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Abstract

We investigate the computational complexity of Disjoint Π-Vertex Dele-
tion. Here, given an input graph G = (V,E) and a vertex set S ⊆ V ,
called a solution set, whose removal results in a graph satisfying a non-
trivial, hereditary property Π, we are asked to find a solution set S′

with |S′| < |S| and S′ ∩ S = ∅. This problem is partially motivated
by the “compression task” occurring in the iterative compression tech-
nique. The complexity of this problem has already been studied, with
the restriction that Π is satisfied by a graph G iff Π is satisfied by each
connected component of G [7]. In this work, we remove this restriction
and show that, a few cases which are polynomial-time solvable, almost all
other cases of Disjoint Π-Vertex Deletion are NP-hard.
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1 Introduction

A graph property Π can be considered as a set of graphs. We say that a graph
G satisfies Π if G ∈ Π. The classical Π-Vertex Deletion problem is defined as
follows:

Π-Vertex Deletion (Π-VD)

Input: An undirected graph G = (V,E) and a non-negative integer k.

Question: Is there a set S of at most k vertices whose removal results in a
graph G′ with G′ ∈ Π?

Many prominent problems are special cases of Π-VD. For example, Vertex
Cover is the case of Π being “edgeless”. Lewis and Yannakakis [16] showed
that Π-VD is NP-complete for any non-trivial, hereditary property Π that can
be verified in polynomial time. A graph property Π is hereditary, if it is closed
under vertex deletion, and non-trivial if it is satisfied by infinitely many graphs
and it is not satisfied by infinitely many graphs.

In the last 20 years, this NP-completeness result motivated various research
directions on Π-VD, for instance, approximation algorithms [1], its complexity
on special input graphs [10], and the edge deletion counterpart [18]. One of the
most remarkable recent approaches to cope with the NP-completeness of Π-VD
is parameterized algorithmics [19, 6]. Π-VD carries with its definition a natural
parameter, the solution size k.

In 2004, Reed et al. [20] introduced the iterative compression technique
[14, 19] which turned out to be particularly useful for achieving parameterized
algorithms for Π-VD, for instance, for Undirected/Directed Feedback
Vertex Set where Π is a set of all “acyclic’ graphs’ [4, 13, 2, 3] and Cluster
Vertex Deletion where Π is a set of “disjoint union of cliques” [15]. This
technique builds on two separate routines, namely, the iterative routine and the
compression routine. In the former, we build the instance step by step from
an empty instance, while in the latter we are given an instance and a solution,
and we endeavor to search for a better solution for the given instance. The
compression routines of iterative compression algorithms for Π-VD basically
deal with a disjoint version of Π-VD which can be defined as follows:

Disjoint Π-Vertex Deletion (D-Π-VD) [7]

Input: An undirected graph G = (V,E) and a vertex set X ⊆ V such
that G[V \X] ∈ Π.

Question: Is there a vertex subset X ′ ⊆ V with |X ′| < |X| and X ∩X ′ = ∅
such that G[V \X ′] satisfies Π?

Fellows et al. [7] initiated the study of D-Π-VD and gave a complexity di-
chotomy of this problem for the case that the non-trivial, hereditary property
Π is determined by components. A graph property Π is determined by com-
ponents, if a graph G satisfies Π iff each of G’s connected components satisfies
Π. Since every hereditary graph property Π can be characterized by a set H
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of forbidden induced subgraphs, the dichotomy achieved in [7] holds for D-Π-
VD, where Π corresponds to a forbidden subgraph set H that contains only
connected graphs. Fellows et al. [7] proved that as long as the forbidden set
H does not contain a star with at most two leaves, the corresponding D-Π-VD
problem is NP-hard; otherwise, it is polynomial-time solvable.

In this paper, we generalize the results of Fellows et al. to the case where
the forbidden set H is allowed to contain disconnected graphs. Note that many
important graph properties can be characterized by forbidden sets H containing
disconnected graphs, for instance, threshold graphs with H containing 4-vertex
path, 4-vertex cycle and two independent edges. Recently, parameterized algo-
rithms based on the iterative compression technique for Π-VD have been de-
rived for Π corresponding to disconnected forbidden subgraph characterizations
[12, 11].

Our Results Let H be the set of forbidden subgraphs corresponding to a
graph property Π. Note that, if H or the set H̃ of the complement graphs of the
graphs in H contains only connected graphs, the dichotomy in [7] applies. Thus,

we only consider the case when both H and H̃ contain disconnected graphs. Our
results can be summarized as follows: If H contain no star with at most two
leaves and no disconnected graph whose connected components are all stars
with at most two leaves, then D-Π-VD is NP-complete. Then, for the case
that H contains a star of two leaves, we prove polynomial-time solvability of
D-Π-VD. For H containing disconnected forbidden subgraphs with stars of at
most two leaves as connected components, we achieve NP-hardness as well as
polynomial-time solvability results. A few cases are left open.

Preliminaries. For a graph G = (V,E), let E(G) and V (G) denote the set of
edges and vertices of G, respectively. Unless specifically mentioned, we follow
the graph theoretic notations and definitions from [5]. If we delete a vertex v
or a subgraph S from graph G, we denote the resulting graph as G − {v} and

G − S, respectively. A complement or inverse of a graph G is a graph G̃ such
that G̃ is on the same vertices as G and two vertices of G̃ are adjacent if and
only if they are not adjacent in G. For a set H of graphs, let H̃ be the set
containing the complements of all graphs in H.

A P4 is a path on four vertices. A star Sl is a star with l leaves, while a S≤l
has at most l leaves. We call a graph a non-star if it does not satisfy the condition
for stars. For a disconnected graph G, if each of its connected components is a
star, we call G an all-star. A (≥ i)-all star is an all-star containing a star Sl with
l ≥ i. An (i)-all star is an all-star containing a star Sl with l = i. A (≤ i)-all
star is an all-star which consists only of stars S≤i as its connected components.
Clearly, a (< 1)-all star is an edgeless graph. A (P4, 3)-all star is a disconnected
graph which consists only of P4’s and stars as its connected components, among
which the largest star being S3. A (P4,≤ 2)-all star is a disconnected graph
which consists only of P4’s and stars Sl with l ≤ 2 as its connected components.

Given a set H of graphs, let Hc and Hd be the sets which contain all con-
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nected and disconnected graphs of H, respectively. Each graph hdi ∈ Hd can be
viewed as a set of connected components, denoted as hdi(1), hdi(2), · · · , hdi(t).
We say that hdi(j) has a number of occurrence x in hdi if there exist x many
connected components in hdi which are isomorphic to hdi(j).

1.1 Some Important Definitions

A non-adjacent vertex of v is called a non-neighbor of v and the set of all non-
neighbors of v is called the non-neighborhood of v. We say that v is global to
a set Z if v is adjacent to all vertices of Z and we say that v is non-adjacent
(or a non-neighbor) to a set Z if v is not adjacent to any vertex of Z. For two
sets X and Y , we say X is global to Y when every vertex of X is adjacent to
all vertices in Y and that X is non-adjacent to Y if there is no edge between X
and Y .

Definition 1 (Lexicographic order) Given sets A and B with a common or-
dering �, one defines an ordering between all sequences (finite or infinite) of
elements of A and of elements of B by (a1, a2, · · · ) � (b1, b2, · · · ) if either ai = bi
for every i, or an < bn, where n is the first place in which they differ.

Definition 2 (α-sequence) [16] For a connected graph H, if H is 1-connected,
then take a cut-vertex c; otherwise, let c be an arbitrary vertex (in this case, H−
{c} has only one connected component). Sorting the connected components
of H−{c} decreasingly with respect to their sizes gives a sequence α = (n1, · · · , ni),
where n1 ≥ · · · ≥ ni. The sequence depends on the choice of c. The α-sequence
of H, α(H), is a sequence which is lexicographically smallest among all such
sequences α.

Now, we present some definitions which will be used heavily in the reductions
later. We classify the graphs inH and the connected components of graphs inHd

into one containing K3 and K3-free. Next, based on this classification we define
the following set of lexicographic sequences and sets of connected components
which will be crucial in the gadget constructions in the reductions that follows:

Definition 3 (C(hdi), K(hdi) and J(hdi)) For a disconnected graph hdi, the
set C(hdi) consists of all the connected components of hdi. Similarly, the set K(hdi)
consists of all the connected components of hdi which contains a K3 and the
set J(hdi) consists of all the connected components in C(hdi) \K(hdi).

