ lie to the right of the line that is orthogonal to c1i c

2
i through the

bottom vertex of the rightmost kite. This excludes the case that x is in R+.
Similarly, the line orthogonal to c1i c

2
i through the bottom vertex of the leftmost

kite separates the points in R− from the bottom vertices of all kites. Hence the
edges from x to its two incident bottom vertices both cross this line and hence
the path is not monotone. This is a contradiction, and hence F must contain
the left edge of at least one of the kites corresponding to xu, xv and xw, thus
implying that Ci is satisfied. This proves the claim. �

Note that the length L is the same for all tight edge sets. The first claim
shows that any geodesic subgraph has length at least L. And thus, the second
claim implies that ϕ is satisfiable if and only if Gϕ admits a geodesic subgraph of
length at most L. Since the construction can easily be performed in polynomial
time this concludes the proof. �

As we have seen, the restriction to edges from the input graph makes it
difficult to construct short monotone subgraphs. One possibility is thus to drop
this constraint and to allow arbitrary edges. Additionally, we would like to
control the distance of the monotone path πe and the edge e it is approximating
in terms of monotonicity. This is motivated by the observation that the shortest
monotone generalization of a clique, whose vertices are arranged equidistantly
on a circle, is given by the convex hull of the pointset.

Observation 1 The shortest monotone generalization of a clique on n ≥ 5
vertices that are arranged equidistantly on a circle is the convex hull of the
pointset.

Proof: Clearly, the convex hull forms a monotone generalization. We prove
that it has minimum length.

Assume that n is odd and consider a monotone generalization of the clique.
Let p and q be two consecutive vertices on the convex hull for which the segment
is not part of the monotone generalization. It follows that the edge pq must be
represented by the path psq, where s is the unique (since n is odd) vertex
opposite to pq. We call the edges ps and sq the alternative edges for pq. Note
that both ps and sq are strictly longer than pq. Moreover, each edge can be
an alternative edge for at most two distinct segments formed by consecutive
vertices. It follows that removing all inner edges and completing the convex
hull shortens the network.

For n even similar arguments apply, except that there are three possible
alternatives for each segment, some of whose edges can be shared by two but
not more segments. �

Given a line segment s with length `s and a point p with distance dp from s we
call the ratio dp/`s the drift of p from s. The drift of a path πe with endpoints pq
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is defined as the maximum drift of any point on πe from the segment pq. Given
a geometric graph G = (P,E) and a non-negative real number δ ∈ R+

0 the
Sparse Geodesic Network (SGN) problem asks for a geometric graph H =
(P, F ) with minimum total length such that for each edge e in E there is an
`e-monotone path πe in H with drift at most δ, where `e denotes the line defined
by the endpoints of e.

Problem Sparse Geodesic Network (SGN)

Instance: Geometric graph G = (P,E), δ ∈ R+
0

Solution: Geometric graphH = (P, F ) such thatH contains an `e-monotone
path for each edge e ∈ E whose vertices are at distance at
most δ · |e| from the straight line e

Goal: minimize the total length of the edges in F

We show the following.

Lemma 3 Given a (complete) geometric graph G = (P,E), the Delaunay graph
contains for each edge e ∈ E an `e-monotone path πe with drift at most 1/2.

Proof: Let p, q ∈ P . Without loss of generality we assume that p and q are
on the x-axis such that x(p) < x(q). According to Dobkin et al. [16] we can
construct an x-monotone path in the Delaunay graph D(P ) of P as follows.
Let V(P ) denote the Voronoi diagram of P and let p1, . . . , pk be the ordered
points corresponding to the Voronoi cells that are traversed when following
the line from p to q. Then the path p, p1, . . . , pk, q is an x-monotone path in
the Delaunay graph. Further, all points pi are contained within the disk with
radius d(p, q)/2 centered in the midpoint of the segment pq. Hence, the drift is
at most 1/2. �

