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Abstract

We introduce the k-H-Packing with t-Overlap problem to formalize the
problem of discovering overlapping communities in real networks. More
precisely, in the k-H-Packing with t-Overlap problem, we search in a graph
G for at least k subgraphs each isomorphic to a graph H such that any
pair of subgraphs shares at most t vertices. In contrast with previous work
where communities are disjoint, we regulate the overlap through a variable
t. Our focus is on the parameterized complexity of the k-H-Packing with
t-Overlap problem.

Here, we provide a new technique for this problem generalizing the
crown decomposition technique [2]. Using our global rule, we achieve a
kernel with size bounded by 2(rk − r) for the k-Kr-Packing with (r− 2)-
Overlap problem. That is, when H is a clique of size r and t = r − 2.

In addition, we introduce the first parameterized algorithm for the k-
H-Packing with t-Overlap problem when H is an arbitrary graph of size r.
Our algorithm combines a bounded search tree with a greedy localization
technique and runs in time O(rrkk(r−t−1)k+2

n
r), where n = |V (G)|, r =

|V (H)|, and t < r.
Finally, we apply this search tree algorithm to the kernel obtained for

the k-Kr-Packing with (r − 2)-Overlap problem, and we show that this
approach is faster than applying a brute-force algorithm in the kernel. In
all our results, r and t are constants.
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1 Introduction

Many complex systems that exist in real applications can be represented by
networks, where each node is an entity, and each edge represents a relationship
[12]. A community is a part of the network in which the nodes are more highly
interconnected to each other than to the rest [15]. To extract these communities
is known as the community discovering problem [1]. There are approaches for
this problem that determine separate communities [1, 8]. However, most real
networks are characterized by well-defined communities that share members
with others [4, 15]. Moreover, these approaches model a community as a fixed
graph H , when in real applications there are different models for communities.
To overcome these deficiencies, we introduce the k-H-Packing with t-Overlap
problem as a more realistic formalization of the community discovering problem.
To the best of our knowledge, the k-H-Packing with t-Overlap problem has not
been studied before.

In the k-H-Packing with t-Overlap problem, the goal is to find at least
k subgraphs (the communities) in a graph G (the network) such that each
subgraph is isomorphic to a member of a family H of graphs (the community
models) and each pair of subgraphs can overlap in at most t vertices (the shared
members)1.The formal definition of this problem is as follows.

The k-H-Packing with t-Overlap problem

Input : A family H of graphs, a graph G, and non-negative integers
k and t.
Question: Does G contain at least k subgraphs K = {S∗

1 , . . . , S
∗
k}

where each S∗
i is isomorphic to a member of H and every pair S∗

i , S
∗
j

can overlap in at most t vertices, |V (S∗
i ) ∩ V (S∗

j )| ≤ t, for i 6= j?

When the family H is composed of only one graph H , the problem is simply
denoted as the k-H-Packing with t-Overlap problem.

The k-H-Packing with t-Overlap problem is a generalization of the well-
studied k-H-Packing problem which seeks for vertex-disjoint subgraphs. The
k-H-Packing with t-Overlap problem is NP-complete. This follows since every
instance of the k-H-packing problem, which is NP-complete [10], is mapped to
an instance of the k-H-Packing with t-Overlap problem by making t = 0. In this
work, our goal is to design fixed-parameter algorithms or FPT-algorithms ; that
is, algorithms with running time polynomial in the input size n but exponential
in a specified parameter k, i.e., f(k)nO(1). We also seek for finding problem
kernels ; that is, reduced instances with size bounded by f(k).

Related Results. As mentioned before, the k-H-Packing with t-Overlap prob-
lem generalizes the problem of packing vertex-disjoint subgraphs. Parameterized
results for this problem have been obtained in [6, 7, 16]. The latest result is a
kernel of size O(k|V (H)|−1) for packing an arbitrary graph H by Moser [14].

1To follow standard notation with packing and isomorphism problems, the meaning of G
and H have been exchanged with respect to their meaning in [17].



JGAA, 18(4) 515–538 (2014) 517

Another related problem to the k-H-packing with t-Overlap, when H is a
clique, is the cluster editing problem. This problem consists of modifying a
graph G by adding or deleting edges such that the modified graph is composed
of a vertex-disjoint union of cliques. Some works have considered overlap [3, 5].
Fellows et al. [5] allow that each vertex of the modified graph can be contained
in at most s maximal cliques.

The problem of finding one community of size at least r in a given network
is also related to the k-H-Packing with t-Overlap problem. The most studied
community models are cliques and some relaxations of cliques. Parameterized
complexity results for this problem can be found in [9, 11, 19]. Overlap has not
yet been considered under that setting.

Our Results. Besides introducing the k-H-Packing with t-Overlap problem,
we provide here a study of its parameterized complexity. First, we introduce
a global reduction rule, the clique-crown reduction rule, based on a non-trivial
generalization of the crown decomposition technique [2]. To the best of our
knowledge, the crown decomposition technique has not been adapted to obtain
kernels for problems that find subgraphs with arbitrary overlap. Using our
clique-crown decomposition rule, we achieve a problem kernel of size 2(rk − r)
for the k-H-Packing with t-Overlap problem when H is a clique with r vertices,
i.e., a Kr, and t = r − 2.

We also provide an O(rrkk(r−t−1)k+2nr) running time algorithm for the k-
H-packing with t-Overlap for any arbitrary graph H of size r and any overlap
value t < r. Our algorithm is a non-trivial generalization of the search tree
algorithm to find disjoint triangles presented by Fellows et al. [6]. We use a
bounded search tree together with a greedy localization technique. The analysis
of our algorithm is novel since we allow overlap between subgraphs. Even though
the k-H-packing problem (the vertex-disjoint version) is well studied, our search
tree algorithm is the first one to consider variable overlap between subgraphs.

In addition, we apply our search tree algorithm to the 2(rk − r) kernel
of the k-Kr-Packing with (r − 2)-Overlap problem, obtaining in this way an
O(r3k+r−1k2k+3r + nr) running time algorithm. This approach is faster than
solving the k-Kr-Packing with (r − 2)-Overlap problem by brute-force on the
kernel. In all our results, r and t are constants.

This paper is organized as follows. In Section 2, we introduce the terminology
and notation used in the paper. Section 3 describes the reduction rules as well
as our kernelization algorithm for the k-Kr-Packing with t-Overlap problem.
In Section 4, we describe the details of our search tree algorithm for the k-
H-Packing with t-Overlap problem. Section 5 provides an FPT-algorithm for
the k-Kr-Packing with (r − 2)-Overlap problem. Finally, Section 6 states the
conclusion of this work.

