
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 18, no. 3, pp. 325–346 (2014)
DOI: 10.7155/jgaa.00325

Computing Minimum Cycle Bases in Weighted
Partial 2-Trees in Linear Time

Carola Doerr 1,2 G. Ramakrishna 3 Jens M. Schmidt 4

1CNRS, UMR 7606, LIP6 F-75005 Paris, France
2Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005

Paris, France
3Indian Institute of Technology Madras, India

4TU Ilmenau, Institute of Mathematics, 98684 Ilmenau, Germany

Abstract

We present a linear time algorithm for computing an implicit linear
space representation of a minimum cycle basis in weighted partial 2-trees
(i.e., graphs of treewidth at most two) with non-negative edge-weights.
The implicit representation can be made explicit in a running time that
is proportional to the size of the minimum cycle basis.

For planar graphs, Borradaile, Sankowski, and Wulff-Nilsen [Min st-
cut Oracle for Planar Graphs with Near-Linear Preprocessing Time, FOCS
2010] showed how to compute an implicit O(n logn) space representation
of an minimum cycle basis in O(n log5 n) time. For the special case of par-
tial 2-trees, our algorithm improves this result to linear time and space.
Such an improvement was achieved previously only for outerplanar graphs
[Liu and Lu: Minimum Cycle Bases of Weighted Outerplanar Graphs, IPL
110:970–974, 2010].
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1 Introduction

A cycle basis of a graph G is a minimum-cardinality set C of cycles in G such
that every cycle C in G can be written as the exclusive-or sum of a subset of
cycles in C. A minimum cycle basis (MCB) of G is a cycle basis that mini-
mizes the total weight of the cycles in the basis. Minimum cycle bases have
numerous applications in the analysis of electrical networks, biochemistry, pe-
riodic timetabling, surface reconstruction, and public transportation, and have
been intensively studied in the computer science literature. We refer the inter-
ested reader to [16] for an exhaustive survey. It is—both from a practical and
a theoretical viewpoint—an interesting task to compute minimum cycle bases
efficiently.

All graphs considered in this work are simple graphs G = (V,E) with a non-
negative edge-weight function w : E → R≥0. (Computing MCBs for graphs with
cycles of negative weight is an NP-hard problem [16]. In all previous work that
we are aware of it is therefore assumed that the edge-weights are non-negative.)
Throughout this work, m = |E| denotes the size of the edge set and n = |V | the
size of the vertex set of G.

1.1 Previous Work

The first polynomial-time algorithm for computing MCBs was presented by Hor-
ton in 1987 [15]. His algorithm has running time O(m3n). This was improved
subsequently in a series of papers by different authors, cf. [16] or [18] for surveys
of the history. The currently fastest algorithms for general graphs are a deter-
ministic O(m2n/ log n) algorithm of Amaldi, Iuliano, and Rizzi [2] and a Monte
Carlo based algorithm by Amaldi, Iuliano, Jurkiewicz, Mehlhorn, and Rizzi [1]
of running time O(mω), where ω is the matrix multiplication constant.

The algorithm from [1] is deterministic on planar graphs, and has a running
time of O(n2). This improved the previously best known bound by Hartvigsen
and Mardon [13], which is of order n2 log n. The currently best known algorithm
on planar graphs is due to Borradaile, Sankowski, and Wulff-Nilsen [7]. It
constructs an O(n log n) space implicit representation of an MCB in planar
graphs in time O(n log5 n).1

Faster algorithms for planar graphs are known only for the special case of out-
erplanar graphs. For unweighted outerplanar graphs, Leydold and Stadler [17]
presented a linear time algorithm. More recently, Liu and Lu [18] presented a
linear time, linear space algorithm to compute an MCB of a weighted outerpla-
nar graph (using an implicit representation). This is optimal both in terms of
time and space.

1.2 Our Result

In this contribution, we consider the computation of minimum cycle bases of par-
tial 2-trees. The class of partial 2-trees (also referred to as graphs of treewidth

1The arXiv paper [8] announces an improved running time of O(n log4 n).
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at most two) is a strict superclass of outerplanar graphs. It includes 2-trees
and series-parallel graphs (as shown in [5, Theorem 42], a graph G is a par-
tial 2-tree if and only if every 2-connected component of G is a series-parallel
graph). Partial 2-trees are planar. They are precisely the graphs that forbid a
K4-subdivision as a subgraph.

Partial 2-trees are extensively studied in the computer science literature, e.g.,
a deterministic logspace algorithm is presented to canonize and test isomorphism
for partial 2-trees [3]; plane embeddings of partial 2-trees are described in [21];
parallel strategies can be used to find the most vital edges [14]; and the oriented
chromatic number of partial 2-trees is studied in [20]. Partial 2-trees can be
recognized in linear time [4].

Our main result is a linear time algorithm for computing an implicit O(n)-
space representation of a minimum cycle basis in partial 2-trees. The explicit
representation can be obtained in additional time that is proportional to the size
of the MCB. Since partial 2-trees are planar graphs, the previously best known
algorithm was the one by Borradaile, Sankowski, and Wulff-Nilsen [8]. That is,
for the special case of partial 2-trees we are able to improve their running time
by a factor of Θ(log4 n).

Our result is achieved by an iterative decomposition of the partial 2-tree
into outerplanar graphs to which the recent result of Liu and Lu [18] can be
applied. We state our main theorem below. As will be discussed in Section 5
the ideas presented here do not carry over to planar 3-trees. It thus seems that
substantially new ideas are required to improve the running time of [8] for graph
classes containing graphs of treewidth at least three.

Theorem 1 Given a partial 2-tree G = (V,E) on n vertices and a non-negative
weight function w : E → R≥0, a minimum cycle basis B of G (implicitly encoded
in O(n) space) can be obtained in O(n) time.

Moreover, B can be reported explicitly in time O(size(B)), where size(B) is
the number of edges in B counted according to their multiplicity.

Note in Theorem 1 that although B has an implicit representation of linear
size, the explicit size of B may be quadratic. This is true already for outerplanar
graphs, cf. [18] for a simple ladder graph G in which the unique MCB of G
contains Θ(n2) edges.

For the proof of Theorem 1 it will be crucial that the set of lex short cycles
(cf. Section 2.3) in any weighted partial 2-tree forms a minimum cycle basis [19].
As lex short cycles are inherently defined by shortest paths, we will need a data
structure that reports the distance between two vertices in constant time (e.g.,
for checking whether an edge is the shortest path between its two endpoints).
In outerplanar graphs, such a data structure exists due to Frederickson and
Jannardan [12]. For our more general case, we will instead extend a result
of Chaudhuri and Zaroliagis [9, Lemma 3.2] on weighted partial k-trees which
supports distance queries between two vertices of a common bag in a (fixed)
tree decomposition of G in constant time. Using this extension, we can report
a shortest path P between any two such vertices in time O(|E(P )|).
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This work is the full version of [11] which has appeared in the proceedings
of the 39th International Workshop on Graph-Theoretic Concepts in Computer
Science (WG 2013).

