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Abstract

Let ¢r(K,) be the minimum number of crossings over all rectilinear
drawings of the complete graph on n vertices in the plane. In this paper
we prove that cr(K,) < 0.380473(’;) + ©(n?); improving thus on the pre-
vious best known upper bound. This is done by obtaining new rectilinear
drawings of K,, for small values of n, and then using known constructions
to obtain arbitrarily large good drawings from smaller ones. The “small”
sets were found using a simple heuristic detailed in this paper.
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1 Introduction

A rectilinear drawing of a graph is a drawing of the graph in the plane in which
all the edges are drawn as straight line segments. For a set S of n points
in general position in the plane, let ¢r(S) be the number of (interior) edge
crossings in a rectilinear drawing of the complete graph K, with vertex set S.
The rectilinear crossing number of K, , denoted by ¢r(XK,), is the minimum of
cr(S) over all sets of n points in general position in the plane. The problem
of bounding the rectilinear crossing number of K, is an important problem
in combinatorial geometry. Most of the progress has been made in the last
decade, for a state-of-the-art survey see [4]. Since two edges cross if and only
if their endpoints span a convex quadrilateral, €r(S) is equal to the number
0(S), of convex quadrilaterals spanned by S. We use this equality extensively
throughout the paper. The current best bounds for ¢r(XK,,) are [3} [I]:

0.379972 (Z) < T (K,) < 0.380488 (Z) +0(nd)
Our main result is the following improvement of the upper bound.

Theorem 1

184
(K, < 936318

n 3 n 3
e .3804
S 51609375 <4> + O(n”) < 0.380 73(4> +06(n?)

Although it is a modest improvement, we note that the gap between the lower
and upper bound is already quite small and that actually the lower bound is
conjectured to be at least 0.380029 (" +0(n?). In [I] the authors conjecture that
every optimal set is S—decomposablaﬁ and show that every 3-decomposable set
contains at least 0.380029('}) + ©(n®) crossings. The current general approach
to produce rectilinear drawings of K, with few crossings, is to start with a
drawing with few crossings (for a small value of n), and use it to recursively
obtain drawings with few number of crossings for arbitrarily large values of n.
This approach has been refined and improved over the years [10, [7, [5 2] [T].

The upper bound provided by the best recursive construction to this date is
expressed in Theorem [2}

Theorem 2 (Theorem 3 in [I]) If S is an m-element point set in general posi-
tion, with m odd, then

< 2AcT(8) +3m? — Tm? + (30/T)m (n) +0(n?)

cr(K,)

mA 4

Given these recursive constructions, there is a natural interest in finding sets
with few crossings for small values of n. The use of computers to aid this search
was initiated in [6].

1S is 3-decomposable if there is a triangle T enclosing S, and a balanced partition (A4, B, C)
of S, such that the orthogonal projections of S onto the sides of T' show A between B and C
on one side, B between A and C' on another side, and C between A and B on the third side.
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2 Results

For n < 100, we improved many of best known point sets of n points with few
crossings using the following simple heuristic.
Given a starting set S of n points in general position in the plane, do:

e Step 1. Choose randomly a point p € S.

e Step 2. Choose a random point ¢ in the plane “close” to p.

e Step 3. If er(S\ {p} U {q}) < r(95), then update S to S := S\ {p} U{q}.
e Step 4. Go to Step 1.

For each n = 3, ...,100, the starting set was taken from Oswin Aichholzer’s
homepage. These are available at:
Wwww.ist.tugraz.at/aichholzer/research/rp/triangulations/crossing/
Some of the best known examples come from [I], rather than from this page.
However, they provide explicit coordinates only for a few of their point sets. In
many instances we managed to improve the previous best examples. In many
cases we improved the examples from [I], even though we started from a worse
point set. For n = 54,96 and 99 we failed to improve upon [I]. Our results are
shown in Table [II Theorem [1] now follows directly from Theorem [] using the
set of 75 points we found with 450492 crossings.

3 The Algorithm

In this section we describe an O(n?) time algorithm used to compute cr(S)
in step 3 of the heuristic. Recall that cr(S) is equal to (J(S). We compute
this number instead. Quadratic time algorithms for computing 0(S) have been
known for a long time [8,[9]. We learned of these algorithms after we finished the
implementation of our algorithm. We present our algorithm nevertheless, since
in the process we obtained an equality (Theorem [3) between certain substruc-
tures of S and ¢r(5), which may be of independent interest. We also think that
given that the main aim of this paper is to communicate the method by which
we obtained these sets, it is important to provide as many details as possible so
that an interested reader can obtain similar results.