Definition 4 (Ω-sequence, Γ-sequence and ∆-sequence) For a disconnected
graph hdi, the Ω-sequence of hdi, denoted as Ω(hdi), is the lexicographically
largest α-sequence of the α-sequences of all connected components of hdi. Sim-
ilarly, the Γ-sequence of hdi, denoted as Γ(hdi), is the lexicographically largest
α-sequence of the α-sequences of all connected components in K(hdi). If K(hdi)
is empty, we set Γ(hdi) to +∞. The ∆-sequence of hdi, denoted as ∆(hdi)
is the lexicographically largest α-sequence of the α-sequences of all connected
components in J(hdi), if K(hdi) is empty; otherwise, we set ∆(hdi) to +∞.
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Definition 5 (Υ-sequence, Θ-sequence and Φ-sequence) For a set of for-
bidden subgraphs H, let A be the lexicographically smallest α-sequence of the α-
sequences of all graphs in Hc. Let B be the lexicographically smallest α-sequence
of the α-sequences of all graphs in Hc, which contains a K3. Let C be the lexi-
cographically smallest α-sequence of the α-sequences of all graphs in Hc, which
are K3-free. Let D be the lexicographically smallest one of the Ω-sequences of all
graphs in Hd. Let E be the lexicographically smallest one of the Γ-sequences of
all graphs in Hd. Let F be the lexicographically smallest one of the ∆-sequences
of all graphs in Hd. The Υ-sequence of H, denoted as Υ(H), is the lexicograph-
ically smaller one of A and D. The Θ-sequence of H, denoted as Θ(H), is
the lexicographically smaller one of B and E. The Φ-sequence of H, denoted
as Φ(H), is the lexicographically smaller one of C and F .

Definition 6 (Ψ(H) and Σ(H)) For a set of graphs H, the set Ψ(H) consists
of all the graphs hdi in Hd, where hdi contains at least one connected component
hdi(x) such that hdi(x) contains K3 and α(hdi(x)) = Θ(H). Similarly, the set
Σ(H) consists of all the graphs hdj in Hd, where hdj is K3-free and it has at
least one connected component hdj(y) such that α(hdj(y)) = Φ(H).

Definition 7 (M(hdi) and N(hdi)) For a graph hdi ∈ Hd, the set M(hdi) con-
sists of all the connected components hdi(x) in hdi, such that hdi(x) contains a
K3 and α(hdi(x)) = Θ(H). Similarly, the set N(hdi) consists of all the connected
components hdi(y) in hdi, such that hdi(y) is K3-free and α(hdi(y)) = Φ(H).

Let ς be the number of leaves of smallest star T in Hc. Let U be the all-star
in Hd whose Ω-sequence is lexicographically largest among Ω-sequences of all
all-stars in H. Let τ be the number of leaves in largest connected component of
U .

2 No stars with at most two leaves

We prove here that, if H contain neither a star with at most two leaves nor an
(≤ 2)-all-star, then D-Π-VD is NP-hard. To this end, we distinguish two cases
based on the number of leaves: First, we adapt the reduction in [7] to deal with
the case that H contains no S≤3 and no (≤ 3)-all stars. Then, a new reduction
is given for the three leaf star case.

Lewis and Yannakakis [16] devised a framework, to prove that Π-VD for
a non-trivial hereditary property Π is NP-complete. Later, Fellows et al. [7]
modified this framework for the NP-hardness proofs of D-Π-VD with connected
forbidden subgraphs when H contains no star with at most three leaves. They
reduced from Vertex Cover on triangle-free graphs, where they picked the
subgraph H in H, that has the lexicographically smallest α-sequence1, to build
the vertex and edge gadgets [7]. We can further extend this adaptation to
deal with disconnected forbidden subgraphs for the above case. However, the

1For the definition of α-sequences, see [16]
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selection of the subgraph H for the vertex and edge gadgets is more tricky. Here,
we have to consider the connected components of each disconnected subgraphs.
If a connected component C of a disconnected subgraph H has lexicographically
smallest α-sequence among all connected subgraphs in Hc and all connected
components of disconnected subgraphs in Hd, then we use C to build the vertex
and edge gadgets. Further constructions are also needed for other components
of H.

Before going to the reduction, we introduce a new variant of D-Π-VD, where
the size of the new solution is given as a parameter. In all the following proofs,
we show the NP-hardness of this variant, since all hardness proofs need a size
gadget that is employed in the reduction from the variant to D-Π-VD. We define
this variant as follows:

Size Disjoint Π-Vertex Deletion (SD-Π-VD)

Input: An undirected graph G = (V,E), an integer k ≥ 0, and a vertex
subset X ⊆ V such that G[X] ∈ Π, G[V \ X] ∈ Π, and X is inclusion-
minimal under the property Π.

Question: Is there a vertex subset X ′ ⊆ V with |X ′| ≤ k such that X∩X ′ = ∅
and G[V \X ′] ∈ Π ?

Lemma 1 [7] SD-Π-VD can be reduced to D-Π-VD in polynomial-time.

Note here that, the lemma and proof given in [7] for reduction from SD-Π-VD
to D-Π-VD works even when H contains connected as well as disconnected
graphs. In the following, we discuss the adaptation in the framework of Lewis
and Yannakakis. This adaptation is similar to one in [7]; however, some modifi-
cations are needed to derive the general result. In each of the reductions, we will
follow a chain of rules to choose an encoding forbidden subgraph, denoted by H
and the replacement structure, denoted by R(H). If the chosen encoding forbid-
den subgraph H is a connected forbidden graph, then we will take the whole H
as our replacement structure R(H); otherwise, if H is disconnected graph then
we choose one of its connected components as our replacement structure R(H).
The process of choosing R(H) is case-specific and will be discussed in details
later.

Recall that, the α-sequence is defined based on a vertex c. Let c ∈ R(H) be
such a vertex whose removal results in the smallest α-sequence for R(H). Note
that every proper induced subgraph of R(H) has a lexicographically smaller α-
sequence than that of R(H). When H is not a star, R(H) must contain at
least two vertices. Thus, a largest component J of R(H)−{c} contains at least
one vertex. Let d be an arbitrary vertex in J , and let R(H)† be the graph
resulting by removing all vertices in J from R(H), and let J ′ be the subgraph
of R(H) induced by V (J) ∪ {c}, as illustrated in Fig 1. If H ∈ Hd, then
we denote H − R(H) as S(G) and use S(G) as satellite gadget which will be
discussed in details later.

Recall that, for the following two proofs, we assume that the set H corre-
sponding to Π contains no stars and all-stars. To proceed with the proof we
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Figure 1: (from [7]) Connected graph R(H) with a cut-vertex c and some other
vertex d in a largest connected component J of R(H) − {c}. Moreover, the
graphs R(H)† := R(H)− V (J) and J ′ = R(H)[V (J) ∪ {c}] are illustrated.

make the following case distinction: 1) all graphs in H contains a K3 and 2) not
all graphs in H contains a K3.

2.0.1 Case when all graphs in H contain a K3:

Assume that H only consists of graphs that contains K3. We reduce the NP-
complete Vertex Cover problem on K3-free graphs [9] to Size D-Π-VD.
Firstly, we follow some rules for choosing H from H and R(H) from H.

1. If there is a connected graph H in H with the same α-sequence as Θ(H),
then we useH as our encoding forbidden subgraph and also set R(H) = H.

2. Consider the case when there are no connected graphs in H with the
same α-sequence as Θ(H), but there are disconnected graphs hdi’s ∈ Hd

whose largest connected component has an α-sequence equal to Θ(H).
Among the graphs in Ψ(H), let hdi ∈ Hd be the one with minimum
number of non-isomorphic connected components in their respective sets
M(hdi). However, it may be possible that there exists another hdk ∈ Hd

such that all the non-isomorphic connected components hdi(j)’s in M(hdi)
are also present in M(hdk). We refer to all such hdk’s as the K3-proxies
of hdi. Further, we make the following case distinction:

(a) If there exists no K3-proxy of hdi in Hd, then we will choose hdi as
H and set an arbitrary connected component from M(hdi) as our
replacement structure R(H).

(b) If there exist K3-proxies of hdi in Hd, then we will pick a connected
component hdi(j) from M(hdi) such that hdi has the minimum num-
ber of occurrence of hdi(j) among all its K3-proxies. Moreover, we will
choose hdi as H and set hdi(j) as our replacement structure R(H).

(c) If there exists no such hdi(j) in hdi which fulfils the condition given
in (b), then we replace hdi with one of its K3-proxies which contains
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a connected component which fulfils such condition and we choose
the necessary replacement structure as in (b).

