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Abstract

We present an algorithm for constructing the characteristic polynomial
of a threshold graph’s adjacency matrix. The algorithm is based on a
diagonalization procedure that is easy to describe. It can be implemented
using O(n) space and with running time O(n?).
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1 Introduction

Given G = (V, E), an undirected graph with vertices V = (v1,...,v,) and edge
set E, its adjacency matriz A(G) = [a;;] is the nxn 0-1 matrix for which a;; = 1
if and only if v; is adjacent to v; (that is, there is an edge between v; and v;).
Let x be an indeterminate. The characteristic polynomial of G is usually defined
as pg(z) = det(xl, — A). Some authors define it as det(A —z1,,), however these
polynomials differ by the factor (—1)™. Their roots are called the eigenvalues
of G.

This paper is concerned with threshold graphs, introduced by Chvatal and
Hammer [3] and Henderson and Zalcstein [5] in 1977. They are an important
class of graphs because of their numerous applications in diverse areas which
include computer science and psychology [10]. Threshold graphs can be charac-
terized in several ways. One way of obtaining a threshold graph is through an
iterative process which starts with an isolated vertex, and where, at each step,
either a new isolated vertex is added, or a dominating vertex is added. We may
represent a threshold graph G on n vertices using a binary sequence (b1, ..., by,).
Here b; = 0 if vertex v; was added as an isolated vertex, and b; = 1 if v; was
added as a dominating vertex. This representation has been called a creation
sequence. In our representation by is always zero. If n > 2, G is connected if
and only if b, = 1. In constructing an adjacency matrix, we order the vertices
in the same way they are given in their creation sequence. Figure [I| shows the
adjacency matrix of the threshold graph represented by (0,1,0,1,1).

== O = O
= =0 O =
== O OO
— O = = =
O = = =

Figure 1: Adjacency matrix of threshold graph.

In [12] Sciriha and Farrugia discussed combinatorial and spectral properties
of threshold graphs. Threshold graphs were studied in [Il 13| 14] under the
name nested split graphs. In [8] the authors identified those threshold graphs
having the smallest eigenvalue among all threshold graphs of order n, and in [9]
showed that no threshold graph has an eigenvalue in the real interal (—1,0).

Algorithms and formulas for the characteristic polynomial of trees have been
studied in [7, 6, 1I] and by M. Fiirer, who in [], presented an O(nlog®n)
algorithm for computing the characteristic polynomial of a tree on n vertices.

The good performance for tree algorithms is somewhat expected since the
matrices associated are sparse. For general graphs there is no known algorithm
for computing its characteristic polynomial that performs better than algorithms
for general matrices, which can be obtained in O(n3) [15].

Since adjacency matrices of threshold graphs can be dense, obtaining an
efficient algorithm is a greater challenge. In this paper, taking advantage of
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the structure of the adjacency matrix, we present efficient algorithms for con-
structing the characteristic polynomial pg(x) where G is a threshold graph. We
can assume that G is connected for otherwise pg(z) = 2¥pg: (), where G’ is a
connected component.

Our characteristic polynomial algorithm is based on the diagonalization al-
gorithm for threshold graphs presented in [8], and these ideas are reviewed in
Section In Section [3] we present an algorithm for constructing the char-
acteristic polynomial of a threshold graph that runs in time O(n?logn) and
space O(n). We illustrate our algorithm in Section [4 In Section [5| we discuss
a method used in [12], based on equitable partitions, for computing the char-
acteristic polynomial of threshold graphs. Finally, in Section [6] we sketch an
interpolation approach that has time O(n?) and space O(n).

2 Diagonalization

Recall that two matrices R and S are congruent if there exists a nonsingular
matrix P such that R = PTSP. An important tool used in [8] was an algorithm
for constructing a diagonal matrix D congruent to B, = A 4+ zI, where A is
the adjacency matrix of a threshold graph, and z is an arbitrary scalar. Our
algorithm only adds scalar multiples of a row (column) to another row (column),
i.e. performs elementary type III operations, and so det(P) = 1. The algorithm
is shown in Figure |2l The diagonal elements are stored in the array d, and the
graph’s initial representation is stored in b.

Algorithm Diagonalize works bottom up. For a graph of order n, it makes
n — 1 steps. Each diagonal element, except the first and last, participates in
two iterations. During each iteration, the assignment to d,, produces a final
diagonal element. On the last iteration, when m = 2, the assignment to d,,_1
also produces a final diagonal element at the top.