Although the Delaunay graph seems to be well suited to represent monotone
tendencies, this result also shows the limitations of allowing arbitrary edges.
In the following we therefore focus on subgraphs of the original graph and de-
scribe a greedy heuristic for computing a monotone generalization with bounded
drift δ and short total length, which we call Monotone Drift Heuristic.
Given a geometric graph G = (P,E) and a maximal drift δ we sort the edges
of G with respect to increasing length in O(m logm) time. Then we con-
sider the edges e1, . . . , em in this order and iteratively construct a sequence
of graphs H0, H1, . . . ,Hm, where H0 = (P, ∅). We insert the edge ei into Hi−1
whenever there is no `ei-monotone path with drift at most δ in Hi−1. This can
be tested by performing a modified depth-first search exploring only monotone
subpaths in O(n + m) time. Hence, the total running time of this approach
is O(nm+m2).
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4 Vertex-Edge-Clutter

Vertex-edge-clutter is the most complicated type of clutter since it involves both
vertices and edges and the selection of these features cannot be handled indepen-
dently as in the previous sections. On the other hand, this type of clutter may be

Figure 12: Line
perception

considered as the least annoying type of clutter for the fol-
lowing reason. Vertex-edge clutter is caused by edges that
are close to a vertex. This may make it difficult to determine
correct incidences. There are two ways in which vertex-edge
clutter can lead to a misinterpretation of a drawing: (a) an
edge crossing a vertex might be interpreted as two edges inci-
dent to that vertex and (b) two segments incident to a vertex
that form an angle close to 180◦ might be interpreted as one
edge that is not incident to the vertex. However, the human perception is rather
good at determining whether a line passes a disk through the center or not. For
instance, it is easy to see that the leftmost line in Figure 12 is not incident to
the vertex although it crosses the vertex, thus impeding misinterpretation (a).
Additionally, the human perception is also good at determining whether a line
has a bend or not, which is illustrated in Figure 12, thus impeding misinterpre-
tation (b).

Hence, as long as there is neither vertex-clutter nor edge-clutter and as long
as no pair of edges incident to a common vertex forms a 180◦-angle, we can
expect to be able to unambiguously tell whether an edge is incident to a vertex
or not. In order to attack vertex-edge clutter we therefore propose the following
optimization problem. For a pair of edges incident to a common vertex p we
define the angular straight-line deviation as the smaller of the two angles that
is enclosed by the lines defined by the two edges, respectively. The angular
straight-line deviation of p is then defined as the minimum angular straight-line
deviation over all pairs of edges incident to p, as illustrated in Figure 13. The
angular straight-line deviation of a geometric graph G is the minimum angular
straight-line deviation over all vertices of G. Note that the angular straight-
line deviation is maximized if all angles between edges incident to a common
vertex are close to a right angle. Although it sounds similar, the concept of
angular straight-line deviation differs strongly from the angular resolution. For
example K1,4, the star with four leaves, admits a drawing with optimal angular
resolution π/4 by setting all angles at the center to π/2. However, the angular
straight-line deviation of such a drawing is 0. The optimal angular straight-line
deviation of K1,4 is π/4, which can be achieved by having at the center three
angles of π/4 and one angle of 5/4π.

Given a geometric graph G = (P,E) and a non-negative value r ∈ R+,
the Optimal Angle Adjustment problem is to find a new position for each
vertex p inside B(p, r) minimizing the angular straight-line deviation of the
resulting geometric graph.
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α

p

β

Figure 13: Angular straight-line deviation of a vertex p. In the drawing the
angular straight-line deviation is defined by the angle α. Note the difference
between α, which defines the angular straight-line deviation and the angle β,
which defines the angular resolution at p.