Reduction and Correctness: In [7], Fellows et al. reduced an instance G
of Vertex Cover on K3-free graph to an instance G′ of D-Π′-VD where
the corresponding set of forbidden subgraphs H′ contains no stars or discon-
nected subgraphs based on the framework of Yannakakis. In their reduction,
the authors made heavy use of α-sequences. Firstly, we select the subgraph
with lexicographically smallest α-sequence and mark it as encoding forbidden
subgraph R(H). For every vertex v in G create a copy of R(H)† and identify c
and v. Replace each edge {u, v} in G with a copy of J ′, identifying c with u
and d with v, respectively. Now, in the constructed graph G′, we will greedily
compute a minimal H-obstruction set X for G′ such that X ∩ V (G) = ∅. Such
a set X always exists, since G is K3-free and, therefore, does not contain any
forbidden subgraph. With this construction, the authors proved that that the
graph G has a size-k vertex cover if and only if G′ has a size-k vertex set disjoint
from X that obstructs the graphs with same or higher α-sequence than that of
α(R(H)) in G′[V \ V (S(G′))].

Now, in our reduction, we modify the adaptation of Yannakakis’ reduction
to include the scenario when both connected and disconnected graphs are in H.
Instead of choosing the subgraph with lexicographically smallest α-sequence, we
follow the the rules above to choose the embedding forbidden subgraph R(H)
and create the D-Π-VD instance. We construct a set X similar to the one in [7].
Moreover if H ∈ Hd, we initialize the satellite gadget of G′ denoted as S(G′)
with an isolated copy of S(H) and add V (S(G′)) to X.

R(H) contains a K3. We can further observe that, if H ∈ Hc, then all other
graphs in Hc have the same or lexicographically larger α-sequences than the one
of H and all graphs hdi ∈ Hd contain at least one connected component with
lexicographically same or larger α-sequence than the one of H. If H ∈ Hd be the
chosen encoding forbidden subgraph, it is evident from the rules followed that
all the graphs in Hd have at least one connected component with α-sequence
lexicographically equal to or larger than Θ(H). Moreover, all the graphs in
Hd which are not K3 proxies of H and contains no connected component with
lexicographically higher α-sequence than Θ(H) contains at least one connected
component h, such that α(h) = Θ(H) and h is not present in H. Moverover,
if the number of occurrence of R(H) in H is x, then all hdi’s ∈ Hd, which are
K3-proxies of H, contain a subgraph that is isomorphic to R(H) and occurs in
hdi at least x times. With these observations, it is evident that if the number
of occurrence of R(H) in H is x, we can obstruct all the graphs from H in G′

by obstructing all but x− 1 copies of R(H) and all subgraphs with α-sequences
higher than the one of R(H) from G′.

With these observations and the arguments similar to the one in [7], we can
show that the graph G has a size-k vertex cover if and only if G′ has a size-k
vertex set that obstructs all the graphs with same or higher α-sequence than
that of α(R(H)) in G′[V \ V (S(G′))] which gives us the following lemma:
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Lemma 2 If H only consists of graphs which contains K3, then D-Π-VD is
NP-hard.

2.0.2 Case when not all forbidden subgraphs in H contain a K3:

Similar to the above case, we follow some rules to choose the encoding forbidden
subgraph H and the corresponding replacement structure R(H) which will be
used as a gadget in the reduction fromNP-complete Vertex Cover onK3-free
graphs to D-Π-VD. The only difference is that G might now contain a forbidden
subgraph in H, and we now need to show that it is possible to greedily compute
a minimal H-obstruction set X for G′ such that X ∩ V (G) = ∅. The rules are
as follows:

1. If there is a K3-free graph H in Hc, with the same α-sequence as Φ(H),
then we use H as our encoding forbidden subgraph H and also set it as
R(H).

2. Consider the case when there is no K3-free graph in Hc with the same
α-sequence as Φ(H), but there are other K3-free graphs hdi’s ∈ Hd whose
largest connected component has an α-sequence equal to Φ(H). Among
the forbidden subgraphs in Σ(H), let hdi ∈ Hd be the one with the mini-
mum number of non-isomorphic connected components in their respective
sets N(hdi). However, it may be possible that there exists another K3-free
hdk ∈ Hd such that all the non-isomorphic connected components hdi(j)’s
in N(hdi) are also present in N(hdk), though their number of occurrence
may be different. Again, we denote all such hdk’s as the K3-free proxies
of hdi. Furthermore, we make the following case distinction:

(a) If there exists no K3-free proxy of hdi in Hd, then we will choose hdi
as H and any arbitrary connected component of hdi from N(hdi) as
our replacement structure R(H).

(b) If there exist K3-free proxies of hdi in Hd, then we will pick the con-
nected component hdi(j) from N(hdi) such that hdi has the minimum
number of occurrence of hdi(j) among all its K3-free proxies. More-
over, we will choose hdi as H and the connected component hdi(j) as
our replacement structure R(H).

(c) If there exists no such hdi(j) in hdi which fulfils the condition given
in (b), then we set H as one of the K3-free proxies of hdi, which
contains a connected component, which fulfils such conditions, and
we choose the necessary replacement structure as in (b).

Reduction and Correctness: We construct G′ in the same way as in the
reduction in Lemma 2. Now, by setting R(H) in this way, the largest connected
component in R(H)−{c} contains at least one edge, due to the fact that R(H)
is not a star. Moreover, since R(H) does not contain K3, at most one endpoint
of this edge is adjacent to c. Then, we select an endpoint of this edge that is
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not adjacent to c as the vertex d used in the construction of G′. Now, we can
observe that in the resulting G′ the vertices in V (G) induce an independent set.
Therefore, removing all vertices V (G′) \V (G) gives an H-obstruction set for G′

and we can easily compute an inclusion-minimal solution X for G′ with X ∩
V (G) = ∅.

Since the graphs G and R(H) are K3-free and so is G′, forbidden induced
subgraphs with smaller α-sequences than R(H), that contain K3, do not need
to be considered. We can further observe that, if H ∈ Hc, then all other K3-free
graphs in Hc have same or larger α-sequences than the one of R(H) and all the
K3-free graphs in Hd contain at least one connected component which has the
same or larger α-sequence than the one of H. Moreover, if H ∈ Hd, then all K3-
free graphs inHc have α-sequences larger than the one of R(H). If H ∈ Hd is the
chosen encoding forbidden subgraph, it is evident from the rules followed that
the connected component of H with the lexicographically largest α-sequence
has an α-sequence equal to Φ(H). Moreover, all the K3-free graphs in Hd,
which are not K3-free proxies of H and contain no connected component with
lexicographically higher α-sequence than Φ(H), contain at least one connected
component h, such that α(h) = Φ(H) and h is not present in H. If the number
of occurrence of R(H) in H is x, then all K3-free forbidden subgraphs hdi ∈
Hd, which are K3-free proxies of H, contain a connected component that is
isomorphic to R(H), and occurs in hdi at least x times. From these observations,
it is evident that if the number of occurrence of R(H) in H is x, we can obstruct
all the graphs from H in G′ by obstructing all but x− 1 copies of R(H) and all
K3-free subgraphs with α-sequences higher than the one of R(H) from G′.

With these observations and the arguments similar to the one in [7], we can
show that the graph G has a size-k Vertex Cover if and only if G′ has a size-k
vertex set disjoint from X that obstructs all the K3-free graphs with same or
higher α-sequence than that of α(R(H)) in G′[V \V (S(G′))] giving the following
lemma:

Lemma 3 If H has no stars and all-stars in H, but contains other subgraphs
such that there is at least one K3-free subgraph in H, then D-Π-VD is NP-hard.

Hence, from Lemmas 2 and 3, we get the Lemma 4

Lemma 4 D-Π-VD is NP-complete unless there is a star or an all-star in H.

2.1 Case with 4-stars and 4-all stars in H
In this section, we present NP-hardness proofs for D-Π-VD in the scenario
when min{ς, τ} ≥ 4. Firstly, we follow the following rules to choose the encoding
forbidden subgraph:

1. If ς ≤ τ , we choose T as our encoding forbidden subgraph H.

2. If ς > τ , then among the all-stars in Hd, we choose the one with the
lexicographically smallest Ω-sequence as our encoding forbidden subgraph.
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If more than one such all-stars have that particular Ω-sequence, then we
choose the hdi ∈ Hd with the minimum number of occurrence of the
connected component hdi(x) such that α(hdi(x)) = Ω(H) as our encoding
forbidden subgraph H.