Note when b, = 0, the algorithm does nothing and moves to the next step.
Also note that the values in b can change. In each iteration, the algorithm
executes one of the five subcases. It should be noted that subcase 1a and
subcase 2b are the normal cases, and the other three subcases represent singu-
larities. Executing subcase 1b requires x = 1, executing subcase 2a requires
x = 0, and executing subcase 1c requires o + x = 2. The following theorem,
whose proof appears in [8], asserts the correctness of the algorithm.

Theorem 1 For inputs G and x, where G is a threshold graph with adjacency
matrix A, algorithm Diagonalize computes a diagonal matriz D, which is con-
gruent to A+ x1.

3 Symbolic algorithm

The characteristic polynomial is obtained by computing det(zl,, — A), where x
is an indeterminate. This can be done by diagonalizing A — xI,,, multiplying
the diagonal elements, and then adjusting the sign. Algorithm Diagonalize
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Algorithm Diagonalize(G,x)
initialize d; + x, for all ¢
for m=n to 2

o+ dpy,
if b,,_1=1 and b,, =1
if a+z#£2 //subcase 1la
dm_1 A a()fiiv;;—12
dpm —a+x—2
else if x =1 //subcase 1b
dm_1 +—1
dpy < 0
else //subcase 1c
dpm—1 < 1
dpm — —(1 —z)?
bm—l ~—0
else if b,,_1 =0 and b,, =1
if =0 //subcase 2a
dpm—1 < 1
dy — —1
else //subcase 2b
dp—1 < @ — %
dpy < T
bm,—l «—1
end loop

Figure 2: Diagonalizing A(G) + zI.

will diagonalize A + xI over any field F', where x € F. Thus we may use
Diagonalize(G, —z) to compute det(A—z1,). However we are no longer work-
ing over R, but rather the quotient field R(z) of Rlz]. Over this field, the
algorithm can be simplified.

Lemma 1 During the execution of Diagonalize(G, —x), it is impossible for
the algorithm to enter subcase 1b or subcase 2a.

Proof: Since x is an indeterminate, x # 0, 1.
During the execution of Diagonalize(G, —z) there is a sequence of n ele-
ments of R(z), calculated right to left

ap—1(2),...,a1(x), p(x) = —x

that are temporarily assigned to the diagonal. We call it the a-sequence. Except
for the final value «,,_1, each gets overwritten. When the algorithm executes
subcase 1a, we have:

—zay(x) — 1 (1)

i1 (@) = ai(z) —x—2
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When the algorithm executes subcase 2b,

Qi1 (r) = aufe) + - )

Lemma 2 Assume Diagonalize(G, —z) ezecutes only subcase la and sub-

case 2b for its first j steps. Then for each i < j, a;(x) = %, where p(x)
and q(x) are polynomials such that

1. deg(p) = deg(q) +1;

2. p(x) has a negative leading coefficient;

3. q(x) has a positive leading coefficient.
Proof: By induction on i. When i = 0, we have ag(z) = 5£. So assume a;
can be written as 22 having these three properties, and consider a;;1. There

q(x) +

are two cases, according to whether subcase la or subcase 2b occured in
the last iteration.

subcase 1a Then holds, and we have

p(z)
aip1(z) = @) 1 — zp(z) + q(2)
) o xzq(z) — p(z) + 2¢(z)

q(z)

Using the induction assumption, we see that the degree and leading coef-
ficient properties are preserved.

subcase 2b Then 1} holds, and we have a;y1(z) = a;(z) + 2 = %&(‘)’m.
Using the induction assumption, we see that the degree and leading coef-
ficient properties are also preserved.

This completes the proof.

Lemma 3 During the execution of Diagonalize(G,—x), it is impossible for
the algorithm to enter subcase 1c.

Proof: Suppose, by contradiction, the algorithm enters subcase 1c. Then it
must be the case, that for some i, a;(z) = 2 4+ 2. Assume this is the first such
i. By Lemma 2]

A ai(z) = lim s = —oo.

But

lim 2+ x = oo.
Tr—r 00

This is a contradiction.

It follows from Lemma |If and Lemma [3| that Diagonalize(G, —z) can only
execute subcase la or subcase 2b. The simplified algorithm is shown in
Figure 3] and there is no modification of the b; required. After diagonalization,
the determinant is computed by multiplying the diagonal terms and adjusting
the sign. We have:
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Algorithm CharPoly(G)
initialize d; + —x, for all ¢
for m=n to 2

a(x) « dn
if b'rn—l =1
dm—l - zola)

a(@z)—z—2
dm +— a(z) —2—2
else if b,,_1 =0
dm—1 + o(z) +
dpy < —
end if
end loop

plx) = (=1)"[[i=, di

8=

Figure 3: Characteristic Polynomial of Threshold Graph G.

Theorem 2 Algorithm CharPoly computes the characteristic polynomial of a
threshold graph G.