2 Graph Preliminaries, Partial 2-Trees, and Lex
Shortest Paths

We consider weighted undirected graphs G = (V,E) where V denotes the set of
vertices, E the set of edges, and w : E → R≥0 a non-negative weight function.
We assume the usual unit-cost RAM as model of computation (real RAM when
the input contains reals), but we do not use any low-level bit manipulations in
our algorithm to improve the running time. The graphs considered in this paper
are sparse; i.e., we have a linear dependence m = O(n).

The weight w(P ) of a path P in G is the sum of weights of edges in P ;
i.e., w(P ) :=

∑
e∈P w(e). A set X ⊂ V of vertices in G is said to be a vertex

separator of G if the removal of the vertices X increases the number of connected
components. A vertex separator X is minimal if no proper subset of X is a
vertex separator. For Y ⊆ V , we write G[Y ] for the subgraph of G that is
induced by Y and we write G− Y for the subgraph that is obtained from G by
deleting the vertices in Y (and all incident edges). For k, ` ∈ N, we denote by
K` the complete graph on ` vertices and by K`,k we denote the the complete
bipartite graph on ` and k vertices. For a graph H, an H-subdivision is a
graph obtained from H by replacing its edges with pairwise internally vertex-
disjoint paths, each containing at least one edge. In this work, we will be mainly
concerned with K2,k-subdivisions for k ≥ 3. In such a K2,k-subdivision we call
the two vertices of degree greater than two the branch vertices of the subdivision.

2.1 Minimum Cycle Bases

A cycle C in G is a connected subgraph of G in which every vertex has degree
two. Let C1, . . . , Ck be cycles in G and let ⊕ denote the symmetric difference
function. Then the sum H := C1 ⊕ . . . ⊕ Ck is the subgraph of G contain-
ing exactly those edges that appear an odd number of times in the multi-set
{C1, . . . , Ck}. As is well known, S is a union of cycles in G.

We say that a set C = {C1, . . . , Ck} of cycles of G spans the cycle space of
G if every cycle C of G can be written as a sum Ci1 ⊕ . . .⊕ Ci` of elements of
C. In this case, we say that Ci1 , . . . , Ci` generate C. The size size(C) of C is the
number of edges in Ci1 ∪ . . . ∪ Ci` counted according to their multiplicity.

A cycle basis of G is a minimum cardinality set of cycles that spans the cycle
space of G. Put differently, a cycle basis is a maximal set of independent cycles,
where we consider a set of cycles to be independent if their incidence vectors in
{0, 1}m are independent over the field GF(2). The cardinality of a cycle basis is
sometimes referred to as the dimension of the cycle space of G. The dimension
of the cycle space of any simple connected graph equals m− n+ 1 [6].
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We are interested in identifying a minimum cycle basis (MCB) of G; i.e., a
cycle basis C of minimum total weight

∑
C∈C w(C).2

If G1, . . . , Gk are the 2-connected components of the graph G and if
C1, . . . , Ck are minimum cycle bases of G1, . . . , Gk, respectively, then the union
C1 ∪ . . . ∪ Ck is a minimum cycle basis of G. In what follows, we will therefore
assume without loss of generality that G is 2-connected.

2.2 Tree Decompositions and Partial 2-Trees

A tree decomposition of a graph G is a pair ({X1, . . . , Xr}, T ) of a set of bags
X1, . . . , Xr and a tree T with vertex set V (T ) = {X1, . . . , Xr} that satisfies the
following three properties:

1. X1 ∪ . . . ∪Xr = V ,

2. For each edge {u, v} ∈ E, there is an index 1 ≤ i ≤ r such that {u, v} ⊆ Xi,
and

3. For each vertex v ∈ V , the bags in T containing v form a subtree of T
(subtree property).

The treewidth of ({X1, . . . Xr}, T ) is max{|X1|, . . . |Xr|} − 1. The treewidth of
G is the minimum treewidth over all possible tree decompositions of G. We call
a tree decomposition ({X1, . . . Xr}, T ) optimal if the treewidth of T is equal to
the treewidth of G. To distinguish between the edges of G and T , we refer to
the edges of T as links.

A k-tree is a graph of treewidth k for which the addition of any edge between
non-adjacent vertices would increase the treewidth. The following lemma is
folklore and characterizes k-trees.

Lemma 1 A graph G is a k-tree if and only if G can be constructed from a
Kk+1 by iteratively adding new vertices such that the neighborhood of each such
vertex is a k-clique.

A subgraph of a k-tree is called a partial k-tree. As mentioned in the intro-
duction, partial 2-trees form a strict superclass of outerplanar graphs. While
outerplanar graphs are characterized by forbidding K4- and K2,3-subdivisions as
subgraphs, partial 2-trees are exactly the graphs that forbid K4-subdivisions.
Therefore, a partial 2-tree is outerplanar if and only if it does not contain a
K2,3-subdivision (as a subgraph). The following statement is taken from [19].

Lemma 2 (Lemma 2.4 in [19]) A partial 2-tree G is not outerplanar if and
only if G contains a K2,3-subdivision. If G contains a K2,k-subdivision for
k ≥ 3, each of its k non-branch vertices is contained in a separate connected
component of G−{u, v}; in particular, G−{u, v} has k connected components.

2Note that some publications define cycles as Eulerian subgraphs. If defined this way, it is
well known that the elements of an MCB are still connected subgraphs in which every vertex
has degree two, i.e., cycles in our sense [15].
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2.3 Lex Shortest Paths and Lex Short Cycles

It is known (Proposition 4.5 in [13]) that for any edge-weighted simple graph
G the set of so-called lex short cycles contains a minimum cycle basis. For
outerplanar graphs [18] and partial 2-trees [19], the whole set of lex short cycles
forms a minimum cycle basis. The notion of lex shortest paths and lex short
cycles presented here is from [13].

Definition 2 (Lex Shortest Paths) Let G = (V,E) be a graph with weight
function w : E → R≥0. Let σ : V → {1, 2, . . . , n} be an arbitrary ordering of
the vertices.

A path P between two distinct vertices u, v ∈ V is called a lex short-
est path if for any other path P ′ between u and v either w(P ′) > w(P ) or
(w(P ′) = w(P ) and |E(P ′)| > |E(P )|) or (w(P ′) = w(P ), |E(P ′)| = |E(P )|
and miny∈V (P ′)\V (P ) σ(y) > miny∈V (P )\V (P ′) σ(y)) holds.