2 Terminology and Notation

All graphs in this document are undirected, simple, and connected. For a graph
G, V (G) and E(G) denote its sets of vertices and edges, respectively. Two
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subgraphs S and P are vertex-disjoint if they do not share vertices, i.e., V (S)∩
V (P ) = ∅. Otherwise, we say that S and P overlap in |V (S) ∩ V (P )| vertices.
We extend this terminology when S and P are sets of vertices instead. For a
set of vertices A ⊆ V (G), the neighborhood of A is defined as N(A) = {v /∈
A | (u, v) ∈ E(G) and u ∈ A}. The subgraph induced by A in G is denoted
as G[A]. For a set of subgraphs C, |C| is the number of subgraphs in C while

V (C) =
⋃|C|

i=1 V (Ci) where Ci ∈ C.

A subgraph isomorphic to H will be called an H-subgraph. In the specific
case where H is a clique of r vertices, i.e., a Kr, an H-subgraph will be referred
to as an r-clique.

An l-H-Packing with t-Overlap L is a set of l H-subgraphs L = {Q1, . . . , Ql}
of G where every pair Qi, Qj overlaps in at most t vertices. If l ≥ k then L will
be called a k-solution and will be represented by the letter K. An H-Packing
with t-Overlap M is maximal if any H-subgraph of G that is not already in M
overlaps in more than t vertices with some H-subgraph in M.

For any pair of disjoint sets of vertices A and B such that |A| + |B| = r,
we say that A is a sponsor of B (or vice versa) if G[A ∪ B] is an H-subgraph.
Sponsors(A) is the set of sponsors of A in V (G). We use the term complete A
to represent the selection of a sponsor B in Sponsors(A) to update A as A ∪B.
The resulting H-subgraph G[A ∪ B] is called an H-completed subgraph, and it
is denoted as A · B. Figure 1 shows an instance of the k-K5-Packing with 1-
Overlap (H = K5 and t = 1). In this instance, the sets of vertices {1, 4, 5} and
{13, 14} form a K5 G[{1, 4, 5, 13, 14}]; thus, the set {13, 14} is a sponsor of the
set {1, 4, 5}. Other sponsors of {1, 4, 5} are {15, 16} and {2, 3}.
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Figure 1: An instance of the k-K5-Packing with 1-Overlap problem (H = K5

and t = 1).

The notation is also applicable when A and B are a pair of vertex-disjoint
cliques instead of sets of vertices. In this case, G[V (A) ∪ V (B)] = A · B is an
r-clique. It is worth to emphasize that, even if G[V (A) ∪ V (B)] is a clique but
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does not have r vertices then B does not complete A.

3 Reduction Rules for the k-Kr-Packing with t-

Overlap Problem

In this section, we present our clique-crown reduction rule for the k-Kr-Packing
with t-Overlap problem which is based on our clique-crown decomposition. We
also introduce a method to compute such decomposition. Finally, we present
an algorithm that reduces the k-Kr-Packing with t-Overlap problem to a kernel
when t = r − 2.

3.1 Preliminaries

A parameterized problem is reduced to a problem kernel, if any instance can be
reduced to a smaller instance such that: the reduction is in polynomial time,
the size of the new instance is depending only on an input parameter, and the
smaller instance has a solution if and only if the original instance has one.

Our goal is to reduce the k-Kr-Packing with t-Overlap problem to a problem
kernel. The formal definition of our studied problem is as follows. Let 0 ≤ t ≤
r − 1 be fixed in the following definition.

k-Kr-Packing with t-Overlap problem

Instance: A graph G and a non-negative integers k.
Parameter : k
Question: Does G contain a set of r-cliques K = {S1, . . . , Sl} for
l ≥ k, such that |V (Si) ∩ V (Sj)| ≤ t, for any pair Si, Sj and i 6= j?

Our clique-crown decomposition is a generalization of the crown decompo-
sition technique. This technique was introduced by Chor et al. [2], and it has
been adapted to obtain kernels for packing problems [6, 13, 16].

Definition 1 A crown decomposition (H,C,R) in a graph G is a partitioning
of V (G) into three sets H, C, and R that have the following properties:

1. C = Cm ∪ Cu (the crown) is an independent set in G.

2. H (the head) is a separator in G such that there are no edges in G between
vertices belonging to C and vertices belonging to R.

3. R is the rest of the graph, i.e., R = V (G)\(C ∪H).

4. There is a perfect matching between Cm and H.

Generally, vertices in Cm and in H are part of a desired solution while
vertices in Cu can be removed from G.

A crown decomposition can be computed in polynomial time for a graph G
given certain conditions.
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Lemma 1 [2] If a graph G = (V,E) has an independent set of vertices I ⊆
V (G) such that |I| ≥ |N(I)|, then G has a crown decomposition, where C ⊆ I
and H ⊆ N(I), that can be found in time O(|V (G)|+ |E(G)|), given I.

We next apply a natural reduction rule to the input graph G.

Reduction Rule 1 Delete any vertex v and any edge e that are not included
in a Kr of G.

To further reduce the graph G, we design the clique-crown reduction rule
which is based on our proposed clique-crown decomposition.

3.2 The Clique-Crown Reduction Rule

In the clique-crown decomposition, we have cliques in both the head H and the
crown C, and each clique in H is completed by at least one clique in C.

Definition 2 A clique-crown decomposition (H,C,R) is a partition of G that
have the following properties:

1. C = Cm ∪ Cu (the crown) is a set of cliques in G where each clique has
size at most r − (t+ 1). Cliques in C are denoted with letters α, β, . . . .

2. H (the head) is a set of cliques in G where each clique has size at least
t + 1 and at most r − 1. Cliques in H are denoted with letters A,B, . . . .
The head satisfies the following conditions.

i. Each A ∈ H is completed by at least one clique in C. Furthermore,
none subgraph A

′ of A is completed by a clique in C.

ii. Each pair of cliques A and B in H overlaps in at most t vertices.

iii. Each A ∈ H is completed by a clique in R, defined below. In addition,
the size of any subgraph A

′ of A that is completed by a clique in R is
at most t.

3. R is the rest of the graph, i.e., R = G[V (G)\(V (C) ∪ V (H))].

4. The set of vertices of the cliques in H, V (H), is a separator such that
there are no edges in G from C to R.

5. There exists an injective function f mapping each clique A ∈ H to a
distinct clique α ∈ Cm such that α completes A. In this way, A · α is an
r-clique that we call a mapped r-clique. We impose the condition that any
pair of mapped r-cliques overlaps in at most t vertices.