Problem Optimal Angle Adjustment

Instance: Geometric graph G = (P,E), r ∈ R+
0

Solution: Geometric graphH = (Q,F ) and a mapping f : P → Q such that
d(p, f(p)) ≤ r and such that f(p)f(q) ∈ F if and only if pq ∈ E

Goal: maximize the angular straight-line deviation of H

Note that this problem differs considerably from the problem of maximiz-
ing the angular resolution of a graph, defined as the minimum angle over all
pairs of adjacent edges. The optimal angular resolution of a star-shaped graph
with an odd number of vertices, for instance, will result in zero straight-line
deviation, while it is obvious that the optimal straight-line deviation is positive.
We tackle the Optimal Angle Adjustment problem by maximizing the ver-
tices’ distances from the lines defined by the edges incident to their neighbors.
Let G = (P,E) be a geometric graph and let v ∈ P be a vertex. Let N(v)
denote its neighbors in G. Further, let E(v) denote the edges incident to v and
let F (v) denote the set of edges incident to the vertices in N(v) but not to v. By
moving v we change the angles formed by pairs of edges in E(v) as well as the
angles formed by pairs of edges (e, f) such that e ∈ E(v) and f ∈ F (v), respec-
tively. Let LF (v) be the set of lines defined by the edges in F (v) and let LE(v)
be the set of lines defined by all pairs of vertices in N(v). A vertex v along with
the lines defined by the edges in LE(v) and LF (v) is illustrated in Figure 14a.
Note, that there will be an angle of 180 degrees involving an edge incident to v
if and only if v is placed on one of the lines in LE(v) ∪ LF (v). Given p ∈ R2,
we denote by µv(p) the minimum distance of p to the lines in LE(v) ∪ LF (v).
We prove the following.

Theorem 5 Given a graph G = (P,E) of maximum degree ∆, a vertex v ∈ P
and a positive radius r ∈ R+, we can compute a new position p∗ for v in B(v, r)
such that µv(p

∗) > 0 and such that p∗ maximizes µv(p) over all p ∈ B(v, r)
in O(t2) time, where t = min{∆2, |E|}.
Proof: First, we compute the set of edges LF (v) incident to v’s neighbors, but
not to v as well as the set of lines LE(v) defined by all pairs of v’s neighbors.
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v

(a) (b)

v

(c)

Figure 14: Illustration for the proof of Theorem 5. (a) A vertex v and its
neighbors as well as the arrangement of lines induced by the respective edges
in LE(v) and LF (v). (b) Intersection of the circle with the medial axis Gc
(dashed) and locally optimal positions (black dots) in the faces. (c) Globally
optimal position and resulting new drawing.

Let L = LE(v) ∪ LF (v). We compute the arrangement of lines in L in O(|L|2)
time. Note that the optimal point p? must lie in the interior of a face of this
arrangement. Moreover, it must have the same distance from at least two seg-
ments incident to that face, otherwise a better position could be found. This is,
however, precisely the definition of the medial axis of a simple polygon. Thus,
the optimal point p? lies on the medial axis of a face of the arrangement. Note
that the total complexity of the arrangement is O(|L|2). We now compute for
each face the medial axis. Using the linear-time algorithm due to Chin et al. [12]
this takes time O(|L|2) for all faces. For each face C we inspect the vertices of
the medial axis GC in B(v, r) as well as its intersection with B(v, c) and thus
compute the point p∗ maximizing µv in B(v, r). Then we update the position
of v as illustrated in Figure 14c. Since L is bounded by min{∆2, |E|} we obtain
the claimed time complexity. Further, since r > 0 and therefore B(v, r) is non-
degenerate, there must be a non-degenerate face in the arrangement containing
a point p∗ in its interior such that µ(p∗) > 0. �

Using Theorem 5 we can incrementally compute a new position for each
vertex v such that none of the edges incident to v encloses an angle of 180
degrees with any other edge. Since the angles between pairs of edges that
are not incident to v are not affected by this operation, we can iteratively
apply Theorem 5 to the vertices one after another to obtain a drawing with
strictly positive angular straight-line deviation. At the same time this approach
heuristically maximizes this deviation.

Note that we may assume that we apply the angle adjustment to a general-
ized graph whose complexity tends to be significantly lower than the complexity
of the original graph, i.e., both m and ∆ should be considerably smaller.
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5 Sample Generalizations

In order to evaluate the quality of the described heuristics and in order to
obtain estimates for the running time we implemented the described Greedy
Weight Heuristic and Monotone Drift Heuristic in C++ using the
BOOST library [7] and the CGAL library [1]. All generalizations were computed
on a standard Intel Core 2 Duo processor running at 2.00 GHz with 2 GB RAM.