It is easily verified that between any two vertices u, v in G there exists exactly
one lex shortest path. We refer to this path as lsp(u, v) (cf. also Proposition 4.1
in [13]). If the dependence of the graph is not clear from the context, we write
lspG(u, v). Note that every subpath of a lex shortest path is a lex shortest path.

Definition 3 (Lex Short Cycles) A lex short cycle C is a cycle that contains
for any two vertices u, v ∈ C the lex shortest path lsp(u, v). For an edge-weighted
graph G, we denote by LSC(G) the set of all lex short cycles in G.

Lemma 3 ([13, 19]) For any edge-weighted simple graph G, there is a set B ⊆
LSC(G) such that B is a minimum cycle basis for G. Additionally, the set of
lex short cycles LSC(G) forms a minimum cycle basis if G is a weighted partial
2-tree.

Abusing notation (since MCB(G) may not be unique) we write MCB(G) ⊆
LSC(G) and MCB(G) = LSC(G), respectively, for the two statements in
Lemma 3.

By Lemma 3 it would suffice to compute the set of lex short cycles inG for our
purposes. This is the approach of Liu and Lu, who showed that for outerplanar
graphs an implicit representation of LSC(G) can be computed in linear time.
Before commenting further on our algorithm, we briefly note that in their paper,
Liu and Lu assume that the shortest paths in their outerplanar graph are unique.
They motivate this assumption by introducing a preprocessing routine that
perturbs the input weights accordingly (cf. Lemma 1 in [18]). However, it is
not obvious how to run this preprocessing step in linear time (as is misleadingly
stated there), since the weight differences that are needed become exponentially
small. Therefore, arithmetic operations on these numbers cannot be done in
constant time; the unit-cost assumption was never meant to be stretched that
far. However, it turns out that this assumption is not needed, as their algorithm
relies only on the following fact, which we briefly note and prove here for the
sake of completeness.
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Lemma 4 (implicitly in [18]) Let G = (V,E) be a weighted outerplanar
graph such that all the edges in G are the lex shortest paths between their two
endpoints. A cycle C in G is a lex short cycle if and only if C is an induced
cycle in G.

Proof: Let C ′ be a non-induced cycle in G. Then there exists two non-
consecutive vertices x′, y′ in C ′ with {x′, y′} ∈ E. Since all edges in G are
the shortest paths between their endpoints, by definition, we have lsp(x′, y′) =
{x′, y′}. Since x′ and y′ are non-consecutive in C ′, the lex shortest path between
these two vertices is not in C ′. Hence, C ′ cannot be lex short.

Let us now consider a cycle C in G that is not lex-short. To show that C
cannot be an induced cycle, we assume the contrapositive and show that this
contradicts the outerplanarity of G. Let x and y be two vertices in C whose lex
shortest path lsp(x, y) = (x = x1, . . . , xt = y) is not contained in C. That is,
there at least one index i such that the edge {xi, xi+1} is not in C. Let p be a
minimal such index. Since C is an induced cycle, the vertex xp+1 cannot lie on
the cycle, i.e., xp+1 /∈ C. Let q be the smallest index greater than p such that
xq ∈ C. We observe that xp and xq cannot be consecutive in C, for otherwise
x1, . . . , xp, xq, . . . , xt would be a path between x and y of length strictly smaller
than lsp(x, y). This shows that there exists a K2,3-subdivision with branch
vertices xp and xq in G. G can thus not be outerplanar by Lemma 2. �

From this (and an implementation of a result in [12]) is not too difficult to
see that an implicit representation of the set of lex short cycles of an outerplanar
graph can be obtained in linear time, cf. [18] for details.

Theorem 4 ([18]) For every weighted outerplanar graph G on n vertices an
O(n)-space representation of the set LSC(G) can be computed in O(n) time.
From this representation, any cycle C ∈ LSC(G) can be computed explicitly in
time O(size(C)).

As mentioned above, if we could compute for every pair of vertices u and
v in G the lex shortest path between u and v, we could—like Liu and Lu—
resort to computing LSC(G). However, since we do not know currently how
to perturb the weights in linear time such that all lex shortest paths in G
are also the unique shortest paths between its two endpoints, it is somewhat
more challenging to achieve a linear running time for our generalization. Our
algorithm will therefore not necessarily compute the set of lex short cycles.
Instead, as we shall describe in the next section, we will do a decomposition of
the graph G into outerplanar graphs using arbitrary shortest paths instead of
lex shortest paths. The result of Liu and Lu will still be an essential step in our
algorithm, as it allows us to handle the outerplanar graphs that result from our
decomposition using Theorem 4.
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3 High-Level Overview of Our Algorithm and
Technical Details

We first describe the high-level idea of our algorithm; most proofs and the
algorithmic details are presented in the subsequent sections. From now on we
assume that G is a 2-connected weighted partial 2-tree.

3.1 Removal of Long Edges

We call an edge {u, v} tight if it is a shortest path between u and v, and we
call it long otherwise. By the observation made in the following lemma, we will
treat the long edges in G separately. In fact, the lemma allows us to ignore the
set L of all long edges in the main routine of our algorithm. For two vertices u
and v in G, let sp(u, v) be an arbitrary shortest path between u and v.

Lemma 5 Let G = (V,E) be a weighted partial 2-tree and let L be the set of long
edges in G. Then MCB(G) = MCB(G \ L) ∪ {{e} ∪ sp(u, v) | e = {u, v} ∈ L}.

Proof: The independence ofM := MCB(G \L)∪ {{e} ∪ sp(u, v) | e = {u, v} ∈
L} follows from the independence of MCB(G\L) and the fact that e is contained
in M only in the one cycle {e} ∪ sp(u, v). Since M contains exactly m− n+ 1
cycles, it is (cf. the comment in Section 2.1) also a maximal set of independent
cycles; i.e., a cycle basis. We verify that the total weight of the cycles in M is
minimal: According to Lemma 3, LSC(G\L) is a minimum cycle basis of G\L.
Thus, the weight of the cycles in MCB(G \L) equals the weight of the cycles in
LSC(G\L). In addition, the weight of each cycle {e}∪sp(u, v) equals the weight
of {e} ∪ lsp(u, v). It follows directly from the two arguments given above that
MCB(G \L)∪{{e}∪ sp(u, v) | e = {u, v} ∈ L} = LSC(G \L)∪{{e}∪ lsp(u, v) |
e = {u, v} ∈ L}. For every long edge e = {u, v} ∈ L, the cycle {e} ∪ lsp(u, v) is
a lex short cycle in G; it is also the only lex short cycle that contains the edge
e. Therefore, LSC(G) = LSC(G \ L) ∪ {{e′} ∪ lsp(u′, v′) | e′ = {u′, v′} ∈ L}.
Since LSC(G) is a minimum cycle basis of G, M is of minimum weight. �

According to Lemma 5, we can ignore long edges, but need to ensure that
we add a short cycle containing e for every edge e ∈ L to the minimum cycle
basis at the very end of the main routine. That long edges can be identified
and removed from G in O(n) time using a suitable data structure will be shown
in Lemma 12. The removal of the long edges from G does therefore not change
the linear runtime of our algorithm.