Figure 2 shows an example of a clique-crown decomposition for an instance
of the 5-K4-Packing with 1-Overlap problem (k = 5, r = 4, and t = 1). Cliques
that belong to the head H are G[{3, 4}], G[{8, 9, 10}], and G[{11, 12}]. These
cliques are highlighted with thicker lines. Cliques in the clique-crown C are
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Figure 2: Example of a clique-crown decomposition for an instance of the 5-K4-
Packing with 1-Overlap problem (k = 5, r = 4, and t = 1).

G[{1, 2}], G[{5, 6}], G[{7}] and G[{13, 14}]. The mapped-cliques in this example
are G[{1, 2, 3, 4}], G[{7, 8, 9, 10}], and G[{11,12, 13,14}]. Note that the clique
G[{5, 6}] is in Cu.

To design the clique-crown reduction rule, we use an annotated version of the
k-Kr-Packing with t-Overlap problem. In this annotated version, any r-clique
of the solution overlaps in at most t vertices with any clique from a set F given
as part of the input. Again, let t be fixed in the following definition.

Definition 3 Annotated Kr-Packing with t-Overlap problem

Instance: A graph G, a set of cliques F from G where any clique in F has size
at least t+ 1 and at most r − 1, and a non-negative integer k.

Parameter: k − |F|
Question: Does G contain a set of r-cliques K = {S1, S2, ..., Sl} for l ≥ k− |F|,
such that |V (Si)∩V (Sj)| ≤ t, for any pair Si, Sj (i 6= j), and |V (S)∩V (C)| ≤ t
for any S ∈ K and C ∈ F?

Reduction Rule 2 The Clique-Crown Reduction. If G admits a clique-crown
decomposition (H,C,R) then reduce G as G′ = G[V (G)\V (C)] and k = k−|H |.
Make H be the set of cliques F of the annotated Kr-Packing with t-Overlap
problem.

The goal of the clique-crown reduction is to make the mapped r-cliques
part of the solution and remove unnecessary vertices from G. As part of the
correctness of Rule 2, we prove first that the vertices in V (Cu)\V (Cm) are not
included in any r-clique of the solution.

Lemma 2 The instance (G, k) has a k-Kr-Packing with t-Overlap if and only
if the instance (G\(V (Cu)\V (Cm)), k) has a k-Kr-Packing with t-Overlap.
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Proof: Cliques in Cu only complete cliques from the set H ; otherwise V (H)
would not be a separator. However, every clique in H is mapped to a clique
in Cm by the injective function. On the other hand, by Definition 2, cliques in
H cannot be partitioned in more cliques than |H | that could be completed by
cliques in Cu.

�

We use the next observation for the proof of correctness of the following
lemmas.

Observation 1 Any clique A
′ of A ∈ H, where |V (A′)| ≥ t + 1, is an induced

subgraph of at most one r-clique of any solution, since the k-Kr-Packing with
t-Overlap problem allows overlap at most t.

Lemma 3 If G admits a clique-crown decomposition (H,C,R), then the set of
mapped r-cliques is an |H |-Kr-Packing with t-Overlap in G.

Proof: Follows from Definition 2. �

The input graph G′ for the annotated Kr-packing with t-Overlap problem
is obtained by removing C from G. Since a clique A ∈ H is already an induced
subgraph of an r-clique from the solution, A cannot be an induced subgraph of
another r-clique from the solution (Observation 1). Hence, we make the setH to
be the set of cliques F in the annotated Kr-packing with t-Overlap problem. In
the example of Figure 2, F would have G[{3, 4}], G[{8, 9, 10}] and G[{11, 12}].

Lemma 4 Let G′ = G[V (G)\V (Cm ∪ Cu)]. The instance (G, k) has a k-Kr-
Packing with t-Overlap if and only if the instance (G′, H, k− |H |) has an anno-
tated (k − |H |)-Kr-packing with t-Overlap.

Proof: Assume by contradiction that G admits a clique-crown decomposition
(H,C,R) and has a k-solution, but (G′, H, k− |H |) does not have an annotated
solution. By Lemma 2, vertices in V (Cu)\V (Cm) are redundant. That is, they
do not belong to any r-clique of the solution. By Observation 1, every A ∈ H
is in at most one r-clique of the solution. Therefore, we cannot form more than
|H | r-cliques by completing each clique of H with cliques in R rather than with
cliques in Cm. The only case that we could have more than |H | r-cliques is if
there is a clique A ∈ H that has at least two cliques A′,A′′ each of size at least
t+ 1 that are completed by some clique in R. However, that is not possible by
Definition 2.

Assume now that (G′, H, k − |H |) has an annotated (k − |H |)-Kr-Packing
with t-Overlap, but (G, k) does not have a k-Kr-Packing with t-Overlap. This
would imply that the sets H and C form more than |H | r-cliques which is a
contradiction by Lemma 3. �

The next claim states how a solution of the original instance can be obtained
using an annotated solution of the reduced graph G′.
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Claim 1 Let K′ be an annotated (k−|H |)-Kr-Packing with t-Overlap of G′ and
H be the set of mapped r-cliques in G found with the clique-crown decomposition.
The set K′ ∪H is a k-Kr-Packing with t-Overlap of G.

Proof: Since, G′ = G[V (G)\V (C)], K′ is a (k−|H |)-Kr-Packing with t-Overlap
of G as well. By Lemma 3, the set H is an |H |-Kr-Packing with t-Overlap in G.
Since H becomes the set of cliques F in the annotated instance, then no r-clique
of K′ overlaps in more than t vertices with any r-clique of H. Therefore, K′ ∪H
is a k-Kr-Packing with t-Overlap in G. �

In Figure 3, the set of mapped cliques of Figure 2 are highlighted with
thicker lines. An annotated solution for the reduced graph is indicated with
dashed lines. We can see how the set of mapped cliques and the annotated
solution form a 5-K4-Packing with 1-Overlap.

Figure 3: An annotated solution for an instance of the 5-K4-Packing with 1-
Overlap problem is indicated with dashed lines (k = 5, r = 4, t = 1, and
|H | = 3).

Computing the Clique-Crown Decomposition

We next present a method to find a clique-crown decomposition in G given
two sets of cliques: O and Cliques(O). These sets of cliques follow the next
conditions. Each clique in O has size at most r − (t + 1), any pair of cliques
in Cliques(O) overlaps in at most t vertices, and every clique A ∈ Cliques(O)
should be completed by at least one clique in O. In addition, none subgraph A

′

of A is completed by a clique in Cliques(O), and the size of any subgraph A
′ of

A that is completed by a clique in G[V (G)\(V (O) ∪ V (Cliques(O)))] is at most
t. Observe that the size of A is at least t+ 1 and at most r − 1.