We performed our experiments on the benchmark set of graphs listed in
Table 1. These graphs have between 1,000 and 100,000 vertices and between
3,000 and 2,000,000 edges, respectively. The table lists, for each graph, an
index that is used to identify the graphs in the following figures as well as its
size. All but the graphs marked with ? have been taken from the University
of Florida sparse matrix collection [14]. The graph clique-planar is a planar
graph with an implanted clique. The graph lunar-vis is a LunarVis layout [24]
of a snapshot of the Internet graph at the autonomous systems level that has
been taken from the data collected by the University of Oregon Routeviews
Project [2]. The graph email is a force-based visualization of the graph obtained
from the e-mail communication at the faculty of informatics at the Karlsruhe
Institute of Technology during a fixed amount of time. The graphs osm berlin

and osm isleofman are street networks of Berlin, Germany, and Isle of Man,
respectively, that have been extracted from OpenStreetMap data [36]. The
graphs from the University of Florida sparse matrix collection have additionally
been laid out using the sfdp multi-scale force-based layout algorithm from the
graphviz library [18].

For each of the graphs listed in Table 1 as well as for both α = 0 and α =
1, we performed generalizations with N = 10 different radii taken from the
range [∆/n,∆/

√
n], where ∆ := xmax−xmin is the width of the drawing. More

precisely, the ith radius ri is chosen according to a convex combination ri =
(1 − λi) · ∆/n + λi · ∆/

√
n, where λi = i/N for i = 1, . . . , N . For each run,

we measured the time t1 of the Greedy Weight Heuristic and the time t2
of the Monotone Drift Heuristic. Further, we collected the number of
vertices nH and the number of edges mH of the resulting generalized graphs.
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Figure 15: Running times of the generalization heuristic with respect to the size
of the generalization. The plots are for α = 1 and drift = 0.3. For clarity, the
plot has been divided into three figures, according to the total running time t1+
t2 of the two steps of the generalization heuristic. Each curve corresponds to
one of the input graphs.

Even for the largest input graphs with several thousand vertices and over a
million edges, the observed running times were less than 5 minutes. However,
most of the running time is caused by the Monotone Drift Heuristic, which
has a quadratic worst-case running time. For the Greedy Weight Heuristic,
the observed running time was less than 5 seconds for all graphs. Figure 15
shows the running time of the heuristics as a function of the size nH + mH of
the generalized graphs. Our experiments showed that the running time of the
heuristic depends quite strongly on the size of the generalized graph it produces.
Since, in practice, we expect that generalizations will be quite small compared to
the input graphs, this suggests that for practical purposes, an output-sensitive
analysis, which relates the output size to the running time, is more appropriate
than an evaluation based on the input size. In the following, we back up this
claim with experimental data and use it to estimate a polynomial that describes
the running time depending on the output size.

Figure 15 shows the running time of the heuristics as a function of the
size nH + mH of the generalized graphs. Figures 15a–15c display the running
times for α = 1 for the individual graphs of our benchmark on a linear scale.
The results for α = 0 are similar. Figure 15a contains all graphs for which t1+t2
was at most 3 seconds, Figure 15b contains all graphs whose maximum running
time was between 3 and 20 seconds and Figure 15c contains all graphs whose
running time was more than 20 seconds. The strong dependence of output size
and running time is quite notable in these sets. Note that, if we would relate the
running times to the input size rather than the output size, each of the curves in
these plots would have to be represented by a single dot, which obviously would
not properly describe the running times. In fact, with only a few exceptions,
such as ex3sta1, TF16 and conf5 4-8x8-05, the running times seem to roughly
linear in the size of the generalized graph. Thus, with respect to the output size,
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Figure 16: Breakdown of the running time of the generalization heuristic to
vertex clutter, edge clutter and total time, respectively, in a log-scale plot. The
slope of the line fitted to these points is an estimate for the exponent of a
polynomial that relates the size of the generalization to the running time.

we can expect that the running time can indeed be described by a polynomial
of low degree, which would imply good practical performance.