3.2 High-Level Overview of the Main Algorithm

In a first step of Algorithm 1 we remove the set of long edges L from G (they
will be taken care of later on using Lemma 5). The key approach for our
algorithm is then to iteratively decompose the graph G \ L into outerplanar
graphs G̃1, . . . , G̃r. To these graphs we apply the linear time algorithm of Liu
and Lu (Theorem 4). Intuitively, the decomposition is done as follows.



JGAA, 18(3) 325–346 (2014) 333

When G \L is not outerplanar, then there exists a K2,3-subdivision in G \L
with branch vertices u and v such that (i) {u, v} is a minimum vertex separator
of G \ L and (ii) the removal of {u, v} disconnects G \ L into at least three
connected components H1, . . . ,Hk (cf. Lemma 2). We distinguish two cases.
If {u, v} ∈ E, we set Gh := (G \ L)[V (Hh) ∪ {u, v}], 1 ≤ h ≤ k. Otherwise,
let sp(u, v) be an arbitrary shortest path between u and v in G \ L and let
j(u, v) ∈ {1, 2, . . . , k} such that sp(u, v) ∈ (G \ L)[V (Hj(u,v)) ∪ {u, v}].

We set Gj(u,v) := (G\L)[V (Hj(u,v))∪{u, v}], and for all 1 ≤ h 6= j(u, v) ≤ k
we set Gh := (G \ L)[V (Hh) ∪ {u, v}] ∪ green(u, v), where green(u, v) denotes
a new “colored” (i.e., marked) edge {u, v} that serves as a placeholder for
the shortest path sp(u, v) between u and v (which, by definition, is not con-
tained in Gh). The weight w(green(u, v)) assigned to this new edge is therefore
set to the weight w(sp(u, v)) of the shortest path between u and v. Clearly,
w(green(u, v)) = w(lsp(u, v)). Let the operation decomp(G \ L, u, v) decom-
pose G \ L into G1, . . . , Gk with respect to the vertices u, v. We call each Gh,
1 ≤ h ≤ k, a part of decomp(G \ L, u, v).

We now iteratively decompose the graphs G1, . . . , Gk as described above un-
til we are left with graphs G̃1, . . . , G̃r that do not contain any K2,3-subdivision,

i.e., with outerplanar graphs according to Lemma 2. Since all the edges in G̃h

are tight, the set of lex short cycles in G̃h equals the boundaries of its internal
faces. Extracting the internal faces of G̃h can be done in linear time, cf. [18]
or the comments before and after Lemma 4. We will show in Theorem 8 that
the (disjoint) union of expand(LSC(G̃1)), . . . , expand(LSC(G̃r)) forms a mini-
mum cycle basis, where, naturally, expand(LSC(Gh)) replaces the marked edges
green(u, v) in every cycle by the shortest path sp(u, v).

Finally, we add to this minimum cycle basis the cycles e ∪ sp(u, v) for all
long edges e = {u, v} ∈ L in G, where again sp(u, v) is an arbitrary shortest
path between u and v. This can be done either implicitly by storing u, v, and
the graph G or explicitly by computing the shortest paths with Lemma 12.

An important part of the algorithm is to find a data structure that allows to
identify all K2,3-subdivisions and to do the respective decomposition in linear
time. To this end, we define suitable tree decompositions.

3.3 Suitable Tree Decompositions

We define suitable tree decompositions and we show how they help in efficiently
computing our decomposition. To ease readability, we consider rooted tree de-
compositions. We direct all links in the tree decomposition from the root to the
leaves, that is, for a link (X,Y ) in the decomposition, X has smaller distance
to the root than Y . Bag X will then be referred to as the father, and bag Y
is referred to as the child. All links ` = (X,Y ) in the tree decomposition are
labeled by the intersection X ∩ Y of its two endpoints.

Definition 5 (Suitable Tree Decomposition) An optimal rooted tree de-
composition of G is suitable if it satisfies the following properties:
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1. The size of every bag Xi is 3 and every two adjacent bags Xi, Xj in T
differ by exactly one vertex; i.e., |Xi ∩ Xj | = 2 (this property is called
smooth in [4]).

2. Any two links with the same label have a common father in T ; i.e., for
any two links (X1, Y1) and (X2, Y2) with X1 ∩ Y1 = X2 ∩ Y2 it holds that
X1 = X2.

Observe that for any internal bag in T , the number of children could be arbitrary,
but there are at most three different labels associated with the links to its
children.

Our algorithm will perform all computations in a suitable tree decomposition
of the tight induced subgraph of G. It is therefore important that such a tree
decomposition can be computed in linear time.

Lemma 6 Given a partial 2-tree G, a suitable tree decomposition of linear size
can be computed in linear time.

Proof: The number of bags of a smooth tree decomposition of a partial 2-tree
G is n − 2 (see Lemma 2.5 in [4]). As every bag contains exactly 3 vertices,
this gives a linear space representation of the tree decomposition. A rooted
tree decomposition ({X1, . . . , Xr}, T ) of G that is additionally smooth can be
computed using Bodlaender’s algorithm [4]. We make T suitable (i.e., we add
Property 5.2) as follows. By the subtree-property of tree decompositions, it
suffices to give a smooth tree decomposition T ′ in which no two links (A,B)
and (B,C) have the same label.

Traverse T in any order that starts on the root and in which father bags
precede their children. Whenever a bag B with father A and child C is visited
such that the links (A,B) and (B,C) have the same labels, we modify T by
attaching the subtree of T that is rooted on C to A; i.e., after the modification
C is a sibling of B. This causes B and C to have the same father. It is straight-
forward to see that the modified tree is still a smooth tree decomposition. After
the traversal is finished, we have a suitable tree decomposition. Clearly, all
modifications can be computed in constant time per step, leading to a total
running time of O(n). �

One of the key observations of our algorithm is the fact that for all K2,3-
subdivisions the two branch vertices must be contained in at least three common
bags of a suitable tree decomposition. This is shown using the following results
(cf. Corollary 6).