Clearly, the chosen encoding forbidden subgraph H is either a star or an
all-star. Moreover, since there exists no (≤ 3)-all star in H, if H ∈ Hd, it con-
tains at least one connected component S≥4. If the chosen encoding forbidden
subgraph H is a connected graph hci ∈ Hc, we take the whole H as R(H);
otherwise, if H is a disconnected graph hdi ∈ Hd, we choose its connected com-
ponent with the largest α-sequence as R(H) and use its other components as
satellite gadget.

Based on the above observations, we now prove the following lemma:

Lemma 5 If all the stars Sl present in Hc have l ≥ 4 and all all-stars in Hd

contain at least one connected component being a star Sl with l ≥ 4, then D-Π-
VD is NP-hard.

Proof: This proof is similar to the one in Section 4.3 of [7] with slight modifi-
cations to include the disconnected graphs in H. Due to much similarity with
the proof in [7], we just point out the modification to include the disconnected
subgraphs in H. In Lemma 4.13 in [7], Fellows et al. gave a reduction from an
instance G of the NP-complete Vertex Cover problem on graphs of maxi-
mum degree three [9] to an instance G′ of SD-Π′-VD where the corresponding
set of forbidden subgraphs H′ contains stars with at least four leaves and no
disconnected subgraphs. In the reduction, they constructed G′ from G by em-
bedding the smallest star in H′ into every vertex and edge. In this way, they
showed that G has a size-k Vertex Cover if and only if SD-Π′-VD has size-k
solution. Now, in our adaptation, we construct the SD-Π-VD instance G′ from
Vertex Cover instance G by embedding the encoding forbidden subgraph
R(H) selected by the rules followed above into every edge and vertex of G in-
stead of embedding the smallest star as in [7]. Let us assume R(H) is a star
with t leaves. Moreover, if H is a disconnected graph, we add H −R(H) as the
isolated satellite gadget S(G′) to G′. The vertices are added in X in the same
way as in [7]. Moreover, we further add the entire satellite gadget to X.

Now, every graph in Hc has α-sequence lexicographically larger or equal
to α(R(H)). Moreover, every graph in Hd has at least one connected com-
ponent with α-sequence lexicographically equal to or larger than the one of
R(H). Hence, it is enough to obstruct all non-stars and stars Sl with l ≥ t in
G′[V \ V (S(G′))] to satisfy the required property Π. With this observation and
arguments similar to one in [7], we can show that there is a size-k vertex cover
for G if and only if there is a vertex set X ′, X ′∩X = ∅, of size k′ := k+ |E(G)|,
which obstructs all forbidden induced subgraphs in G′. In other words, (G, k)
is a yes-instance for Vertex Cover if and only if (G′, X, k′) is a yes-instance
for SD-Π-VD, which shows that SD-Π-VD is NP-hard. The NP-hardness of
D-Π-VD then follows from Lemma 1. �

Hence, with Lemma 4 and Lemma 5 together we have the following lemma:
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Lemma 6 If Hc does not contain S≤3 or (≤ 3)-all star, then D-Π-VD is NP-
hard.

In the following, we consider the case that is, H contains S3 or 3-all stars.
Here, we distinguish two cases and derive completely different reductions com-
pared to [7]. In particular, we prove the following theorem:

Lemma 7 If there exists a star S3 in Hc or an 3-all-star in Hd and there exists
no S≤2 or (≤ 2)-all star in H, then D-Π-VD is NP-hard.

Proof: Here, we distinguish two cases: 1) H contains neither P4 nor (P4,≤ 2)-
all star, and 2) H contains P4 or (P4,≤ 2)-all star. We firstly show the proof
for case 1) and then the one for case 2) subsequently.

Assume that there exists a S3 in Hc or a 3-all star in Hd. Moreover, P4

and (P4,≤ 2)-all star are not present in H. If there exists a S3 in Hc, we
set H as S3; otherwise, among the 3-all stars and (P4, 3)-all stars in Hd, we
choose the one with the minimum number of occurrence of S3 as H. Let this
minimum number of occurrence be x. We can observe that all other graphs in
Hd have either at least x occurrence of S3 or it contains at least one connected
component with a higher α-sequence than the one of S3.

The reduction is from the NP-complete 3SAT-2l problem [9], which is
defined as follows:

3SAT-2l

Input: A 3-CNF boolean formula F where each literal appears at most twice
in the clauses.

Output: A satisfying assignment for F .

We assume without loss of generality that each variable appears in each
clause at most once. Let F = c1∧· · ·∧ cq be a 3SAT-2l formula over a variable
set Y = {y1, · · · , yp}. We denote the k-th literal in clause cj by lkj , for 1 ≤ k ≤ 3.
Starting with an empty graph G and X := ∅, construct an instance (G,X) for
D-Π-VD as follows. An example of the construction is given in Fig 2. For each
variable yi, introduce a star Yi with three leaves (variable gadget), add one leaf
and the center vertex of Yi to X and label the remaining leaves of Yi with “+”
and “−”, respectively. For each clause cj , add a star Cj with three leaves (clause
gadget) and add its center vertex to X. Add a degree-1 neighbor to each vertex
of Cj and this degree-1 vertex is added to X. Each of the three leaves of Cj

corresponds to a literal in cj , and each leaf is connected to a variable gadget as
follows. Suppose that lkj is a literal of variable yi, and let ak be the leaf of Cj

corresponding to lkj . Add an edge (connection gadget) between ak and the “+”-

leaf of the corresponding Yi, if lkj = yi; otherwise, to the “−”-leaf of Yi. Finally,
if H is a disconnected graph, a we create a satellite gadget S(G) isomorphic to
H − S3, that is, the subgraph of H with one S3 removed. Moreover, we add all
vertices of this satellite gadget to X.

Obviously, G[V \X] only contains disjoint stars with at most two leaves. We
note here that, since each literal can occur in at most two clauses, these two
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C1

Y1 Y2 Y3+ − + − + −

y1 ¬y2 ¬y1 ¬y2

y3 ¬y3

Figure 2: Example for the reduction in the proof of Theorem 7 from the 3SAT-
2L instance with formula (y1 ∧ ¬y2 ∧ y3) ∨ (¬y1 ∧ ¬y2 ∧ ¬y3) to Disjoint Π-
Vertex Deletion with the given solution X (black vertices). For illustration
the clause gadget C1 and variable gadget Y1 are labelled.

leaf stars can only be centered at “+” or “−” labelled vertices of Yi. Hence,
G[V \X] ∈ Π. We now show that formula F has a satisfying truth assignment
if and only if there exists a size-(p+ 2q) set X ′ with X ′ ∩X = ∅, that obstructs
all forbidden induced subgraphs in G. Clearly, |X| > p+ 2q.

(⇒) Assume that a satisfying truth assignment for F is given. Based on this
truth assignment, we construct the disjoint solution X ′, beginning with X ′ := ∅,
as follows. For each variable yi, 1 ≤ i ≤ p, if yi = TRUE, then add the vertex
labelled “+” in Yi to X ′; otherwise, add the vertex labelled “−” to X ′. This
ensures that from each variable gadget, exactly one vertex will be in X ′. Next,
for each clause cj we have at least one literal set TRUE, say lij . Then, we add the

two leaves of Cj which do not correspond to lij to X ′. This procedure obstructs
the stars with three or more leaves at the clause gadgets by totally 2q vertices.
Then, |X ′| = p+ 2q. The connected components of G[V \ (X ′ ∪ V (S(G)))] are
either isolated vertices, isolated edges, or P4’s. Hence, G[V \X ′] ∈ Π.

(⇐) Let X ′ with X ′ ∩X = ∅ be a size-(p+ 2q) vertex set that obstructs all
forbidden induced subgraphs in G. Due to the satellite gadget S(G), X ′ must
obstruct all S3’s in G[V \ V (S(G))]. Since there exists a S3 in each variable
gadget, at least one vertex from each variable gadget must be in X ′, which
requires in total p vertices. This means that we can construct an assignment
for F : From a variable gadget Yi, if the vertex labelled “+“ is in X ′, we assign
TRUE to yi; otherwise, we assign false to yi. The other 2q vertices of X ′ must be
used for obstructing the stars with three or more leaves at clause gadgets, which
implies that for each clause gadget cj , exactly one leaf remains in G[V \X ′]. The
constructed assignment has to satisfy the formula F , since for each connection
gadget, there exist some S3’s, each consisting of this connection gadget and a
vertex in X and thus, from each connection gadget at least one vertex is in X ′.