We compute [J(S) by computing the number of certain subconfigurations of
S which determine [J(S). Let (p,q) be an ordered pair of distinct points in S,
and let {r, s} be a set of two points of S\ {p, ¢}. We call the tuple ((p, q), {r, s})
a pattern. We say that ((p,q),{r,s}) is of type A if g lies in the convex cone
with apex p and bounded by the rays 17 and ﬁ, otherwise it is of type B. Let
A(S) be the number of type A patterns in .S, and B(S) the number of its type
B patterns. Note that every choice of ((p,q),{r, s}) is either an A pattern or
a B pattern. The number of these patterns determine [J(S) as the following
theorem shows.
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Table 1: Improvements on the starting point sets. Starred numbers come
from [IJ.

## of crossings # of crossings # of crossings # of crossings
n in the best in the previous n in the best in the previous
point set best point set point set best point set
obtained obtained obtained obtained
46 59463 59464 76 475793 475849
47 65059 65061 77 502021 502079
49 77428 77430 78 529291 529332*
50 84223 84226 79 557745 557849
52 99169 99170 80 587289 587367
53 107347 107355 81 617958 618018*
54 115979 115977* 82 649900 649983
56 134917 134930 83 682986 683096
57 145174 145176* 84 717280 717360*
58 156049 156058 85 753013 753079
59 167506 167514 86 789960 790038
61 192289 192293 87 828165 828225*
63 219659 219681* 88 867911 868023
64 234464 234470 89 908972 909128
65 249962 249988 90 951418 951459*
66 266151 266181* 91 995486 995678
67 283238 283286 92 1040954 1041165
68 301057 301098 93 1087981 1088055*
69 319691 319731* 94 1136655 1136919
70 339254 339297 95 1187165 1187263
71 359645 359695 96 1238918 1238646*
72 380926 380964 * 97 1292796 1292802
73 403180 403234 98 1348070 1348072
74 426419 426466 99 1405096 1404552*
75 450492 450540*

Theorem 3

Proof: Let X be a subset of S, of 4 points. Simple arithmetic shows that if X
is not in convex position then it determines 3 patterns of type A and 9 patterns
of type B; on the other hand if X is in convex position then it determines 4
patterns of type A and 8 patterns of type B. Assume that we assign a value of
3 to type A patterns and a value of —1 to type B patterns. If X is not in convex
position its total contributed value would be zero and if it is convex position it
would be 4. Thus 40(S) = 3A(S) — B(S), and the result follows. O

Note that the total number of patterns is n(n—1)(";?). Thus by Theorem
to compute [1(S) it is sufficient to compute A(S). Let p be a point in S. We
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now show how to count the number of type A patterns in which p is the apex
of the corresponding wedge.

Sort the points in S \ {p} counterclockwise by angle around p. Let
Y1,Y2,---,Yn—1 be these points in such an order. For 1 < ¢ < n — 1, starting
from y; and going counterclockwise, let k(i) be the first index (modulo n) such
that the angle Zy;pyy;) is more than 7. Let m; := k(i) —¢ mod (n — 1).
Note that for 1 < j < m,; there are exactly j — 1 type A patterns of the
form (p, q), {vs, yiy;} for some ¢ € S. In total, summing over all such j’s, this
amounts to Y} '(j—1) = (™ "). Thus the total number of type A patterns
in which p is the apex of the corresponding wedge is equal to 2?:—11 (™.

Compute yy(1) and my from scratch in linear time. For 2 < i < n —1, to
compute Y1) and m;y1, assume that we have computed yy;) and m;. Start
from yy,; and go counterclockwise until the first y(;11) is found such that the
angle Zy; 1 1PYr(i+1) is more than 7; then m;y 1 = k(i + 1) — (i + 1). Since one
pass is done over each yy;), this is done in O(n) total time. Finally, sorting
S\ p by angle around p, for all p € S, can be done in O(n?) total time. This is
done by dualizing S to a set of n lines. The corresponding line arrangement can
be constructed in time O(n?) with standard algorithms. The orderings around
each point can then be extracted from the line arrangement in O(n?) time.

4 Implementation

In this section we provide relevant information of the implementation of the
algorithm described in Section [3]and of the searching heuristic we used to obtain
the point sets of Table [T}

Instead of sorting in O(n?) time the points by angle around each point of
S, we used standard sorting functions. This was done because these functions
have been quite optimized, and the known algorithms to do it in O(n?) time
are not straightforward to implement. Thus our implementation actually runs
in O(n?logn) time.