The following method is a generalization of the method used to compute a
crown-decomposition for the edge disjoint K3-packing problem [16].
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Lemma 5 Any graph G with a set O of vertex-disjoint cliques where each clique
has size at most r− (t+1) and |O| ≥ |Cliques(O)|, has a clique-crown decompo-
sition (H,C,R) where H ⊆ Cliques(O), that can be found in O(|V (G)|+ |E(G)|)
time given O and Cliques(O).

Proof: First, we construct a graph G′ from G as follows. We initialize V (G′) =
V (G) and E(G′) = E(G). We contract in G′ each clique α ∈ O into a single
vertex vα, and we denote the set of contracted cliques as Ocont. After that for
each clique A ∈ Cliques(O), we add a vertex vA to V (G′), i.e., a representative
vertex ; we denote as Rep the set of all representative vertices. We say that
vα “completes” vA if the clique α completes the clique A. For every vertex
vα ∈ Ocont that completes vA, add (vα, vA) to E(G′). After that, add to E(G′)
an edge from vA to each vertex of A. Finally, remove from E(G′) the edges from
vα to A.

We next show that G′ has a crown decomposition (H ′, C′, R′). In G′, the
set of contracted cliques Ocont is an independent set. By the construction of
G′, we know that N(Ocont) is the set of representative vertices Rep. Since we
introduced a representative vertex per clique in Cliques(O), then |N(Ocont)| =
|Cliques(O)|. Thus, since |O| ≥ |Cliques(O)| then |Ocont| ≥ |N(Ocont)| in G′.
By Lemma 1, G′ admits a crown decomposition (H ′, C′, R′) that is computed
in polynomial time, where C′ ⊆ Ocont and H ′ ⊆ N(Ocont) = Rep.

Now, we use the crown decomposition (H ′, C′, R′) of G′ to construct the
clique-crown decomposition (H,C,R) of G where H ⊆ Cliques(O).

1. For each vertex vα ∈ C′ ⊆ Ocont, add the clique α to C. The size of each
clique in C is at most r − (t + 1). This follows because α ∈ O and each
clique in O has size at most r − (t+ 1).

2. For each vertex vA ∈ H ′, where H ′ ⊆ Rep, we assign to H the clique that
this vertex represents, i.e., A. Since H ⊆ Cliques(O), then each clique in
H has size at least t+ 1 and at most r− 1. Likewise, properties i-iii from
Definition 2 follow.

3. R = G[V (G)\(V (C) ∪ V (H))].

4. The set of vertices of the cliques in H , V (H), is a separator. This follows
since cliques in C complete only cliques on H ; thus, vertices in V (C) are
only adjacent to vertices in V (H).

5. We make the perfect matching between C′ and H ′ correspond to the
injective function f in the following way. For any matched edge (vα, vA)
complete A with α. For any pair of mapped r-cliques A · α and B · β
completed in this way, |V (A · α) ∩ V (B · β)| ≤ t. This follows because α
and β are vertex-disjoint, and |V (A)∩V (B)| ≤ t by assumption in the set
Cliques(O).

Thus, if |O| ≥ |Cliques(O)| then G admits a clique-crown decomposition. �
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One method to obtain the sets O and Cliques(O) is to compute a maxi-
mal Kr-packing with t-Overlap M from G. O will be the set of all cliques in
G[V (G)\V (M)]. After applying the Reduction Rule 1, each clique in O com-
pletes at least one clique in G[V (M)]. Cliques(O) is therefore the set of cliques
in G[V (M)] completed by cliques in O. The overlap between an r-clique A · α,
where A ∈ Cliques(O) and α ∈ O, with some clique in M is at least t + 1.
Therefore, the size of A is at least t+ 1 and the size of α is at most r − (t+ 1).
It has to be verified if the sets O and Cliques(O) follow the properties of the
crown and the head, respectively, from Definition 2.

3.3 A Kernel for the k-Kr-Packing with (r − 2)-Overlap

Problem

Using the clique-crown reduction rule, we introduce an algorithm to obtain the
kernel for the k-Kr-packing with (r− 2)-Overlap problem. First, we compute a
maximal solution for the k-Kr-packing with (r− 2)-Overlap problem. Next, we
show that the sets O and Cliques(O) are composed of vertices that are outside
and inside, respectively, of the maximal solution. The steps of the algorithm
are outlined in Algorithm 1.

Algorithm 1 k-Kr-packing with (r − 2)-Overlap Algorithm

Input: A graph G = (V,E) and a non-negative integer k.
Reduce G by Reduction Rule 1.
Greedily, find a maximal Kr-Packing with (r − 2)-Overlap M in G.
if |M| ≥ k then

Accept
else

Let O be V (G)\V (M) and Cliques(O) be the set of cliques in M completed
by vertices in O.
if |O| ≥ |Cliques(O)| then
Apply the clique-crown reduction rule in G (Rule 2).

end if

end if

We next introduce a series of lemmas that characterize the sets O and
Cliques(O) defined in Algorithm 1.

Claim 2 O = V (G)\V (M) is an independent set.

Proof: Assume by contradiction that there exists an edge (u, v) in G[O]. After
applying Reduction Rule 1, each edge in the reduced graph is included in at
least one r-clique; thus, (u, v) belongs to at least one r-clique S′. S′ is not in
M; otherwise u, v would not be in O. S′ is not in O; otherwise as S′ would
be disjoint from M, and hence, S′ could be added to M, contradicting the
maximality of M. Thus, S′ should overlap with at least one r-clique S ∈ M,
for S 6= S′.
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Since u, v are both in O, the overlap with S is at most r − 2, i.e., |V (S) ∩
V (S′)| = r − 2, but in this case, S′ could be added to M contradicting the
maximality of M. �

Claim 3 Each Kr−1 T completed by any u ∈ O is contained in an r-clique
S ∈ M.

Proof: V (T ) ∩ V (O) = ∅. Assume otherwise that there is a vertex v ∈ V (T )
contained in O. However, since T · u forms an r-clique this would imply that
there is an edge (u, v) in O which is a contradiction since O is an independent
set. Thus, V (T ) ⊂ V (M).