�

Now, we prove Lemma 7 for the case 2) that is, when H contains P4 or
(P4,≤ 2)-all star.
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Proof:
Assume that there exists a P4 or a (P4,≤ 2)-all star in H. We make further

case distinctions:

A There exists a P4 in H.

In this case, if there exists a S3 in Hc, set H1 = S3 and R(H1) = S3 and
set s = 1; otherwise among the 3-all stars in H, we pick the one with the
minimum number of occurrence of S3 as encoding forbidden subgraph H1

and set R(H1) = S3. Set s with the number of occurrence of S3 in H1.
Moreover, we set H2 = P4 and t = 1.

B There does not exist a P4 in H.

Among (P4,≤ 2)-all stars in H, let T be the one with the minimum number
of occurrence of P4. We set H2 = T and R(H2) = P4 and initialize S(G)
with an isolated copy of H2 − V (R(H2)). Let the number of occurrence of
P4 in T be t. If there exists a S3 in Hc, set H1 = S3 and s = 1; otherwise,
among the 3-all stars and (P4, 3)-all stars with at most t occurrence of P4’s,
we choose the one with the minimum number of occurrence of S3 and set
it as H1. In this case, let the number of occurrence of star S3 in H1 be s.
Based on H1, we make the following case distinctions:

(a) H1 is a 3-all star or a S3.

In this case, set R(H1) = S3. Moreover, add S(G) with an isolated copy
of H1 − V (R(H1)).

(b) H1 is a (P4, 3)-all star.

In this case, set R(H1) = S3. Moreover, add an isolated copy of H1 −
V (R(H1)) in satellite gadget S(G). Further, we remove all but t − 1
P4’s from S(G).

Note here that if all the (P4, 3)-all stars in H contain higher occurrence of P4

than T , then we can remove all (P4, 3)-all stars from H and do the reduction
as in Lemma 1. This is true as in the reduction, T will take care of all the
removed (P4, 3)-all stars.

We assume that there exists a S3 in Hc or there exists a 3-all star in Hd

and there also exists a P4 or a (P4,≤ 2)-all star in H. Let H1 and H2 be
the corresponding graphs and S(G) the corresponding satellite gadget chosen
based on the rules followed above. The reduction from NP-complete 3SAT-2l
is similar to one for 1). Starting with an empty graph G and X := ∅, construct
an instance (G,X) for D-Π-VD as follows. For each variable yi, introduce a
path Yi on five vertices (variable gadget), and add the end and middle vertices
on each Yi to X and label the remaining vertices of Yi with “+” and “−”,
respectively. For each clause cj , add a star Cj with four leaves (clause gadget)
and add its central vertex and one of its leaves to X. Each of the three remaining
leaves of Cj corresponds to a literal in cj , and each leaf is connected to a variable
gadget as follows. Suppose that lkj is a literal yi or ¬yi, and let ak be the leaf
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C1

Y1 Y2 Y3

+ − + − + −

y1 ¬y2 ¬y1 ¬y2

y3 ¬y3

Figure 3: Example for the reduction in the proof of case 2) of Lemma 2 from
the 3SAT-2l
instance with formula (y1 ∧ ¬y2 ∧ y3) ∨ (¬y1 ∧ ¬y2 ∧ ¬y3) to D-Π-VD with the
given solution X (black vertices). For illustration the the clause gadget C1 and
variable gadget Y1 are labelled.

of Cj corresponding to lkj . Add an edge (connection gadget) between ak and
“+” of the corresponding Yi if ak corresponds to positive literal; otherwise, to
“−” of the corresponding Yi. Finally, we add an isolated copy of satellite gadget
S(G) to G and we add the satellite gadget to X. An example of the following
construction is given in Fig. 3.

Observe that every forbidden subgraph in H contains at least one connected
component which is S3 or a P4 or one with higher α-sequence than that of a star
S3. Obviously, G[V \ X] only contains disjoint stars with at most two leaves.
We note here that since each literal can occur in at most two clauses, there can
be a star with at most two leaves at “+” or “−” labelled vertex of Yi. Hence,
G[V \X] ∈ Π. With the above construction, and arguments similar to the proof
of 1), we can show that formula F has a satisfying truth assignment if and only
if there exists a size-(p + 2q) set X ′, X ′ ∩ X = ∅, that obstructs all P4’s and
S3’s in G′[V \ V (S(G′))]. In other words, F has a satisfying truth assignment
if and only if (G,X, p+ 2q) is a yes-instance of D-Π-VD. �

Combining Lemmas 6 and 7, we arrive at the following theorem:

Theorem 1 D-Π-VD is NP-complete, unless H contains a star S≤2 or a (≤ 2)-
all star.

3 Stars with two leaves

We examine now the cases that H contains S≤2 or (≤ 2)-all star. Here, we
achieve NP-completeness as well as polynomial-time solvability results. First
we show that the case with S≤2 ∈ H is solvable in polynomial time.
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3.1 Forbidden stars with two leaves

Fellows et al. [7] proved that in the case of connected forbidden subgraphs, if H
contains S≤2, then D-Π-VD is polynomial-time solvable. We extend this result
to the disconnected case.

Theorem 2 D-Π-VD can be solved in polynomial time when H contains a
star S≤2.

This theorem applies to the graph properties Π whose sets of minimal forbid-
den induced subgraphs H contain K1 (a single vertex), P2 (a single edge) or P3

(a path on three vertices). D-Π-VD with K1 being forbidden is not non-trivial,
as Π is an empty set, and hence solvable in polynomial time. If H contains P2,
then other minimal forbidden subgraphs in H can only be sets of independent
vertices; otherwise, these forbidden subgraphs are not minimal. If H consists
of only P2, then the compression routine in the iterative compression algorithm
for Vertex Cover given in [19] directly gives a polynomial-time algorithm for
the corresponding D-Π-VD problem. If H contains in addition to P2, an inde-
pendent set of size s, then Π is not non-trivial. Now, we give a polynomial-time
algorithm for D-Π-VD when H contains P3.

Note that a graph is called a cluster graph if it contains no induced P3. A
cluster graph is a disjoint set of cliques. Since H is a set of minimal forbidden
induced subgraphs and P3 ∈ H, all other forbidden subgraphs in H must also be
cluster graphs. Let H1, H2, . . . ,Hl be the minimal cluster graphs present in H.
Now, for each forbidden cluster graph Hi, let H1

i , H
2
i , . . . ,H

c
i be its connected

components arranged in non-ascending order of their sizes. Let (G = (V,E), X)
be the input instance of D-Π-VD with |V | = n. Since X is a solution set, G[X]
is a collection of cliques and it induces no forbidden cluster graphs from H.

We describe an algorithm that finds a minimum-size vertex set X ′ such that
X ∩ X ′ = ∅ and G[V \ X ′] ∈ Π, or returns “no-instance”. The algorithm
is similar to the compression routine of the iterative compression algorithm
for Cluster Vertex Deletion [15], but additionally takes into account the
forbidden cluster graphs in H. In first step, the instance is simplified by two
simple data reduction rules, whose correctness is easy to see [15]:

1. Delete all vertices in R := V \X that are adjacent to more than one clique
in G[X].

2. Delete all vertices in R that are adjacent to some, but not all vertices of a
clique in G[X].

After these data reduction rules have been exhaustively applied, the instance
has the following property. In each clique of G[R], we can divide the vertices into
equivalence classes according to their neighborhoods in X, where each class then
contains vertices either adjacent to all vertices of a particular clique in G[X], or
adjacent to no vertex in X. This classification is useful because of the following:
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Lemma 8 [14] If there exists a solution for D-Π-VD, then in the cluster graph
resulting by this solution, for each clique in G[R] the vertices of at most one
equivalence class are present.

Due to Lemma 8, the remaining task for solving D-Π-VD is to assign each clique
in G[R] to one of its equivalence classes in such a way that the forbidden cluster
graphs in H are also obstructed. Hence, in our algorithm we will enumerate all
the possiblities which will not induce any forbidden cluster graph and choose
the one with the minimum number of vertex deletions. However, we cannot
do this independently for each clique in G[R]. The reason is that we cannot
choose two classes from different cliques in G[R] that are adjacent to the same
clique in G[X], since this would create an induced P3. This assignment problem
can be modelled as a weighted bipartite matching problem in an auxiliary graph
J = (V ′, E′) where each edge corresponds to a possible choice of a clique. Let
|E′| = m. Moreover, for each edge e ∈ E′, we set two weights w1(e) and w2(e)
which will be instrumental while enumerating the possibilities. We delete a
set X ′1 of vertices while eumerating the possibilities and create another set X ′2
by the weighted bipartite matching procedure which will be explained later.
Among all the resulting graphs which satisfy Π, we choose the one with the
minimum cardinality of X ′ = X ′1 ∪X ′2. The graph J is constructed as follows.
See Fig 4 for an illustration.