Lemma 7 (Lemma 12.3.4 in [10]) Let W ⊆ V (G) and let T be a tree de-
composition of G. Then T contains either a bag that contains W or a link
(X1, X2) such that two vertices of W are separated by X1 ∩X2 in G.

Lemma 8 (K2,3-Subdivisions in Partial 2-Trees) Let u and v be the
branch vertices of a K2,3-subdivision H in a partial 2-tree G. For every optimal
tree decomposition T of G without bag duplicates (in particular for suitable tree
decompositions), {u, v} is contained in at least one bag of T .
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Proof: We show the claim by applying Lemma 7 with W = {u, v}. If u and v
are not contained in a bag, there must be a link (X1, X2) in T such that u and
v are separated by X1 ∩X2 in G. Since H is a K2,3-subdivision, at least three
vertices need to be removed in order to separate u and v. Since T is optimal,
X1 ∩ X2 can only contain more than two vertices when X1 and X2 consist of
the same three vertices. This contradicts that there are no bag duplicates in T .

�

Now we can prove the desired Corollary 6 with the following lemma.

Lemma 9 Let T be a suitable tree decomposition of a 2-connected partial 2-tree
G and let u, v ∈ V . Then T contains at least three bags that contain both u and
v if and only if G−{u, v} has at least three connected components. If T contains
at least k ≥ 3 such bags, the number of connected components in G − {u, v} is
exactly k; in particular, G contains then a K2,k-subdivision.

Proof: In the following, let Y1, . . . , Yk be the bags in T containing both u
and v. By the subtree property of tree decompositions, Y1, . . . , Yk induce a
connected subgraph in T . Since T is suitable, we can assume that Y2, . . . , Yk
are children of Y1. Let F be the forest obtained from T by deleting the links
(Y1, Y2), . . . , (Y1, Yk). For each 1 ≤ i ≤ k, let Ti be the subtree in F containing
Yi and let Vi = {x ∈ V | there is a bag containing x in Ti}.

Let T contain k ≥ 3 bags that contain both u and v. We prove that G−{u, v}
has at least k connected components. Let i, j ∈ {1, . . . , k} with i 6= j. By the
subtree property of tree decompositions and Yi 6= Yj , we have Vi ∩ Vj = {u, v}.
Since all bags in T contain exactly three vertices, the sets Vi−Vj and Vj−Vi are
non-empty. We need to show that for all x ∈ Vi − Vj and all y ∈ Vj − Vi there
is no edge xy in G. Assume to the contrary that such an edge xy exists. Then
there is a bag B in T that contains both x and y. Since x ∈ Vi − {u, v} and
by the subtree property, Ti is the only tree with a bag containing x. Similarly,
Tj is the only tree with a bag containing y. This contradicts the existence of
B. Thus, every of the Vi − {u, v} is the vertex set of a connected component of
G− {u, v}.

Let G−{u, v} have ` ≥ 3 connected components. We prove that T contains
at least ` bags that contain both u and v. It is well-known that every connected
component that is obtained by deleting a minimal vertex separator is adjacent
to all vertices of this separator. Since G is 2-connected, {u, v} is a minimal
vertex separator of G. It follows that G contains a K2,`-subdivision H with
branch-vertices u and v and non-branch-vertices x1, . . . , x` different from u and
v. According to Lemma 8, at least one bag of T contains both u and v. Thus,
there is at least one Yi, Ti and Vi defined as above (note that T1 = T and V1 = V
if Yi is the only bag containing u and v). We prove that no set Vi contains two
vertices xa and xb with 1 ≤ a < b ≤ `. This gives the claim, as it implies that
there are at least l trees Ti and thus, at least l bags Yi, each of which contains
u and v. By construction of Ti, Ti has exactly one bag C that contains u and v
(note that the uniqueness of C exploits the fact that T is suitable). Let c be the
vertex C \ {u, v}. Assume to the contrary that Ti contains a bag A containing
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xa and a bag B containing xb (A = B is possible). Let L be the least common
ancestor of A and B in Ti. We know from the existence of H that there are
two independent paths from xa to u and v, respectively, that share only the
vertices u and v; similarly, there are two such independent paths from xb to
u and v, respectively. It follows that L 6= C and, in particular c /∈ {xa, xb},
since otherwise two of the four independent paths from {xa, xb} to {u, v} would
intersect in c /∈ {u, v}. However, if L 6= C, two of these independent paths
must intersect in c as well in order to reach u and v, which gives the desired
contradiction. �

From Lemmata 2 and 9, we obtain the following corollary.

Corollary 6 Let T be a suitable tree decomposition of a 2-connected partial 2-
tree G. Then G is outerplanar if and only if for every two nodes u, v ∈ V at
most two bags of T contain u and v.

Corollary 6 allows us to efficiently find all K2,k-subdivisions for k ≥ 3 in a
2-connected partial 2-tree by finding k pairwise adjacent bags in a suitable tree
decomposition that share the same two vertices u and v.

3.4 Suitable Data Structures for Finding the Lex Shortest
Paths

Another useful tool in our algorithm will be the following data structure. It sup-
ports the query for an intermediate vertex that lies on a shortest path between
two nodes. The following lemma is along the lines of [12].

Lemma 10 Let T be an unrooted tree decomposition of G. There is a linear
space data-structure with O(n) preprocessing time that supports the following
query: Given a bag A ∈ T and a vertex v in G that is not in A, find the link
incident to A that leads to some bag containing v. The query time is O(log d),
where d is the degree of A in T .

Proof: Note that the desired link is unique, as T is a tree decomposition. For
building the data structure, we perform a depth first search (dfs) on T , starting
at an arbitrary artificial root, and label every bag X with a dfs-number. We
label each vertex of a bag X with the dfs-number of X. For any bag X and the
subtree T (X) of T that is rooted at X, the bags in T (X) get consecutive dfs-
numbers. Hence, these numbers form an interval, which we can store in constant
space at X during the depth first search; i.e., in linear total time. Similarly,
the bags not in T (X) get dfs-numbers that are consecutive in the cyclic order
of dfs-numbers; we store the corresponding interval at the father bag of X (if
exists). The desired answer for the query is then obtained by performing a
binary search on the neighboring bags of A (performed in the same order as the
dfs) that stops at the bag having an interval that contains the label of v. This
takes time O(log d). �
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We are finally ready to show that for any long edge {u, v} a shortest path
sp(u, v) between u and v can be computed in time O(|E(sp(u, v))|). The follow-
ing lemmata will be useful also to identify the subtree of the tree decomposition
that contains sp(u, v) for two branch vertices u and v with {u, v} /∈ E.