We claim that |V (T ) ∩ V (S)| = r − 1 for some S ∈ M, i.e., V (T ) ⊂ V (S).
Suppose otherwise that |V (T ) ∩ V (S)| < r − 1, for any S ∈ M. Since u ∈ O,
this would imply that |V (T · u) ∩ V (S)| ≤ r − 2 for every S ∈ M, and T · u
could be added to M as the k-Kr-packing with (r− 2)-Overlap problem allows
overlap at most r − 2, contradicting the assumption of maximality of M. �

Claim 4 Each clique A ∈ Cliques(O) is completed by at least one clique in O
and none subgraph A

′ of A is completed by a clique in O. In addition, the size of
any subgraph A

′ of A completed by a clique in G[V (G)\ (V (O)∪V (Cliques(O)))]
is at most t. Furthermore, any pair of cliques in Cliques(O) overlaps in at most
t vertices.

Proof: Assume by contradiction that there is a clique A
′ ⊂ A of size s < r − 1

completed by a clique in G[V (O)]. This would imply that there is a Kr−s in
G[V (O)], a contradiction since O is an independent set (Claim 2).

The second and third parts of the claim follows because the size of each
clique in Cliques(O) is t + 1 = r − 1 (Claim 3) and therefore the size of the
largest subgraph of A is at most r − 2 = t. �

We can see that by Claims 2 and 4, the sets O and Cliques(O) are supersets
of the head H and the clique-crown C, respectively. Thus, the method described
in proof of Lemma 5 can be used to compute a clique-crown decomposition in G.
Next, we prove that the size of the reduced instance is bounded by a function
of the parameter k.

Claim 5 The set of vertices O completes at most rk − r Kr−1’s.

Proof: By Claim 3, vertices in O only complete Kr−1’s contained in Kr’s in
M. There are r Kr−1’s in a Kr and at most k − 1 Kr’s in M; thus, there are
at most rk − r Kr−1’s that can be completed by vertices in O. �

Claim 6 |O| < rk − r

Proof: In Algorithm 1, if |O| ≥ |Cliques(O)|, O is reduced by the clique-crown
reduction rule (Rule 2). Since |Cliques(O)| < rk − r then |O| < rk − r, after
applying that rule. �
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Lemma 6 If |V (G)| > 2(rk − r) then Algorithm 1 will either find a k-Kr-
Packing with t-Overlap, or it will reduce G.

Proof: Assume by contradiction that |V (G)| > 2(rk − r), but the algorithm
neither finds a k-Kr-packing with (r − 2)-Overlap nor reduces the graph G.
Any vertex v ∈ V (G) that was not reduced by Rule 1 is in V (M), or it is in
O = V (G)\V (M); thus, |V (G)| = |V (M)|+ |O|.

The size of M is at most k−1; thus, |V (M)| is at most rk−r, and by Claim
6 we know that an upper bound for |O| is rk − r.

In this way, the size of the instance is at most 2(rk − r) which contradicts
the assumption that |V (G)| > 2(rk − r). �

Claim 7 The k-Kr-packing with (r − 2)-Overlap problem admits a 2(rk − r)
kernel which can be found in O(nr) time.

Proof: By Lemma 6, the reduced instance has size at most 2(rk − r). Rule
1 is computed in time O(nr), which is also the same time to compute the
maximal solution M and Cliques(O). Lemma 5 shows that the clique-crown
decomposition is computed in polynomial time given the set of cliques O and
Cliques(O). The set O corresponds to the independent set V (G)\V (M) (Lemma
2), and the set Cliques(O) is the set of Kr−1’s completed by vertices in O. By
Claim 3, all these Kr−1’s are contained in the Kr’s of M. Moreover, in Rule
1, we already compute all Kr−1’s that a vertex completes. Thus, the time to
obtain Cliques(O) is O(nr). �

Computing a k-Kr-Packing with (r − 2)-Overlap

We have obtained a 2(rk − r) kernel for the k-Kr-Packing with (r − 2)-
Overlap problem. We can now apply a brute-force algorithm on the kernel to
find a solution. First, remember that the instance was reduced by the clique-
crown reduction rule (Rule 2) and the cliques in the head H becomes the set
of cliques F in the annotated version. Therefore, we are now looking for an
annotated solution in the reduced instance G′ (Definition 3).

The brute-force algorithm first finds all r-cliques W in the reduced instance
G′ and after that evaluates if each possible selection of k − |H | r-cliques from
W is an annotated solution in G′.

By Claim 1, we can obtain a k-solution in the original instance combining
an annotated solution in G′ with the set of mapped r-cliques. The time of this
brute-force algorithm is O((2rk − 2r)rk) and the k-Kr-Packing with (r − 2)-
Overlap Problem can be decided in time O((2rk − 2r)rk + nr).

We will show in Section 5 how we can apply a faster FPT-algorithm in the
kernel instead of brute-force.
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4 An FPT-Algorithm for the k-H-Packing with

t-Overlap Problem

In this section, we introduce a fixed-parameter algorithm for the k-H-Packing
with t-Overlap Problem for an arbitrary graph H and any value 0 ≤ t < r,
where t is a fixed constant [18]. The formal definition of the problem studied in
this section is as follows.

The k-H-Packing with t-Overlap problem

Input : A graph G and a non-negative integer k.
Parameter : k
Question: Does G contain at least k subgraphs K = {Q∗

1, . . . , Q
∗
k}

where each Q∗
i is isomorphic to a graph H and |V (Q∗

i )∩ V (Q∗
j )| ≤ t,

for any pair Q∗
i , Q

∗
j?

The key point of our fixed-parameter algorithm is based on the following
lemma which is a generalization of Observation 2 in [6]. This lemma proves how
a maximal solution intersects with a k-solution of the graph G, assuming that
G has one.

Lemma 7 Let M and K be a maximal H-Packing with t-Overlap and a k-H-
Packing with t-Overlap, respectively. We claim that any Q∗ ∈ K overlaps with
some Q ∈ M in at least t+1 vertices, i.e., |V (Q∗)∩V (Q)| ≥ t+1. Furthermore,
there is no pair Q∗

i , Q
∗
j ∈ K for i 6= j that overlaps in the same set of vertices

with Q i.e., V (Q∗
i ) ∩ V (Q) 6= V (Q∗

j ) ∩ V (Q).

Proof: Assume by contradiction that there is an H-subgraph Q∗ ∈ K such
that for any H-subgraph Q ∈ M, the overlap between them is at most t, i.e.,
|V (Q∗)∩V (Q)| ≤ t. However, in this case, we could add Q∗ to M, and M∪Q∗

is an H-Packing with t-Overlap contradicting the assumption of the maximality
of M.

To prove the second part of the lemma, assume by contradiction that there
is a pair Q∗

i , Q
∗
j ∈ K that overlaps in the same set of vertices for all Q ∈ M.