1. For every clique in G[R] which has at least one neighbour in G[X], add a
vertex (white vertex) in J .

2. For every clique CX in G[X] which has at least one neighbour in G[R], add
a vertex v (black vertex in X) in J . Moreover, add a new degree-1 vertex u
(white vertex in X) and an edge {u, v}. Set the weights w1 and w2 of this
edge {u, v} to be the size of CX . This edge corresponds to choosing CX and
removing all vertices adjacent to CX from G[R].

3. For a clique CX in G[X] and a clique CR in G[R], add an edge e between the
vertex for CX and the vertex for CR if there is an equivalence class in CR

adjacent to CX . This edge corresponds to choosing this class for CR and is
assigned two different weights, w1(e) is assigned the total number of vertices
in the corresponding class of CR and in CX and w2(e) is assigned the total
number of vertices in CR.

4. Add a vertex for the class in a clique CR that is not adjacent to any clique
in G[X] (black vertices outside X), and connect it to the vertex representing
CR. Again, this edge corresponds to choosing this class for CR and both its
weights w1 and w2 are assigned the total number of vertices in this class.

5. For each clique CR in G[R] which is non-adjacent to any vertex in G[X], add
an edge e between two new grey vertices and its weights w1(e) and w2(e) are
set to the total number of vertices in CR.
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a)

X

R

b)

X

R

w1=w2=2

w1=4
w2=2

w1=4
w2=2

w1=3
w2=3

w1=5
w2=2

w1=2
w2=2

w1=w2=2 w1=w2=5

w1=w2=3

Figure 4: a): Data reduction in the algorithm for D-Π-VD when P3 is present
in H. The grey vertices are deleted by the data reduction rules. The black
vertices correspond to the minimal solution X ′2 determined by the solution of
weighted bipartite matching problem. b) The graph represents the correspond-
ing weighted bipartite matching instance with the edge weights represented by
integers next to the edges. The dashed edges represent the cliques that are
added into X ′2 while the black edges represent the remaining cluster graph.

6. For each clique CX in G[X] which is non-adjacent to any vertex in G[R], add
an edge e between two new grey vertices and its weights w1(e) and w2(e)
are equal to the total number of vertices in CX . We denote the set of these
edges by T .

Since, we only added edges between black and white vertices and isolated
edges between two grey vertices, J is bipartite. The task is now to find a
maximum-weight bipartite matching on J with edge weights w2, that is a set
of edges of maximum weight where no two edges have an endpoint in common.
However, before that we must take care that the collection of cliques resulting
from the matchings does not induce any forbidden cluster graph in H. To this
end, we enumerate all matchings in graph G[V \X ′] which do not induce any
forbidden cluster graphs from H with the help of the edge weights w1.

We use cluster configurations and the corresponding cluster configuration
diagrams for enumerating all such matchings. An example is illustrated in Fig
5 for the case that H consists of P3 and a cluster graph h1 with four cliques h11,
h21, h31 and h41 of size s1 ≥ s2 ≥ s3 ≥ s4, respectively. The cluster configuration
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diagram is a table in which columns represent the size intervals of the allowable
cliques. For example, in Fig 5, the column between h11 and h21 represents the
size interval of [s2, s1). Each row depicts a feasible configuration. Here, “↑”
represents a clique in the corresponding interval and “V”’s position represents
the upper bound on the size of the remaining cliques.

Case 1:

Case 2:

h11 h21 h31 h41

↑ V

↑ ↑ ↑ V

Figure 5: Cluster configuration diagram when the corresponding forbidden sub-
graphs inH consists of a P3 and a cluster graph h1 with four cliques as connected
components.

Lemma 9 The number of different feasible clique configurations of G[V \ X ′]
in the case that H consists of P3 and cluster graphs, is polynomial in the size of
G.

Proof: Let the number of forbidden cluster graphs in H be d. Let b be the
number of disjoint cliques in the forbidden cluster graph in H, which has the
maximum number of disjoint cliques among all cluster graphs in H. Then, in
the cluster configuration diagram there will be at most bd + 1 intervals, since
the number of distinct-sized cliques, which are connected components of cluster
graphs in H, is at most bd. Furthermore, we observe that for any fixed position
of “V”, say s, there can be at most b − 1 cliques represented by entries with
“↑” to the left of s. Since each forbidden cluster graph in H has at most b
components, any cluster configuration Y with more than b−1 cliques to the left
of s will be handled by a different cluster configuration Z, such that Z is formend
from Y by removing the rightmost “↑”and “V” is moved to the beginning of
the interval containing the removed “↑”. Hence, for each fixed position s for
“V”, from all possible cliques with size at least s, we need to pick at most b− 1
entries to add the “↑”’s to the left of s. The number of the different ways of
arranging b− 1 ↑’s in bd+ 1 intervals is bounded by (b− 1)(bd+1). Now, for each
such arrangement, we can pick each ↑ from the edges in the reduced graph J .
We note here that every edge with weight w1 that does not fit into a particular
interval can be trimmed down by adding some vertices of the corresponding

clique to X ′1. This ends up with m(b−1)(bd+1)

possibilities. Let c = (b− 1)(bd+1).
Now, since for each fixed Π, H is fixed, hence, b and d are constants, i.e., c
is a constant. Since there are at most (bd + 1) positions to fix “V”, the total
number of configurations is a polynomial function of m, i.e., O(mc). �

From all cluster configurations, we choose only those configurations which
are feasible for a set of forbidden subgraphs H, which can be done in polynomial
time. Any feasible configuration places the cliques in G[X] with sizes greater
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than the position of “V” at the positions set by “↑”. Moreover, in any feasible
configuration, if any edge from J is selected to fill the position for “↑”, none of
its adjacent edges can be picked to fill the positions of other “↑” in the same
configuration. Moreover, it also places all cliques represented by edges in T in
their corresponding intervals. Next, for each feasible configuration we do the
following:

1. We remove the vertices at the end-points of the edges corresponding to
the chosen cliques denoted by “↑”.

2. In the remaining graph J , we maintain an upper-bound corresponding to
the position of “V” on the weights w1 of the remaining edges. Let the
position of the “V” be s. For each edge c corresponding to clique C with
w1(c) ≥ s, add |V (C)| − s arbitrary vertices from V (C) ∩ R to X ′1 and
reduce the weights w1(c) and w2(c) by w1(c)− s.

3. Now, we run the algorithm for maximum weighted bipartite matching on
the remaining graph with weights w2. Since the weight of each edge in J
is bounded by n, the size of the given instance, we get a running time of
O(m4

√
n log n) [8].

The set X ′2 can be directly constructed from a maximum matching returned
in Step 3; it contains all vertices in the equivalence classes in G[R] that corre-
spond to the edges not chosen by the matching. Hence, our disjoint solution is
X ′ = X ′1 ∪X ′2. Clearly, both X ′1 and X ′2 can be computed in polynomial time.
Combined with the polynomial number of configurations we have an overall
polynomial-time algorithm.

3.2 All-stars containing stars of at most two leaves

For this case, we cannot give a complete dichotomy of the complexity of D-
Π-VD. However, we can present some NP-hard and polynomial cases. For
example, we have the following result for 2-all star.

Lemma 10 If there exists 2-all star in Hd, each of which contains at least two
occurrence of star S2 as their connected components, and H is free from the
following graphs, then D-Π-VD is NP-hard:

1. A star S≤2.

2. A (≤ 2)-all star with only one occurrence of S2 as its connected component.

3. A (< 2)-all star.

4. A subgraph which is an induced subgraph of a graph G′ = (V ′, E′) with the
following properties:

i. There exists a set M ⊂ V ′ which induces a clique.
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C1

Y1

M1
u1

v1

+ − + −Y2 + −Y3

y1
a1

¬y2 ¬y1 ¬y2

y3 ¬y3

P

Figure 6: Example for the reduction in the proof of Lemma 10 from the 1-in-3
SAT
instance with formula (y1 ∧ ¬y2 ∧ y3) ∨ (¬y1 ∧ ¬y2 ∧ ¬y3) to D-Π-VD with the
given solution X (black vertices). The vertices in clique M is illustrated by
square boxes. For illustration the the clause gadget C1, connection gadget M1

and variable gadget Y1 are labelled.

ii. For each vertex v ∈ M , there exists an edge {x, y}, such that either
{x, v} ∈ E′ or {y, v} ∈ E′ and N(x) ∪N(y) = {x, y, v}. Let N ⊂ V ′

be the set which contains all such vertices {x, y} for each v ∈ V ′.
iii. J := V ′ \ (M ∪ N) induces an independent set in G′ such that for

every v ∈ J , N(v) ⊆M .