Algorithm CharPoly makes O(n) polynomial arithmetic operations. As the
proof of Lemma, [2| shows, those operations inside the loop are simple and each
can be done in linear time. The final product involves multiplying n ratio-
nal functions. Using fast polynomial arithmetic, each multiplication will take
O(nlogn), so the running time is O(n?logn). By constructing the partial prod-
uct inside the loop, only O(n) space is required.

4 Examples

Example 1 We apply Algorithm CharPoly to the threshold graph represented
by (0,0,1,1). After initialization, there will be three steps. Since bs = 1 and

a(x) = —z, in the first step the assignments
z(—z)+1
dy +— ————
3 —22 —2
dy <+~ —2x—2.
are made. Since by = 0 and «a(x) = —mfgi)j;, in the second step we have:
z(—z)+1 1
dy +— —————+—
2 —2x—2 + T

d3 — —.
N z(—xz)+1 + 1

—2r—2 x)

Since by =0, and «a(z) = in the final step we have:
z(—z)+1 1 1
U T
—2z —2 T

dg «— —xT.
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The following table shows the steps of algorithm

b; | d;
0| —x
0| —=x
1| -z
1| -z
initial

The characteristic polynomial is (

b; d; i d; b; d;
_ _ z(—z)+1 2

0 t 0 r 0] -5z +3
_ z(—x)+1 1

0 v 0| ——z==—=2 t= 0 -z

1 _xﬁgz)j; 1 - 1 —z

1 —2x —2 1 —2x —2 1 —2x —2

step 1 step 2 step 3
—2Cnl 42y (g (—g)(—22 — 2) or

x* — 5a? — 4z

Example 2 We implemented our algorithm in Maple, and computed the char-
acteristic polynomial of the threshold graph of order 16 having creation sequence
(0,1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1), depicted in Figure In the figure, the ver-

tices vy, . .

quickly computed

., V16 are arranged counterclockwise with v; at the top. The algorithm

20 — 642 — 280213 — 252212 + 784 1M + 1708 210 4+ 156 2 — 1930 28
—83227 +992 25 + 408 2% — 3362* — 402> + 6222 — 142 + 1.

Figure 4: Threshold graph (0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1)
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5 Equitable partition approach

We mention that there is an alternate approach for computing the characteristic
polynomial of a threshold graph G, that uses a reduction procedure, and takes
into account the multiplicity of the eigenvalues 0 and —1. We refer the reader
to [2, [9, 12, 13 4] for details, and summarize the results important to our
discussion. Let G be a threshold graph with creation sequence

b = (b1,b,...,b,) = 0511% .. 0%k,
where by = 0 and b,, = 1. Then
1. the multiplicity of 0 is the number of substrings 00 in b.

2. the multiplicity of —1 is given by:

S - 1) if 5> 1
1+ Y0 (ti—1) ifs; =1

After removing the terms x and (z + 1), we construct an equitable partition
matrix whose characteristic polynomial is the remaining factor.

()

Figure 5: Threshold graph (0,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1)

As an example, consider the threshold graph G of order 16 represented by
(0,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1) = 01°051* and depicted in Figure [5, where
the blue cells represent cliques and the white cell represents the independent
set. Using the formulas above, we see that the multiplicity of zero is 5, and the
multiplicity of —1 is 8. We form the equitable partition matrix

3 6 6
4 5 0
4 0 0

Computing the characteristic polynomial of this smaller matrix, we see that the
characteristic polynomial of G is

25 (z +1)8(2® — 822 — 33z + 120).

This method is useful when the size of the equitable partition matrix is
relatively small, that is, when the graph has high multiplicities of 0 and —1.
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However, in this case, because the equitable partition matrix does not have a
special structure, general tools must be used to find its characteristic polynomial.
This reduction does not seem useful for graphs having low multiplicity of 0 and
—1. For example, in the graph of Figure [ the reduction would produce an
equitable partition matrix that was 15 x 15.

The method described in this paper is an efficient algorithm that can com-
pute the characteristic polynomial of any threshold graph.

6 Interpolation algorithm

It is theoretically possible to compute the characteristic polynomial in time
O(n?). We sketch the approach. On input G, we generate n + 1 arbitrary
distinct values z; € R, j = 0,...,n. For each z;, we call Diagonalize(G, z;)
to obtain a diagonal d. Computing y; = (—1)" [[\—, d; gives a point (z;,y;) on
the graph. We then apply interpolation to the points {(zo,v0), .., (Tn,yn)}. It
is easy to see that each pair (x;,y;) takes O(n) to construct and so it will take
O(n?) to generate the set. Finally, it is well-known that interpolation can be
done in time O(n?) and space O(n).
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