Lemma 11 (Lemma 3.2 in [9]) Given a partial k-tree G and an optimal tree
decomposition T of G, there is an algorithm with running time O(k3n) that
outputs the distances of all vertex pairs that are contained in common bags and
that, for each such vertex pair, outputs some intermediate vertex of a shortest
path between the vertices.

Lemma 11 is originally stated for directed graphs in [9]. However, represent-
ing each undirected edge with two edges oriented in opposite directions gives
the above undirected variant.

We extend Lemma 11 by giving the following data structure.

Lemma 12 Given a connected partial 2-tree G and a suitable tree decomposi-
tion T of G, there is an O(n)-space data structure requiring O(n) preprocessing
time that supports the following queries, given two vertices u and v and a bag
X ∈ T that contains u and v:

• Compute in time O(1) the length of a shortest path between u and v (dis-
tance query).

• Compute in time O(1) an intermediate vertex w of some shortest path
between u and v, and a bag Y ∈ T such that Y = {u, v, w}, providing that
any shortest path between u and v has at least two edges (intermediate
vertex query).

• Compute in time O(|E(P )|) a shortest path P between u and v (shortest
path extraction).

Since a tree decomposition maintains for every edge the bag that contains
it, the queries of Lemma 12 can in particular be performed when—instead of
the bag X—an edge {u, v} ∈ G is given.

Proof: [of Lemma 12] We apply the algorithm of Lemma 11 and store the
distance of every vertex pair {u, v} that is contained in a common bag, say in
X, in a table linked to X. Since T contains only linearly many bags, this takes
O(n) space. The table supports distance queries in constant time, as there are
only constantly many vertex pairs in each bag.

Assume for the moment that we know how to support the intermediate vertex
query. Then we can easily support the shortest path extraction by first applying
an intermediate vertex query, which gives Y , and subsequently recursing on the
two intermediate vertex queries {u,w} and {w, v}, both in Y , until each shortest
path is just an edge. This allows to extract a shortest path between u and v in
time proportional to its length.
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It remains to show how to support intermediate vertex queries. We initialize
the data structure D of Lemma 10 for the tree decomposition T in time O(n)
and apply the algorithm of Lemma 11 in time O(n). Let X be a bag containing
u and v. By Lemma 11, we have already found an intermediate vertex z between
u and v, but want to find an intermediate vertex w that is in a common bag Y
with u and v. If z does not exist, there is a shortest path that is just an edge,
in which case we just set w to be non-existent as well. If z ∈ X, we set w = z
and Y = X and are done.

Otherwise, we query D with (X, z) and get a link (X,A) such that z is
contained in the subtree of T that is separated by (X,A) and does not contain
X (note that A may be the father of X in T ). According to Lemma 10, this
query takes time proportional to at most the degree of X in T .

We now distinguish two cases. In the case that A contains u and v, we
iterate this procedure on A instead on X. In this iteration, this case cannot
happen more than a constant number of times, as T is suitable, so any path in
the subtree of T consisting of bags containing {u, v} has length at most 2.

Otherwise, A contains exactly one vertex of {u, v}, say u. Consider X =
{u, v, r} and the subtree T1 of T that is separated by the link (X,A) and contains
A. By the subtree property, T1 cannot contain a bag with v, as then v would
also be contained in A. Since T1 contains a part of a shortest path between u
and v, but has only u and r in common with X, r must be an intermediate
vertex. Since X contains u, v, and r, we set w = r and Y = X.

We investigate the preprocessing time of the data structure, i.e., the time
spent computing for all vertex pairs (u, v) the intermediate vertex w and the
bag containing all three vertices {u, v, w}. In every bag X, there are only
constantly many vertex pairs. For each such vertex pair, we could find w in time
O(deg(X)), where deg(X) is the degree of X in T . Hence, the preprocessing
time sums up to a linear total. �

3.5 Obtaining MCB(G) from LSC(G̃1), . . . ,LSC(G̃r)

As a last technicality, we show that—as claimed in the high-level overview of
our algorithm—the disjoint union expand(LSC(G̃1)) ] . . . ] expand(LSC(G̃r))
forms a minimum cycle basis of G \ L.

Recall that Gj(u,v) is the part of decomp(G \L, u, v) containing the shortest
path sp(u, v) between u and v along which we have decomposed G \ L.

Definition 7 For any cycle C of G \ L, let expand(C) be the cycle obtained
from C by replacing the green edges green(u, v) in C (if exist) by the shortest
path sp(u, v) between u and v in the part Gj(u,v). For a set of cycles C, let
expand(C) := {expand(C) | C ∈ C}.

Theorem 8 MCB(G \ L) = expand(LSC(G̃1)) ] . . . ] expand(LSC(G̃r)).

Theorem 8 follows from iteratively applying the following lemma.
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Lemma 13 Let G be a graph in which every edge is tight. Let u and v be the
two branch vertices of a K2,3-subdivision in G. Let G1, . . . , Gk be the subgraphs
resulting from the decomposition decomp(G, u, v). For each 1 ≤ h ≤ k, let Bh be
a minimum cycle basis of the graph Gh. Then E := expand(B1)∪. . .∪expand(Bk)
is a minimum cycle basis of G.

To prove Lemma 13 we first introduce an alternative decomposition,
decomp*(G, u, v), which decomposes a non-outerplanar graph with respect to
the lex short path between the two branch vertices—as opposed to the decom-
position decomp(G, u, v) which decomposes G along an arbitrary shortest path.

Similarly to the decomposition decomp(G, u, v) described in Section 3.2 let
G be a graph that is not outerplanar and let u, v ∈ V be the branch vertices
of a K2,3 subdivision in G. Let H1, . . . ,Hk be the connected components of
G− {u, v}.

Case 1: If {u, v} ∈ E, set G∗h := Gh = G[V (Hh) ∪ {u, v}], 1 ≤ h ≤ k.
Case 2: If {u, v} /∈ E, let i(u, v) ∈ {1, 2, . . . , k} such that lsp(u, v) ∈

G[V (Hi(u,v))∪{u, v}]. Set G∗i(u,v) := G[V (Hi(u,v))∪{u, v}], and for all 1 ≤ h 6=
i(u, v) ≤ k we set G∗h := G[V (Hh) ∪ {u, v}] ∪ blue(u, v), where blue(u, v) is a
marked edge {u, v} that serves as a placeholder for the lex shortest path lsp(u, v)
between u and v (which is not contained in G∗h). Set w(blue(u, v)) = w(lsp(u, v))
For any cycle C of G, let expand*(C) be the cycle obtained from C by replacing
the blue edges blue(u, v) in C (if exist) by the lex shortest path lsp(u, v). For a
set of cycles C, let expand*(C) := {expand*(C) | C ∈ C}.