However, by the first part of the lemma, we know that there is at least one
Q ∈ M such that |V (Q∗

i ) ∩ V (Q)| ≥ t + 1. This would imply that |V (Q∗
i ) ∩

V (Q∗
j )| ≥ t+ 1, a contradiction since the k-H-Packing with t-Overlap problem

does not allow overlap greater than t. �

Lemma 7 states that every H-subgraph of a k-solution K overlaps in at least
t+ 1 vertices with some H-subgraph of a maximal solution M. Let us call this
intersection of t+ 1 vertices a feasible seed. A feasible seed is shared only by a
unique pair composed of an H-subgraph of M and an H-subgraph of K. Thus,
a feasible seed is contained in only one H-subgraph of a k-solution K.

Observation 2 If the graph G has a k-H-packing with t-Overlap K each H-
subgraph in K has at least one feasible seed.
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The left-side of Figure 4 shows an example of this intersection for the 4-K4-
Packing with 1-Overlap problem (H = K4, k = 4, and t = 1). The two K4’s
of the maximal solution are indicated by solid lines while the four K4’s of the
k-solution are indicated with solid and dashed lines. Edges of the graph that
do not belong to any of these solutions are indicated in light gray. The feasible
seeds in the example have size t + 1 = 2. A collection of four feasible seeds is
{{1, 3}, {3, 4}, {5, 6}, {6, 8}}; the vertices of these feasible seeds are filled in the
figure.

}

...

Qi={{1,3},{3,4},{5,6},{6,8}}

Ql={{1,3},{3,4,11},{5,6},{6,8}}

Qgr={

root
3

1 3

10 11

1 2

4

5 6

7 8

9

11

12

10

13

14

Figure 4: On the left side, an intersection of a k-solution with a maximal solution
of the 4-K4-Packing with 1-Overlap problem (k = 4 and t = 1). The seeds in this
example are of size t+1 = 2. To the right, part of the search tree corresponding
to the instance to the left. The set Qgr corresponds to a set of K4’s found
by a greedy algorithm while the sets Qi and Ql represent k sets of vertices at
different nodes of the search tree.

We now proceed to describe the algorithm for the k-H-Packing with t-
Overlap problem. First, we obtain a maximal solution M of G. If the number
of H-subgraphs in M is at least k then M is a k-H-Packing with t-Overlap and
the algorithm stops. Otherwise, we want to find a k-solution using k feasible
seeds (Observation 2).

Since we do not know if a set of t + 1 vertices of an H-subgraph Q ∈ M is
a feasible seed, we would need to consider all the distinct sets of t+ 1 vertices
from V (Q). To avoid confusion, we call these sets simply seeds. Two seeds are
distinct if they differ by at least one vertex. Therefore, seeds can overlap in
at most t vertices. The set of all possible seeds from all H-subgraphs of M is
called the universe of seeds. Observe that there are not duplicate seeds in this
universe. Otherwise, there would be at least one pair of H-subgraphs of M with
the same seed implying that they overlap in at least t+ 1 vertices.

Now, we create a search tree where at each node i there is a collection Qi of
k sets of vertices. Each set represents an H-subgraph that would be part of the
k-solution. Initially, the root has a child i for each possible selection of k seeds
from the universe of seeds. The collection Qi is initialized with these k seeds,
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i.e., Qi = {si1, . . . , s
i
k}. Since we are trying all possible selections of k seeds, at

least one child i should have k feasible seeds each one contained in a different
H-subgraph of a k-solution, assuming G has one.

The right side of Figure 4 shows one child of the root of the search tree
created with the maximal solution in the left. This child has the collection
Qi = {{1, 3}, {3, 4}, {5, 6}, {6, 8}}.Observe that the seeds in Qi.

We say that Qi is completed into a k-solution, if each seed in Qi is completed
into an H-subgraph such that any pair of H-completed subgraphs overlaps in at
most t vertices. The sponsors that complete the seeds in Qi are called feasible
sponsors.

Next for each child i of the root, the goal is to try to find a feasible sponsor
for each seed in Qi. Before explaining how we can find such sponsors, we next
introduce a simple way to discard some of the sponsors that a seed sij ∈ Qi

could have.

Observation 3 Note that if there is a sponsor A of a seed sij such that sij · A

overlaps in at least t + 1 vertices with some other seed sil ∈ Qi, for sil 6= sij,

then the the collection Qi = {si1, . . . , s
i
j ∪ A, . . . , sik} cannot be completed into a

k-solution.
Therefore, at any step of the algorithm for a seed sij we only consider a

sponsor A if sij · A overlaps in at most t vertices with every seed sil ∈ Qi, for

sil 6= sij.

In Figure 4, the sponsors {2, 4} and {5, 7} are not considered to complete
{1, 3} and {6, 8}, respectively. Discarding such sponsors ensures that the overlap
between any pair of seeds is at any stage at most t.

Lemma 8 If a seed sij ∈ Qi does not have at least one sponsor A such that

sij · A overlaps in at most t vertices with every seed sil ∈ Qi, for sil 6= sij, then

Qi cannot be completed into a k-solution.

Now, we explain how we attempt to complete the collection Qi in a greedy
fashion. Let Qgr be the set of H-subgraphs found by a greedy algorithm at child
i. Initially, Qgr = ∅. At iteration j, the greedy algorithm searches a sponsor A
for sij such that sij · A overlaps in at most t vertices with every H-subgraph in

Qgr. If such sponsor exists, greedy adds sij ·A to Qgr, i.e., Qgr = Qgr ∪ sij ·A;

if not, greedy stops. If all the seeds of Qi were completed then we have a
k-H-Packing with t-Overlap.

If the greedy algorithm cannot find a k-H-Packing with t-Overlap, then the
next step will be to increase the size of one of the seeds of Qi by one vertex.
Let sij be the seed in Qi that could not be completed by the greedy algorithm.

Greedy could not complete sij because for each sponsor A of sij , the H-subgraph

sij ·A overlaps in more than t vertices with at least one H-subgraph in Qgr. For
example, in Figure 4, greedy completed {1, 3} with the sponsor {10, 11}, and
{1, 3} · {10, 11} is added to Qgr. After that greedy cannot complete {3, 4}. The
seed has only one sponsor {11, 12} but {3, 4} · {11, 12} overlaps in two vertices
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with {1, 3} · {10, 11} in Qgr. Note that the sponsor {1, 2} of the seed {3, 4} is
discarded (Observation 3).