Figure 16 shows the running times of the two heuristics Greedy Weight
Heuristic and Monotone Drift Heuristic both separately and in total. To
fit all data into one plot we use a log-log-scale plot for these figures. Figure 16a
shows the running time t1 of the Greedy Weight Heuristic, Figure 16b
shows the running time t2 of the Monotone Drift Heuristic and Figure 16c
shows the resulting combined running time. To estimate a polynomial depen-
dency between input and output size, we fit a line to each of these plots. The
slope of this line is the largest exponent of the polynomial expressing the de-
pendency. More precisely, for x = nH + mH and for each y ∈ {t1, t2, t1 + t2},
we computed ay and by minimizing the linear least-squares function

min
ay,by∈R

N∑
i=1

(log yi − (ay log xi + by))2

where xi and yi denote the measured sizes and running times of the single
experiments for i = 1, . . . , N , respectively. The estimated lines are shown in the
plots in Figure 16. The results suggest that the running time of the Greedy
Weight Heuristic t1 ≈ e−10.4578x0.9076 is approximated by a function that
is slightly sub-linear in the size of the generalized graph and the running time
of the Monotone Drift Heuristic t2 ≈ e−15.95x1.56 is approximated by a
super-linear but sub-quadratic function in the size of the generalized graph. The
combined running time is approximately t1+t2 ≈ e−13.105x1.328, which is super-
linear, but only slightly. We can thus expect that in practice the running time
is subquadratic in the output size, which is reasonable for generalized graphs
of moderate size. Note that the running time of the first phase depends only
on the number of vertices, whereas the output size includes both the number of
vertices and the number of edges in the resulting generalization. Since most of
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the graphs in our test set have more than linearly many edges, sublinear running
times can be achieved in the first phase.

Next, we shortly discuss the generalized graphs. Figure 17 shows how the
parameter α affects the generalization. While the sizes of the generalized graphs
for α = 0 and α = 1 will, in general, differ considerably for a fixed radius r, we
chose generalized graphs with roughly the same sizes in order to illustrate the
effects of choosing α = 0 and α = 1, respectively. Figure 17 clearly shows that
the generalizations with α = 1 are better suited at preserving the distribution
of the original point set also in denser areas. However, this is only achieved at
the price of a higher resolution of the resulting drawing. On the other hand, the
homogeneous distribution of the points resulting from α = 0 does not seem to
capture the geometric properties of the original very well. Especially denser ar-
eas rapidly approach a uniform distribution with exactly the same fixed amount
of empty space around each point. Only the density of input regions that are
sparser then this are preserved by the corresponding generalizations. Indeed, it
seems that setting α = 0 is not well suited for most of the graphs we inspected
due to this behavior. Therefore, all remaining generalization are performed
with α = 1 unless stated otherwise.

Figure 18 shows how the radius r and the drift δ impact the resulting gen-
eralizations for α = 1. To illustrate the effects of δ we applied the Greedy
Weight Heuristic and Monotone Drift Heuristic for different values
of r and δ to a planar graph with an implanted clique whose vertices have been
arranged equidistantly on a cycle. While none of the edges of the clique are
distinctly perceivable in the original drawing, a higher drift helps remedying
this without destroying the impression of a clique even without generalizing the
vertex set, as can be seen in the first row of Figure 18. Note that the clique
in the middle of the drawing remains a clique when setting δ = 0 for all values
of r. With increasing δ, the clique becomes much sparser but is still perceivable
as a rather dense subgraph in the generalized graph for all radii.

Finally, Figures 19–26 show some selected sample generalizations. First, we
discuss how the heuristics perform on the graphs we used to illustrate the var-
ious types of clutter in Figure 1c. These graphs as well as the results of the
heuristic generalization are displayed in Figures 19–21. Note that the displayed
generalized graphs have only 2–5% of the vertices of the respective originals.
Clearly, both vertex-clutter and edge-clutter can be significantly reduced with-
out changing the main impression of the graph. However, two drawbacks of our
approach are immediately obvious from these illustrations.