All our point sets have integer coordinates. This was done to ensure the
correctness of the computation. The only geometric primitive involved in the
algorithm is to test whether certain angles are greater than m; this can be done
with a determinant. Therefore as long as all the points have integer coordinates,
the result is an integer as well. We did two implementations of our algorithm,
one in Python and the other in C. In Python, integers have arbitrarily large
precision, so the Python implementation is always correct. In the C implemen-
tation we used 128-bit integers. Here, we have to establish a safety margin—as
long as the absolute value of the coordinates is at most 262, the C implemen-
tation will produce a correct answer. Empirically we observed a 30x speed up
of the C implementation over the Python implementation. At each step of the
heuristic we checked if it was safe to use the (faster) C implementation.

To find the point ¢ replacing p = (z,y) in Step 2, we first chose two nat-
ural numbers ¢, and t,. These number were distributed exponentially with
a prespecified mean M and rounded to the nearest integer. Afterwards with



398

Fabila—Monroy & Lopez Small point sets with small rectilinear crossing number

probability 1/2 they were replaced by their negative. Point ¢ was then set to
(x + tz,y +ty). We should note that the exponential distribution was chosen
only to ensure that g can be arbitrarily far away from p. It is possible that other
distributions yield better results.

After choosing an initial mean, the heuristic was left to run for some time, if
no improvement was found by then, the mean was halved (or rather the point set
was doubled by multiplying each of its points by two). Many attempts varying
the amount of time spent waiting for an improvement were done; we kept the
best point sets we found. This was done over the course of several months. We
also focused our computing resources on those points sets with a better chance
of improving the upper bound. As a result some sets were processed for a far
longer time. We also mention that the computational resources used were quite
modest—only 3 personal computers were used in total.

All the code used in this paper is available upon request from the first author.
The point sets obtained can be downloaded from the sources of the arXiv version
of this paper.

Set of 75 points with 450492 crossings

(4473587539, 8674070321),
(2067188794, 12364750532),
(1133302705, 13923635114),
(2027617952, 3459524378),
(4113182393, 7619250691),
(3722340414, 9316231785),
(4106745227, 7535480343),
(8944839519, 7965414411),
(3648786718, 6305728855),
(2113073755, 12281280867),
(1549775961, 2575359287),
(1474528964, 2436685704),
(1889666524, 3220648103),
(4897948559, 8128714256),
(5202684700, 7706307614),
(7370957968, 7863465953),
(6168237700, 8065376268),
(6888712646, 7936512772),
(7338699912, 7861922951),
(8806696260, 7963533399),
(15041590733, 8118237065),
(1902291407, 12661152660),
(10634751909, 8004278071),
(4338851382, 8157414467),
(4532317105, 8633237970),

(2195118038, 12138376393),
(3798074340, 9176659177),
(1044611367, 14069644578),
(4601468259, 7662169961),
4116054424, 7605654413)
4112078622, 7625130881)
3189483730, 5743999450)
3955068845, 6639763085),
(3653540692, 6310524663),

)
)
)

Py

(—1364755153, —2899618565),

(2154725117, 3676030999),
(1293365372, 2095165431),
(1902363904, 3245131307),
(5216754785, 7718023020),
(5277878757, 7741749531)
(7493305742, 7871610457)
(6032867454, 8070589271)
(6851478487, 7943849321)
(9000883017, 7965096231),
(3839573186, 9100031657),
(10588618608, 8002947798),
(1811935937, 12802330604),
(9630596054, 7968154616),
(4338568456, 8157953847),
(4538689274, 8630906861),

)
)
)
)

Acknowledgements
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(4107912992, 7542476726)
(3168421193, 5701152359)
(4012346331, 6733970340)
(3253433517, 5873175144)
(1679455404, 2812631891)
(2297590336, 3930708704)
(5207789612, 7710691788)
(4899124137, 8128629846)
(1683153691, 13003463181)
(5279252153, 7742686707)
(3571434484, 9806112525)
(5981198967, 8072572208)
(3214935430, 10605538217)
(4059850707, 6811671897)
(4471841261, 8674882284)
(10174892708, 7993197449)
(11185824774, 8018462436)
(9350903224, 7955792213)
(4520171724, 8637506721)
(3400009645, 10327277784)
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