The proof of Lemma 13 is based on the following result, which we believe to
be of independent interest.

Lemma 14 In the setting of Lemma 13 let G∗1, . . . , G
∗
k be the subgraphs resulting

from the decomposition decomp*(G, u, v). Then LSC(G) = expand*(LSC(G∗1))]
. . . ] expand*(LSC(G∗k)).

Lemma 14 can be proven using the following observation.

Observation 9 (Lemma 2.5 and Corollary 2.8 in [19]) Let G be a
weighted graph and let G′ be a subgraph of G. Let P be a path in G′. If P is
lex shortest in G, it is lex shortest in G′.

Furthermore, for G, k, and G∗1, . . . , G
∗
k as in Lemma 14, we have

expand*(LSC(G∗h)) ⊆ LSC(G), 1 ≤ h ≤ k.

Proof: [of Lemma 14] The disjointness of the sets follows immediately from
the facts that only cycles are contained in these sets and that the subgraphs
H1, . . . ,Hk in G−{u, v} are disjoint. The inclusion

⋃k
h=1 expand*(LSC(G∗h)) ⊆

LSC(G) follows from Observation 9.

It thus remains to show LSC(G) ⊆
⋃k

h=1 expand*(LSC(G∗h)). To this end,
let C ∈ LSC(G). We need to show that E(C) \ E(lspG(u, v)) is contained in
one of the G∗h; Observation 9 implies that for any such cycle either C itself or
the cycle shrink(C) with the lex shortest path lspG(u, v) replaced by the edge
blue(u, v) must be contained in LSC(G∗h).
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Since the decomposition is done along the vertices u and v, there is nothing
to show in case |C∩{u, v}| ≤ 1. Indeed, any such C or its short version shrink(C)
is contained in exactly one connected component G∗h.

Let us therefore assume that both vertices u and v are contained in C.
Since C is a lex short cycle in G, it must contain the lex shortest path lsp(u, v)
between u and v. The cycle C is complemented by another path P from u
to v; i.e., there exists a path P from u to v such that C = lsp(u, v) ∪ P and
V (P ) ∩ V (lsp(u, v)) = {u, v}. By the structure of our decomposition, this path
P is certainly contained in one connected component G∗h. Since G∗h contains
also either lsp(u, v) itself or the placeholder edge blue(u, v) we have that either
C or shrink(C) is contained in G∗h. As mentioned above, by Observation 9 it
follows that C ∈ expand*(LSC(G∗h)). �

Before we are finally ready to prove Lemma 13, we observe that from
Lemma 2 it follows that in the parts Gj(u,v) and G∗i(u,v) there are no two vertex-
disjoint paths between u and v.

Observation 10 If a partial 2-tree G contains a K2,3-subdivision with branch
vertices {u, v}, the subgraph Gj(u,v) defined by decomp(G, u, v) and the subgraph

G∗i(u,v) defined by decomp*(G, u, v) do not contain a cycle that contains both
vertices u and v.

Proof: [of Lemma 13] For 1 ≤ h ≤ k let mh be the number edges in the graph
Gh and let nh be the number of vertices in Gh. By the observation made in
Section 2.1 the number of cycles in Bh equals mh−nh+1. The number of cycles
in E therefore equals

k∑
h=1

(mh − nh + 1) = m+ k − 1− (n+ 2(k − 1)) + k = m− n+ 1.

We therefore need to show that the cycles in E are independent and that they
are of minimum total weight.

As for the independence assume that there exist cycles C1, . . . , C` in B1 ∪
. . . ∪ Bk with expand(C1) ⊕ . . . ⊕ expand(C`) = 0. For each h let Rh be the
set of indices r such that Cr ∈ Gh. Since the only vertices that appear in more
than one subgraph Gh are the two vertices u and v and since the sum of cylces
forms a disjoint union of cycles,

∑
r∈Rh

Cr = 0 must hold. This implies Rh = ∅
for all h and shows the independence of the cycles in E .

Since the expansion of a cycle C ∈ Bh does not change its total cost, the total
weight of the cycles in E equals the total weight of the cycles in B1 ∪ . . . ∪ Bk.
We need to show that there is no cycle basis of G that has strictly smaller cost.
By Lemma 14 we know that, if we decompose G along the lex shortest path
lspG(u, v) between u and v, i.e., if we apply decomp*(G, u, v), then the set E∗ as
defined in Lemma 14 forms a minimum cycle basis. We show that the cycles in
E∗ are of the same total weight as the cycles in E . If {u, v} ∈ E, this is trivially
true as the decompositions decomp*(G, u, v) and decomp(G, u, v) are identical.
Let i = i(u, v) and j = j(u, v).
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We first consider the case when (u, v) /∈ E(G), i = j, and sp(u, v) 6= lsp(u, v).
For each 1 ≤ h 6= i ≤ k, Gh is same as G∗h except that (u, v) is a green edge
in Gh and (u, v) is a blue edge in G∗h. Furthermore, Gi is same as G∗i . We
know that green(u, v) and blue(u, v) are placeholders for sp(u, v) and lsp(u, v),
respectively. Also the weights of sp(u, v) and lsp(u, v) are same. Thus total
weight of the cycles in E∗ is same as the total weight of the cycles in E .

Consider the remaining case where (u, v) /∈ E(G), i 6= j, and sp(u, v) 6=
lsp(u, v). We define a bijective mapping

ψ : LSC(G∗1) ∪ . . . ∪ LSC(G∗k)→ LSC(G1) ∪ . . . ∪ LSC(Gk)

such that w(ψ(C)) = w(C) for all C ∈ LSC(G∗1) ∪ . . . ∪ LSC(G∗k). From this
we get the statement by evoking again Lemma 3 which tells us that for each h
the sum of the weights of the cycles in LSC(Gh) equals the sum of the weights
of the cycles in Bh. For h /∈ {i, j}, Gh = G∗h \ {blue(u, v)} ∪ green(u, v) holds.
For C ∈ LSC(G∗h) we can therefore set ψ(C) := C \ {blue(u, v)} ∪ green(u, v)
if blue(u, v) ∈ C, and ψ(C) := C otherwise. As we have mentioned in Ob-
servation 10, there is no cycle in G∗i that contains both u and v. It is thus
easy to see that LSC(G∗i ) ⊆ LSC(Gi). Set ψ(C) := C for all C ∈ LSC(G∗i ).
Since there is one more edge in Gi as there is in G∗i , the number of cycles
in LSC(Gi) is by one larger than the number of cycles in LSC(G∗i ). Note
that D := {green(u, v)} ∪ lspG(u, v) is a lex short cycle in Gi that is not in
the image {ψ(C) | C ∈ LSC(G∗i )}. The cost of D is 2w(lspG(u, v)). Note
that the situation is symmetric for G∗j and Gj . We thus set ψ(D∗) := D for
D∗ := {blue(u, v)} ∪ sp(u, v) and we set ψ(C) := C \ {blue(u, v)} ∪ sp(u, v) for
all other cycles in LSC(G∗j ). As the cost w(D∗) equals 2w(lspG(u, v)) as well,
the claim follows. �

4 Computing an MCB in Weighted Partial 2-
Trees

As we now have all the technical tools at hand, we can finally give a detailed
description of our algorithm, whose pseudo-code can be found in Algorithm 1.