First, consider the graph oix and its generalization in Figures 20a and 20b,
respectively. In the original, there are many edges between a few vertices on
the left and the vertices in the bottom center. Apparently, these edges are
mapped to only few monotone paths in the generalization, which changes the
impression of the density of the edges. This could be tackled by emphasizing the
edges in the generalization according to the number of edges that were mapped
to it. As another approach to this problem, we could try to approximate the
geometric edge distribution. That is, similar to our approximation of the point-
set distribution, we could try to remove more edges from regions containing
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(a) original (n=7920, m=31680)

(b) generalization (n=2104, m=8585) (d) generalization (n=2098, m=8188)

(c) generalization (n=1305, m=5636) (e) generalization (n=1358, m=5678)

Figure 17: Effects of parameter α on the commanche dual graph from the Uni-
versity of Florida sparse matrix collection [14]. (a) Original, (b), (c) General-
ization with α = 1, (d), (e) Generalization with α = 0.
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Figure 18: Effect of radius and drift on the graph clique-planar, a planar
graph with an implanted clique. All generalizations with α = 1.
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(a) original (n=106675, m=248390) (b) generalization (n=5649, m=17273)

Figure 19: Streetmap Data of Berlin [36] (osm berlin)

few edges and removing fewer edges in regions with many edges. In contrast to
approximating the point-set distribution, however, it is not clear how to achieve
this in a straightforward way since a single edge may cross both dense and less
dense regions in the drawing.

Second, consider the graph PDS10 and its generalization in Figures 21a
and 21b, respectively. Clearly, the topmost vertices of the generalization show
that our approach may create unwanted adjacencies. These adjacencies are the
result of contracting vertices that are close to each other and working on the
contracted edge set. While the edges are not false in the sense that each edge
in the contraction corresponds to at least one edge of the original, these edges
create the wrong visual impression. This problem could be approached by try-
ing to approximate the features of the contracted vertex sets. For instance,
the average degree of the contracted vertex sets will be roughly two for most
of the problematic vertices in these figures, while the resulting degree in the
generalization is larger.

The remaining figures serve as a further visual benchmark of the general-
ization heuristics. While the general (geometric) impression of the graphs are
reasonably well maintained, some further issues for future research can be ob-
served.

Consider for example the graph ukerbe1 dual and its generalization illus-
trated in Figure 24a and 24b, respectively. While the density of the point set
and the size of the faces is maintained quite well, most of the faces are trian-
gulated in the generalization, whereas most of the faces of the original contain
four vertices. Further, consider the “cube graph” illustrated in Figure 25. The
topological structure of the generalized graph is rather different from the origi-
nal. Although the vertices contracted into single clusters are close to each other
both geometrically and with respect to graph-distance, the cubic structure is
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(a) original (n=17233, m=74436) (b) generalization (n=397, m=2134)

Figure 20: LunarVis Layout of the AS-Graph [24] (lunar-vis)

not maintained. Again this may be remedied by approximating the features of
the contracted vertices, such as average degree.

While the proposed heuristics do not solve the generalization problem in all
its facets, especially with respect to the topological features of the graph, they
seem to be well suited at maintaining the geometric impression of the originals
and, thus, form good starting points for future research on this problem. In
order to overcome the current difficulties, however, we must explicitly include
topological features of the original graph into the generalization process. We
showcase some further examples without a detailed discussion in Figures 21–26.
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(a) original (n=16558, m=149658) (b) generalization (n=910, m=3520)

Figure 21: Generalization of the graph PDS10 from the University of Florida
sparse matrix collection [14]

(a) original (n=1050, m=29156) (b) generalization (n=157, m=1110)

Figure 22: Generalization of the graph msc01050 from the University of Florida
sparse matrix collection [14]
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(a) original (n=1242, m=10426) (b) generalization (n=469, m=2608)

Figure 23: Generalization of the graph dwt 1242 from the University of Florida
sparse matrix collection [14]