5. A disconnected forbidden graph which consists of graphs in (1-4) as its
connected components.

Proof:
We first show how D-Π-VD is NP-hard when one of the graphs in Hd is

a disjoint union of two P3’s, i.e., 2P3. Later, we show how this reduction can
be adapted for the general case. The proof is by reduction from 1-in-3 Sat to
SD-Π-VD. We define 1-in-3 Sat as follows:

1-in-3 Sat

Input: 3-CNF boolean formula F .

Output: A truth assignment which makes exactly one literal in each clause
TRUE, or a certificate that no such assignment exists.

1-in-3 Sat is NP-complete [21]. We assume without loss of generality that
each variable appears in each clause at most once. Let F = c1 ∧ · · · ∧ cq be a
3-CNF formula over a variable set Y = {y1, · · · , yp}. We denote the k-th literal
in clause cj by lkj , for 1 ≤ k ≤ 3. An example of the following construction
is given in Fig. 6. Starting with an empty graph G and X := ∅, construct
an instance (G,X) for D-Π-VD as follows. For each variable yi, introduce a
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path Yi on three vertices (variable gadget), add the middle vertex on Yi to X
and label the remaining vertices of Yi with “+” and “−” respectively. For each
clause cj , add a star Cj with three leaves (clause gadget) and add its center
vertex to X. Each of the three leaves of Cj corresponds to a literal in cj , and
each leaf is connected to a variable gadget as follows. Suppose that lkj is a

literal yi or ¬yi, and let at be the leaf of Cj corresponding to lkj . For each such
leaf at of the clause gadget add a path Mt (connection gadget) of three vertices,
identify one of its end vertices with at. Among the remaining vertices in Mt,
we denote the middle vertex as ut and the other end vertex as vt. We add
an edge between vt and the vertex of Yi labelled “+”, if lkj is positive literal;
otherwise with the one labelled “−”. Add all possible edges between the vt’s
corresponding to connection gadgets. Finally, add a path P of three vertices
disjoint from the preceding construction to G and add all its vertices to X.

Obviously, G[V \X] only contains a clique M which consists of the vertices
vt’s of connection gadgets Mt’s with a P2 attached to each vertex of M and a
set of vertices J ⊂ V which induces an independent set in G. Moreover, for
each v ∈ J , N(v) ⊆ V (M) (refer to Figure 6). Hence, all the induced P3’s
contain at least one of its vertices in the clique M , and G[V \ X] ∈ Π. We
show that formula F has a satisfying truth assignment if and only if there exists
a size-(p + 5q) set X ′, X ′ ∩ X = ∅, that obstructs all the forbidden induced
subgraphs in G. In other words, F has a satisfying truth assignment if and only
if (G,X, p+ 5q) is a yes-instance of SD-Π-VD. The NP-hardness of D-Π-VD
then follows from Lemma 1.

(⇒) Assume that a satisfying truth assignment for F is given. Based on this
truth assignment, we construct the disjoint solution X ′, beginning with X ′ := ∅,
as follows: For each variable yi, 1 ≤ i ≤ p, if yi = TRUE, then add the
vertex labelled “+” in Yi to X ′ and the vertices corresponding to ¬yi in the
clause gadgets to X ′. Moreover, we also add the ut’s corresponding to all Mt’s
connected to the “+” vertex of Yi to X ′. If yi = FALSE, we add the vertex
labelled “−” in Yi and the vertices corresponding to yi in the clause gadgets
to X ′. Moreover, we also add the vt corresponding to all Mt’s connected to
the “−” vertex of Yi to X ′. We observe that from each variable gadget we
take exactly one vertex in X ′, resulting totally in p vertices deletion. From
each connection gadget, we keep either ut or vt in X ′; resulting totally in 3q
vertices deletion. Finally, from each clause gadget, we take exactly two vertices
corresponding to FALSE literals in X ′ resulting totally in another 2q vertices
deletion. Clearly, |X ′| = p + 5q. The connected components of G[V \ X ′] are
either isolated vertices or paths on at most two vertices, an isolated path P on
three vertices and an isolated clique comprising of remaining vt’s of Mt’s which
could not be included in X ′ (thus G[V \X ′] ∈ Π ).

(⇐) Let X ′, X ′ ∩X = ∅, be a size-(p + 5q) vertex set that obstructs every
forbidden induced subgraph in G. Recall that the set of minimal forbidden
induced subgraphs contains a 2P3. Since there exists a path P on three vertices
in X which is disjoint from every other vertex in G[V \ V (P )], it is necessary
that G[V \ (X ′ ∪ V (P ))] should be free from P3. Now, since each variable
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gadget Yi comprises of an induced P3, at least one vertex from each Yi must
be in X ′. This results in a total of at least p vertices in X ′. Now, since each
clause gadget Ci is a S3, at least 2 leaves from each Ci must be in X ′. This
results in a total of at least 2q vertices in X ′. Since vt’s form a clique, in each
connection gadget Mt, either vt or ut needs to be in X ′ to obstruct induced
P3’s. We can observe here that keeping all ut’s or vt’s in X ′ does not give a
better solution. If we keep all ut’s in X ′, there may exist some P3’s formed by
vt’s and remaining vertices of vertex gadget. Similarly, if we keep all vt’s in
X ′, there may exist some induced P3’s formed by ut’s and remaining vertices
of clause gadget. Hence, for each clause at least three vertices among ut’s and
vt’s corresponding to its literals must be in X ′ which results in a total of at
least 3q vertices in X ′. We can observe here that the only way to obstruct P3’s
in G[V \ (X ′∪V (P ))] with at most p+ 5q vertices is to take alternating vertices
in the paths formed by at, ut, vt and the vertices in variable gadget. From a
vertex gadget Yi, if the vertex labelled “+” is in X ′, we assign TRUE to variable
yi. On the other hand, if the vertex labelled “−” is in X ′, we assign FALSE
to variable yi. This assignment has to satisfy the formula since in every clause
exactly one literal is true by our gadget’s construction. G[V \ (X ′ ∪ V (P ))]
only comprises of an isolated clique and disconnected stars Sl with l < 2 as its
connected components (thus G[V \X ′] ∈ Π ).

To this end, we show how this proof can be adapted for the general case.
Among the (≤ 2)-all star from H, we pick the one with the minimum number
of occurrence of P3, let that forbidden subgraph be H. Let the number of
occurrence of P3 in H be x, where x ≥ 2. We set one of the P3’s contained
in H as R(H). In the construction of G in the above reduction, we keep H −
V (R(H)) as isolated satellite gadget S(G) which is also added to X. With this
modification, and the argument in the above reduction, the general case can be
shown to be NP-hard. �

Lemma 11 If there exists (≤ 2)-all stars in Hd, each of which contains exactly
one S2 and at least one S1 as its connected components, and H is free from the
following forbidden subgraphs, then D-Π-VD is NP-hard:

1. A star S≤2.

2. A (≤ 2)-all star H with exactly one occurrence of star S2 and no S1.

3. A (< 2)-all star.

4. A forbidden subgraph H which is an induced subgraph of G′ = (V ′, E′),
where V ′ can be partitioned into two sets M and J , such that:

i. M induces a clique in G′.

ii. For each v ∈ J , deg(v)=2 and N(v) ⊆M .

iii. Each vertex in M has exactly two neighbours in J.

5. A disconnected forbidden subgraph which consists of graphs in (1-4) above
as its connected components.
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Proof: We first show how D-Π-VD is NP-hard when one of the graphs in Hd

is a disjoint union of a P3 and a P2, i.e. P3 +P2. Later, we show how this proof
can be adapted for the general case. The proof is by reduction from 2-in-3 SAT
to D-Π-VD.
NP-complete 2-in-3 Sat [21] is a variant of 1-in-3 Sat where now a truth

assignment of Boolean values makes exactly two literals in each clause TRUE
instead of one. Starting with an empty graph G and X := ∅, construct an
instance (G,X) for D-Π-VD as follows. For each variable yi, introduce a path Yi
of three vertices (variable gadget), add the middle vertex of Yi to X and label
the other vertices of Yi with “+” and “−”, respectively. For each clause cj ,
add a star Cj with three leaves (clause gadget) and add its center vertex to X.
Each of the three leaves of Cj corresponds to a literal in cj , and each leaf is
connected to a variable gadget as follows. Suppose that lkj is a literal yj or ¬yj ,
and let at be the leaf of Cj corresponding to lkj . Add a path Mt (connection
gadget) on three vertices, identify one of its end vertices with at and another
with vertex of Yj labelled “+”, if lkj is positive literal; otherwise, with the one
labelled “−”. Add all possible edges between the central vertices of connection
gadgets. Finally, add an isolated path P of two vertices to G, and add it into
X. An example of the following construction is given in Figure 7.