We first compute a suitable tree decomposition T of the 2-connected
weighted partial 2-tree G. According to Lemma 6, this can be done in lin-
ear time. We then compute the set L of long edges, i.e., the edges whose length
is greater than the length of a shortest path between their two endpoints (cf.
Lemma 5). By using distance queries between the endpoints of every edge, the
data structure of Lemma 12 allows to do this in linear time. We delete the edges
in L and consider thus G \L until Line 16 of Algorithm 1 is reached; clearly, T
is still a suitable tree decomposition of G \ L.

As described in the high-level overview, we decompose the graph iteratively
into outerplanar graphs along K2,3-subdivisions (cf. Section 3.2). Algorithmi-
cally, Corollary 6 allows us to detect efficiently whether the current graph con-
tains a K2,3-subdivision: We just have to check whether T contains at least
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Algorithm 1: A linear time algorithm to compute a minimum cycle basis
of a weighted 2-connected partial 2-tree G

1 Compute a suitable tree decomposition T of G;
2 Find the set L of long edges in G;
3 E ← E \ L;
4 for each internal bag Y1 ∈ T (in any order) and every u, v ∈ Y1 do
5 Let Y2, . . . Yk be the children of Y1 such that for

2 ≤ i ≤ k, Y1 ∩ Yi = {u, v};
6 if k ≥ 3 then
7 for 2 ≤ i ≤ k do delete the link (Y1, Yi);
8 ;
9 if {u, v} /∈ E then

10 Compute the weight w(P ) of a shortest path P between u and
v;

11 Find an intermediate vertex y of P and a bag B containing y;
12 Compute j such that either j ∈ {2, . . . , k} and the subtree

rooted at Yj contains B or j = 1 otherwise (indicating that B
is in the subtree containing Y1);

13 for 1 ≤ h 6= j ≤ k do
14 Add the new edge green(u, v) to Yh and assign to it weight

w(P );

15 Let T̃1, . . . , T̃r be the connected components of T ;

16 Obtain the outerplanar graphs G̃1, . . . , G̃r that correspond to T̃1, . . . , T̃r;

17 Compute LSC(G̃1), . . . ,LSC(G̃r) using [18];
18 Output (in an implicit or explicit representation):

MCB(G) = expand(LSC(G̃1)) ] · · · ] expand(LSC(G̃r)) ] {{e} ∪ sp(u, v) |
e = {u, v} ∈ L};

three bags each of which contains the same two vertices u and v. Since T is
suitable, this can be done by fixing every inner vertex Y1 of T (in any order)
and counting the number k of children of Y1 whose links are labeled identically,
say with {u, v} (cf. the first three lines of the main loop of Algorithm 1). If
k ≥ 3, we have identified a K2,k-subdivision by Lemma 9.

If {u, v} ∈ E (the existence of such an edge can be efficiently looked up by
a table of size O(n) with Lemma 11), we can simply decompose the graph into
the parts defined by decomp by deleting k links in T (cf. Line 7). Otherwise,
we additionally fix a shortest path P between u and v and augment all parts
except the one containing P with a green edge that replaces P . For this purpose
we have to find the weight of P and the part that contains P . The first can
be done in constant time by using a distance query of Lemma 12 (cf. Line 10).
The latter is computed by identifying the subtree of the tree decomposition
(the one after deleting the links) that contains an intermediate vertex y of P
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(cf. Line 12). Such a vertex can be computed in constant time, using once more
the data structure of Lemma 12.

Finally, we end up with several components T̃1, . . . , T̃r of the original tree
decomposition T ; these are easy to find in linear time, e.g., by depth-first search.
We can compute the graphs G̃1, . . . , G̃r that are represented by these tree de-
compositions in linear total time by simply collecting the vertices and edges in
all bags. Note that the total number of edges in G̃1, . . . , G̃r is still in O(n), as
we add at most deg(V1) new green edges for each bag V1, where deg(V1) is the
degree of bag V1 in T . Every Gi is outerplanar; thus, we can compute the LSC
of every Gi in linear time (cf. Theorem 4). According to Lemmata 5 and 8, the
output in Line 18 is then a minimum cycle basis of G.

This concludes the first part of our main result, Theorem 1. It remains to
clarify how MCB(G) is represented in the output. For an implicit represen-
tation, we store G, L, LSC(G̃1), . . . ,LSC(G̃r) and a trace of the main loop of
Algorithm 1. Clearly the space consumption is in O(n). For every long edge
e = {u, v} in L, we can compute an arbitrary shortest path between u and
v in G in time proportional to its length; as the choice of this path does not
matter due to Lemma 5, this will complete every long edge to a cycle of an
MCB(G). The trace stores every decision that was made in the decomposition
decomp(G \L). It thus allows to reconstruct the whole decomposition in linear
time, as Algorithm 1 takes linear time.

In particular, we can identify for every decomposition step that is performed
on a graph H, the part Hj(u,v) of decomp(H,u, v) in which we had chosen the
shortest path sp(u, v) between u and v, whose length we computed. An explicit
representation of expand(LSC(G̃1)) ] · · · ] expand(LSC(G̃r)) is then computed
by constructing the shortest path sp(u, v) for every decomposition step explicitly
via Lemma 12 (in contrast to computing only its length and an intermediate
vertex, as in the original decomposition).

According to Lemma 12, computing these shortest paths takes time propor-
tional to the number of edges in these paths. This gives the desired running time
of O(size(MCB(G))), where size(MCB(G)) is the number of edges in MCB(G)
counted according to their multiplicity.

5 Discussion

We have shown that an implicit representation of a minimum cycle basis of a
weighted partial 2-tree can be computed in linear time. It remains a challenging
question if our result can be extended to partial k-trees for k > 2. We remark
that it was noted in [19] that already for partial 3-trees the set of lex short
cycles do not necessarily form a minimum cycle basis. Since in particular the
proof of Theorem 8 is based on this, extending our result to partial 3-trees may
therefore require substantially new ideas.
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