If Qi can be completed into a k-solution, then at least one of the sponsors
of sij is feasible. We do not know which one it is, but we are certain that this
feasible sponsor shares some vertices with at least one H-subgraph in Qgr. We
will use this intersection of vertices to find such a feasible sponsor.

Let us denote as I(Qgr, Sponsors(sij)) the set of vertices that are shared

between each sponsor of sij and each H-subgraph in Qgr. We will increase the

size of the seed sij by one vertex by creating a child l of the node i for each

vertex vl ∈ I(Qgr, Sponsors(sij)).

The collection of seeds at child l, Ql is the same as the collection of its
parent i with the update of the seed sij as sij ∪ vl, i.e., Q

l = {si1, . . . , s
i
j−1, s

i
j ∪

vl, s
i
j+1, . . . , s

i
k}. After that, the greedy algorithm is repeated at the collection

Ql of child l (Qgr starts empty again). In the example of Figure 4, there is
one child of the node i where the seed {3, 4} is updated with the vertex 11.
Observe that after this update, the sponsor {10, 11} is discarded to complete
{1, 3} (Observation 3).

The algorithm stops attempting to complete Qi or some collection of a de-
scendant of the node i when there are no sponsors for one of the seeds (Lemma
8). Otherwise, one of the leaves of the tree would have a k-H-Packing with
t-Overlap. In the example of Figure 4, one leaf of the search tree would com-
plete the collection into the solution K = {{1, 3} ·{9, 10}, {3, 4} ·{11, 12}, {5, 6} ·
{4, 7}, {6, 8} · {13, 14}}.

The pseudocode of the algorithm is shown in Algorithms 2 and 3.

Algorithm 2 BST-k-H-Packing with t-Overlap Algorithm

Input: A graph G = (V,E) and a non-negative integer k.
solution = ∅ , i = 1
Compute a maximal H-packing with t-Overlap M in G
if |M| ≥ k then

Accept
else

while i ≤ |
(

UniverseOfSeeds
k

)

| and solution = ∅ do

Let Qi = {si1, s
i
2, . . . , s

i
k} be the i-th combination of

(

UniverseOfSeeds
k

)

CreateNode(root,Qi) {Create node with parent root and collection
Qi }
solution = Completion(node i,Qi)
i = i+ 1

end while

return solution
end if
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Algorithm 3 Completion(node i,Qi)

Qgr=Greedy(Qi) {Greedily complete the collection Qi }
{The greedy algorithm returns Qgr = ∅ when Qi does not have a solution
(Lemma 8) }
if Qgr contains k H-subgraphs OR Qgr = ∅ then

return Qgr

else

Let sij be the first seed of Qi not completed by Greedy
l = 1, solution = ∅
while l ≤ |I(Qgr, Sponsors(sij))| and solution = ∅ do

Ql = {si1, . . . , s
i
j ∪ vl, . . . , s

i
k}

CreateNode(node l,Ql)
solution = Completion(node l,Ql)
l = l + 1

end while

return solution
end if

4.1 Correctness

The next basic lemma will help us to prove that the algorithm is correct.

Lemma 9 If A is a sponsor of the seed sij then A\X is a sponsor of sij ∪ X,
for any X ⊂ A.

We next prove the correctness of the algorithm.

Theorem 1 If the graph G has a k-solution K = {Q∗
1, . . . , Q

∗
k} then this solu-

tion will be propagated in at least one path from the root to a leaf of the tree.

Proving the theorem is equivalent to proving the following claim.

Claim 8 There is a path P =< i1, i2, . . . , im > such that each node il in P has
the collection Qil = {sil1 , . . . , s

il
k } where silj ⊆ V (Q∗

j ) for 1 ≤ j ≤ k.

Proof:

We prove this claim by induction on the number of levels.
Since we are creating a child of the root for each possible selection of k seeds

from the universe of seeds, there would be at least one child of the root with
collection Qil = {sil1 , . . . , s

il
k } where the claim will follow.

By Observation 2, each feasible seed in Qi has at least one feasible sponsor.
Let {A∗

1, . . . , A
∗
k} be the set of feasible sponsors where A∗

j is the feasible sponsor

of sij . That is, the k-solution can be seen as K = {si1 ·A
∗
1, . . . , s

i
k · A

∗
k}.

Next we show that for the remaining nodes of P , the seeds are updated only
with vertices from the feasible sponsors.
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Let us suppose that the greedy algorithm failed to complete a seed si1j at level

1. The seed si1j has at least one feasible sponsor A∗
j . Greedy failed to complete

si1j , if the H-subgraph formed with si1j and each sponsor of si1j (including the
feasible one A∗

j ) overlaps in more than t vertices with an H-subgraph completed
by greedy (i.e., an H-subgraph in the set Qgr). Therefore at level 2, there is
at least one child of the node i1 where the seed si1j is updated with one vertex

from the feasible sponsor A∗
j . That is, Qi2 = {si11 , . . . , s

i1
j ∪ v∗, . . . , si1k } where

v∗ ∈ A∗
j , and the claim follows.

Now, let us assume that the claim is true up to the level h−1. We next show
that claim holds for level h. Let < i2, . . . , ih−1 > be the subpath of P where
one seed in each node is updated with one vertex from its feasible sponsor.

Suppose by contradiction that at level h− 1, the greedy algorithm could not
complete the seed s

ih−1

j but there is no child of the node ih−1 such that s
ih−1

j is
updated with a vertex from its feasible sponsor.

Let us suppose that U∗ is the set of vertices that has been added to si1j
during the levels 1, . . . , h− 1. By our assumption, the seed si1j is feasible, and
it has been updated only with vertices from its feasible sponsor. Therefore,
U∗ ⊂ A∗

j .

By Lemma 9, A∗
j\U

∗ is a sponsor of s
ih−1

j . Thus, the only way that none of

the children of ih−1 would update s
ih−1

j with a vertex from A∗
j\U

∗ is if A∗
j\U

∗

is not a sponsor of s
ih−1

j .

However, this would imply that the H-subgraph s
ih−1

j · (A∗
j\U

∗) = si1j ·

A∗
j overlaps in more than t vertices with some feasible seed si1l ∈ Qi1 . This

contradicts our assumption that the collection Qi1 can be completed into a
k-solution.

�

4.2 Analysis

Lemma 10 The root has at most
(

e2r
t+1

)k(t+1)

children.