Obviously, G[V \X] only contains a clique M which consists of all the central
vertices of connection gadgets Mt and two degree-2 vertices {x, y} attached
to each vertex of M such that the neighbourhood of all such vertices {x, y}
belongs in M (refer to Figure 7). Therefore, G[V \ X] ∈ Π. Now, with the
above construction and arguments similar to the proof in Lemma 10, we can
show that formula F has a satisfying truth assignment if and only if there exists
a size-(p + 3q) set X ′, X ′ ∩ X = ∅, that obstructs every forbidden induced
subgraphs in G. In other words, F has a satisfying truth assignment if and only
if (G,X) is a YES-instance of D-Π-VD with solution size p+ 3q. �

Finally, we present a polynomial-time solvable case of D-Π-VD with H con-
taining (≤ 1)-all star; this case generalizes the result for Disjoint Split Ver-
tex Deletion, implicitly shown in [11]. We call a graph pseudo-split if the
forbidden subgraph set H is equal to {2K2, C4}. Here C4 is a cycle on four
vertices.

Lemma 12 D-Π-VD when Π is pseudo-split graphs can be solved in polynomial
time.

Proof:
A graph is pseudo-split if its vertex set can be partitioned into three possibly

empty sets C, S and I [17], such that:

(a) C is a complete graph, I is an independent set and S (if non-empty) induces
a C5;

(b) Each vertex in C is global to S;

(c) There exists no edge between I and S.
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C1

Y1 Y2 Y3+ − + − + −

y1 ¬y2 ¬y1 ¬y2

y3 ¬y3

P

Figure 7: Example for the reduction in the proof of Lemma 11 from the 2-in-3
SAT
instance with formula (y1∧¬y2∧y3)∨(¬y1∧¬y2∧¬y3) to Disjoint Π-Vertex
Deletion with the given solution X (black vertices). The vertices in clique M
is illustrated by square boxes. For illustration the the clause gadget C1 and
variable gadget Y1 are labelled.

Such a partition is known as pseudo-split partition. We call a set S ⊆ V a
pseudo-split vertex deletion set if the graph G[V \ S] is a pseudo-split graph.

In the following, we design a polynomial-time algorithm to solve D-Π-VD
where H = {2K2, C4}. Let the input instance be I := (G = (V,E), X).
If G[X] contains an induced C5, then G[X] must have a unique partition. Let
that unique partition be (C0

⊎
I0

⊎
S0). On the other hand, if G[X] is C5-

free, then G[X] is a split graph. In that case, G[X] can have at most x + 1
split partitions (C0

⊎
I0) with x = |X| [11]. Now, we guess and fix a par-

tition (C0

⊎
I0

⊎
S0) where S0 could be empty. The fixed partition should

correspond to the pseudo-split partition of G[V \ X ′]. Hence, it remains to
find the pseudo-split vertex deletion set of minimum size which is disjoint
from X, and results in a pseudo-split graph with a partition which is con-
sistent with (C0

⊎
I0

⊎
S0). More formally, we have an instance of the following

problem:

Disjoint Pseudo-Split Vertex Deletion

Input: Graph G = (V,E), a pseudo-split vertex deletion set X ⊂ V such
that G[X] is a pseudo-split graph, a pseudo-split partition (C0

⊎
I0

⊎
S0)

for the graph G[X].

Output: Pseudo-split vertex deletion set X ′, disjoint from X such that G[V \
X ′] has a pseudo-split partition consistent with (C0

⊎
I0

⊎
S0).

Assume X ′ is a solution, and let (C ′
⊎
I ′
⊎
S′) be a fixed partition for

the graph G[V \ X ′] consistent with the pseudo-split partition (C0

⊎
I0

⊎
S0).

Let (C1

⊎
I1

⊎
S1) be the pseudo-split partition of the graph G[V \ X]. We

distinguish the following cases:
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Firstly we assume that there exists a C5 in G[X]. Clearly, at most one vertex
of C1 and at most two vertices of S1 can lie in I ′, and at most one vertex of I1
and at most two vertices of S1 can lie in C ′. Hence, we initially guess these
at most six vertices, denoted by {v1, v2, · · · , v6}. Let v1 = C1 ∩ I ′, {v2, v3} =
S1 ∩ I ′, v4 = I1 ∩ C ′ and {v5, v6} = S1 ∩ C ′. We move {v1, v2, v3} to I1
and {v4, v5, v6} to C1. For the sake of convenience we refer to the modified
sets C1 and I1 also as C1 and I1. Now, let I∗ = I0 ∪ I1 and C∗ = C0 ∪ C1.
Since there already exists a C5 in X, it is clear that any vertex in I∗, which is a
neighbor of a vertex in I0∪{v1, v2, v3} or S0, need to be deleted, and any vertex
in C∗, which is not global to C0 ∪ {v4, v5, v6} or S0 needs to be deleted. Let X ′

be the set of such vertices that needs to be deleted. It is easy to see that it is
sufficient to delete the set X ′ to obtain the required pseudo-split graph.

Next we assume that there exists no C5 in X. For this case we make further
case distinctions:

1. There exists no C5 in G[V \X ′].
In this case, we can run the compression routine from the iterative com-
pression algorithm for Split Vertex Deletion in [11], since G[X] and
the resulting graph G[V \X ′] are split graphs.

2. There exists a C5 in G[V \X ′].

i. The C5 in G[V \X ′] is formed by vertices from G[V \X]. In this
case, the C5 in G[V \ X ′] must be the same C5 induced by vertices
in S1. Hence, S1 must not be in X ′. Moreover, C0 must be global to
S1 and I0 must be non-adjacent to S1; otherwise, this case would not
be possible. Now, since we cannot delete edges and S1 will become
S′, no vertex of C1 can lie in I ′, and no vertex of I1 can lie in C ′. It
is clear that each vertex in I1, which is a neighbor to a vertex in I0,
needs to be deleted, and each vertex in C1, which is not global to C0,
needs to be deleted. Let X ′ be the set of such vertices that need to
be deleted. It is easy to see that it is sufficient to delete the set X ′

to obtain the required pseudo-split graph.

ii. The C5 in G[V \X ′] is formed from a combination of vertices
from X and G[V \X]. In this case, the C5 formed in G[V \X ′] must
be formed by at most two vertices from C1, at most four vertices from
S1, at most two vertices from I1, at most two vertices from C0, and at
most two vertices from I0. Moreover, since we cannot delete edges, at
most one vertex of C1 can lie in I ′, and at most one vertex of I1 can
lie in C ′. We can observe that the number of different guesses will be
polynomial in the size of the graph. Let S′ be such guessed C5. The
required vertices from C0, I0, C1, I1 and S1 will then be moved to
S0. Let v1 = C1∩I ′ and v4 = I1∩C ′. We move v1 to I1 and v2 to C1.
For the sake of convenience, we refer to the modified sets C1 and I1
also as C1 and I1. Now, let I∗ = I0∪ I1 and C∗ = C0∪C1. It is clear
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that every vertex in I∗, which is a neighbor to a vertex in I0 ∪ {v1}
or a vertex in S0, needs to be deleted. Moreover, every vertex in C∗,
which is not global to C0∪{v2} or S0, needs to be deleted. Let X ′ be
the set of such vertices that need to be deleted. It is easy to see that
it is sufficient to delete the set X ′ to obtain the required pseudo-split
graph.

It is clear that the above cases cover all possibilities, and hence we solve
Disjoint Pseudo-Split Vertex Deletion correctly. �

4 Open Problems

First, the computational complexity of D-Π-VD for the case, when (≤ 1)-all
stars are present in H, is partially resolved, for instance, for Π being threshold
graphs. Here, the set H consists of 2K2, C4 and P4. It would also be interesting
to study the computational complexity of D-Π-VD in directed graphs and the
variant of D-Π-VD where the solution comprises of edges to be deleted instead
of vertices.
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