(a) original (n=1866, m=7076) (b) generalization (n=234, m=1062)

Figure 24: Generalization of the graph ukerbe1 dual from the University of
Florida sparse matrix collection [14]
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(a) original (n=24300, m=69984) (b) generalization (n=2093, m=13546)

Figure 25: Generalization of the graph aug3d from the University of Florida
sparse matrix collection [14]

(a) original (n=44514, m=201050) (b) generalization (n=958, m=5763)

Figure 26: Generalization of the graph lpl3 from the University of Florida
sparse matrix collection [14]
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6 Conclusion and Open Problems

We have undertaken a first step at studying the problem of generalizing geomet-
ric graphs within a rigorous mathematical model. We formalized the problem by
considering an incremental framework modeling the elimination or reduction of
different types of clutter as optimization problems, which we analyzed in terms
of complexity. Since these problems turned out to be NP-hard in general, we
also devised efficient approximation algorithms as well as efficient heuristics. We
showed how to heuristically reduce vertex-clutter in O((n+m) log3m+n log2 n)
time and how to reduce edge clutter in O(nm+m2) time, considering geometric
features such as point distributions and geodesic tendencies. After the reduction
of vertex-clutter and edge-clutter, we can expect the graph to be much smaller
than the original graph. Hence, even larger complexities may scale accordingly.
Thus, even the relatively high complexity of our heuristic for reducing vertex-
edge clutter may be practical.

Even without this step, however, the resulting generalizations exhibit con-
siderably less clutter and are easier to analyze. We showcased some promising
generalizations produced by our heuristics. We conclude by listing some open
problems.

• Is it possible to approximate both the local coverage and the size of a %-set
in the vertex generalization step?

• What is the complexity of the Local Coverage Cluster Packing
problem for different types of mappings?

• Is it possible to approximate the size of a shortest geodesic subgraph,
possibly in the presence of a limited drift?

• What is the complexity of the optimal angle adjustment problem?

• How can the generalization problem be adapted to a dynamic scenario,
where consistency issues play an additional role.

In addition, a major open problem is to define a measure that can be used
to quantitatively compare different generalizations of a graph. Such a measure
would need to quantify both the graph-theoretic similarities between a graph and
its generalization and the similarity of the corresponding visualization. Finding
such a measure would also make it possible to perform a more extensive ex-
perimental evaluation of the proposed methods and the quality resulting from
different parameter choices.

Acknowledgements

We thank Robert Görke for the helpful discussion and for providing the Lu-
narVis layout. We also thank thank the anonymous referees of the journal
version of this paper for their valuable comments, which helped us to improve
both the results and the presentation.



JGAA, 18(1) 35–76 (2014) 73

References

[1] Cgal, Computational Geometry Algorithms Library. http://www.cgal.

org.

[2] University of oregon routeviews project. http://www.routeviews.org/.

[3] J. Abello, S. Kobourov, and R. Yusufov. Visualizing large graphs with
compound-fisheye views and treemaps. In J. Pach, editor, Proceedings of the
12th International Symposium on Graph Drawing (GD’04), volume 3383 of
Lecture Notes in Computer Science, pages 431–441. Springer, 2005. doi:

10.1007/978-3-540-31843-9_44.

[4] J. Abello, J. Korn, and I. Finocchi. Graph sketches. In Proceedings of the
IEEE Symposium on Information Visualization 2001 (INFOVIS’01), pages
67–70. IEEE Computer Society, 2001. doi:10.1109/INFVIS.2001.963282.

[5] J. L. Bentley and J. B. Saxe. Decomposable searching problems I. static-
to-dynamic transformation. Journal of Algorithms, 1(4):301–358, 1980.
doi:10.1016/0196-6774(80)90015-2.

[6] R. E. Bohn and J. E. Short. How much information? 2009 Report on
American consumers. Global Information Industry Center, University of
California, San Diego, 2009. URL: http://hmi.ucsd.edu/howmuchinfo_
research_report_consum.php.

[7] Boost C++ libraries, version 1.42. http://www.boost.org.
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