Proof: There are
(

|V (H)|
t+1

)

distinct sets of t + 1 vertices (seeds) in the set of
vertices of an H-subgraph H . The universe of seeds was defined as the set of
all possible sets of t+ 1 vertices in V (H) for each H ∈ M. Since |M| ≤ k − 1,

and |V (H)| = r then there are at most (k − 1)
(

er
t+1

)t+1

seeds in the universe

of seeds.
From the root of the search tree, we create a node i for each possible selection

of k seeds of the universe of seeds, i.e.,
(

|universeofseeds|
k

)

. Hence,
((k−1)( er

t+1 )
t+1

k

)

≤

(

e(k−1)( er

t+1 )
t+1

k

)k

≤
(

e2r
t+1

)k(t+1)

. �

Lemma 11 The height of the search tree is at most (r − t− 1)k − 1.
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Proof: If the greedy algorithm cannot complete the collection Qi of a node
i, then we create at least one child of i. In this new child, the first seed not
completed by greedy, let’s say sij , is updated with one vertex. Since at the first

level |sij | = t + 1, then sij could be completed into an H-subgraph in at most
r − (t+ 1) levels (which are not necessarily consecutive).

At most k − 1 H-subgraphs are completed in this way since the last k H-
subgraph is completed in greedy fashion. Therefore, we need at most (r − t −
1)k − 1 levels to complete the k seeds in Qi. �

Lemma 12 A node i at level h can have at most r(k − 1) children if h ≤
(r−t−2)k and at most r(k−m−1) where m = h−(r−t−2)k if h > (r−t−2)k.

Proof: There is a child of i for each vertex in I(Qgr, Sponsors(sij)), where sij
is the first seed not completed by greedy. This is the set of vertices shared by
each sponsor of sij with the H-subgraphs completed by greedy, i.e., the set Qgr.

Therefore, I(Qgr, Sponsors(sij)) ≤ r|Qgr|.

The greedy algorithm needs to complete only the seeds in Qi that are not
already completed H-subgraphs. Therefore, |Qgr| ≤ |Qi| − m where m is the
number of seeds of Qi that are completed H-subgraphs.

Assuming all the seeds of Qi − m were completed by greedy but the last
one, i.e., |Qgr| ≤ |Qi| −m− 1, then I(Qgr, Sponsors(sij)) ≤ r(|Qi| −m− 1) ≤
r(k −m− 1).

Now, we need to determine how many seeds of Qi are already H-subgraphs
at level h, i.e., the value of m. Since a seed sij can be completed into an H-
subgraph in at most r− (t+1) levels but these are not necessarily consecutive,
then we cannot guarantee that h

r−(t+1) is the number of H-subgraphs at level

h. Therefore, in the worst-case one vertex is added to each seed of Qi level by
level. In this way, in at most (r− t−2)k levels every seed of Qi could have r−1
vertices, and at level (r − t − 2)k + 1 we could obtain the first seed completed
into an H-subgraph. After that level, the remaining seeds of Qi are completed
into H-subgraphs by adding one vertex.

�

Theorem 2 The k-H-Packing with t-Overlap can be solved in
O(rrkk(r−t−1)k+2nr) time.

Proof: By Lemmas 11 and 12, the size of the tree is

(

e2r

t+ 1

)k(t+1) (r−t−2)k
∏

i=1

r(k − 1) +

k−r+t
∏

i=1

r(k − i)

<

(

e2r

t+ 1

)k(t+1)

(r(k − 1))(r−t−1)k−1.

A maximal solution M can be computed in time O(krnr), which is also the
required time to compute the list of sponsors of the seeds. The greedy algorithm
runs in O(k2rnr).

�
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5 An FPT-algorithm for the k-Kr-Packing with

(r − 2)-Overlap Problem

In this section, we will show how the analysis of the FPT-algorithm of Section
4 is substantially simplified when H = Kr and t = r− 2, i.e., the k-Kr-Packing
with (r − 2)-Overlap problem. After that we obtain the running time of this
algorithm when is applied to the kernel of Subsection 3.3. We show that in this
way the k-Kr-Packing with (r − 2)-Overlap problem can be solved faster than
with a brute-force search on the kernel.

Let us begin with a finer analysis of the search tree for the particular case
when H = Kr and t = r − 2. For that, we need to determine: the number
of children of the root, the height of the tree, and the number of children that
any node can have at level h of the tree. The number of children of the root

is bounded by
(

r2(k−1)
k

)

= O(r2kkk). Since the size of each seed at level 0 is
t + 1 = (r − 2) + 1 = r − 1, then each seed is completed into an r-clique in
one level. Therefore, the height of the tree is at most k − 1 (the last seed is
completed in greedy fashion). At level h, there at least h seeds that have been
completed into an r-clique. This follows because each seed only needs one vertex
to be completed into an r-clique, and in each level one seed is updated with one
vertex. For this reason, each node can have at most r(k−h) children at level h.

Combining these values, the size of the search tree is given by:

r2kkk
k−1
∏

h=1

r(k − h) < r2kkkrk−1kk = r3k−1k2k

The time spent in each node is O(k2rnr). Therefore, the running time of
the FPT-algorithm for the k-Kr-Packing with (r − 2)-Overlap problem applied
to the original instance is O(r3k−1k2(k+r)nr)).

Applying this algorithm to the O(2(rk − r)) kernel for the k-Kr-Packing
with (r− 2)-Overlap Problem obtained in Subsection 3.3, we have the following
running time.

Theorem 3 The k-Kr-Packing with (r − 2)-Overlap Problem can be solved in
O(r3k+r−1k2k+3r + nr) time.

6 Conclusions

We have introduced the k-H-Packing with t-Overlap problem to overcome the
deficiencies of previous work on the community discovering problem. We de-
signed a global reduction rule, the clique-crown decomposition, for the k-H-
Packing with t-Overlap problem, when H = Kr. Using our reduction rule, we
achieved reductions to a kernel for this problem when t = r − 2. We emphasize
that the clique-crown reduction rule can be extended to consider other families
of graphs as well. For example, it would be interesting to consider community
models less restrictive than cliques such as s-cliques, s-clubs, and s-plexes.
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When computing the clique-crown decomposition in Section 5, it is assumed
that cliques in O are vertex-disjoint and cliques in Cliques(O) overlap in at most
t + 1. If these two conditions do not follow then a perfect matching would
not guarantee that a pair of mapped r-cliques overlap in at most t vertices.
Therefore, it remains how to design a different injective function that satisfies
this overlap condition.

In addition, we developed the first fixed-parameter algorithm for the the
k-H-Packing with t-Overlap problem for any graph H and any value t < r. We
also provided a finer analysis of this algorithm for the case when H = Kr and
t = r − 2, and we applied this algorithm to the kernel obtained for the k-Kr-
Packing with (r− 2)-Overlap problem. This approach is faster than applying a
brute-force algorithm on the kernel.
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