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On Universal Point Sets for Planar Graphs
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Abstract

A set P of points inR2 is n-universal if every planar graph on n vertices
admits a plane straight-line embedding on P . Answering a question by
Kobourov, we show that there is no n-universal point set of size n, for any
n ≥ 15. Conversely, we use a computer program to show that there exist
universal point sets for all n ≤ 10 and to enumerate all corresponding
order types. Finally, we describe a collection G of 7′393 planar graphs
on 35 vertices that do not admit a simultaneous geometric embedding
without mapping, that is, no set of 35 points in the plane supports a
plane straight-line embedding of all graphs in G.
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1 Introduction

The Fáry-Wagner theorem [30, 20, 29] states that every planar graph admits a
plane straight-line embedding : a drawing in R2 where vertices are represented by
pairwise distinct points, every edge is represented by a line segment connecting
its endpoints, and no two edges intersect except at a common endpoint. De
Fraysseix, Pach, and Pollack [16] showed in 1988 that every planar graph admits
a plane straight-line embedding that places the vertices onto a triangular subset
of the rectangular grid (2n − 3) × (n − 1). This set is universal in the sense
that it does not depend on any particular planar graph: it works for all of
them. Formally, we say that a set of points in the plane is called n-universal for
planar graphs if it admits a plane straight-line embedding of all planar graphs
on n vertices.

A long-standing open problem is to give tight bounds on the minimum num-
ber of points in an n-universal point set. The currently known asymptotic
bounds are apart by a linear factor. On the one hand, the n-universal set given
by De Fraysseix, Pach, and Pollack [16] has n2 − O(n) points. This upper
bound was improved by Schnyder [28] to n2/2−O(n), then by Brandenburg [8]
to 4n2/9 + O(n), and finally by Bannister et al. [5] to n2/4 − Θ(n). On the
other hand, Kurowski [23] showed that at least 1.235n points are necessary [23],
improving earlier bounds of 1.206n by Chrobak and Karloff [14] and n+

√
n by

De Fraysseix, Pach, and Pollack [16].
The following related question was asked around 2002 by Kobourov [17]:

what is the largest value of n for which a universal point set of size n exists?
We prove the following in Section 3.

Theorem 1 There is no n-universal point set of size n for any n ≥ 15.

Our proof of Theorem 1 combines a labeled counting scheme for planar 3-
trees (also known as stacked triangulations) with known lower bounds on the
rectilinear crossing number [1, 25]. The labeled counting scheme is very similar
to the one Kurowski [23] used in his asymptotic lower bound argument.

To complement Theorem 1, we use a computer program to show that there
exist n-universal point sets of size n for all n ≤ 10. We give the total number
of n-universal order types of size n sets for each n in Section 5. Point set order
types [22] are a combinatorial abstraction of planar point sets that encode the
orientation of all point triples, which in particular determines whether or not
any two line segments cross. For n ≤ 11, there is a database with realizations
of every (realizable) order type [2]. As a side remark: it is not clear that the
property “there exists an n-universal point set of size n” is monotone in n.

Simultaneous embeddings. For a collection G = {G1, . . . , Gk} of planar
graphs on n vertices, a simultaneous geometric embedding without mapping for
G is a collection of plane straight-line embeddings φi : Gi → P onto the same
set P ⊂ R2 of n points [9]. If there exists an n-universal point set of size
n, then such a simultaneous embedding is always possible. In Section 4, we
consider the following problem: what is the largest natural number σ such that
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every collection of σ planar graphs on the same number of vertices admits a
simultaneous geometric embedding without mapping? From the Fáry-Wagner
Theorem we know that σ ≥ 1. We prove the following upper bound:

Theorem 2 There is a collection of 7′393 planar graphs on 35 vertices that do
not admit a simultaneous plane straight-line embedding without mapping, hence
σ < 7′393.

To our knowledge these are the best bounds currently known. It is a very
interesting and probably challenging open problem to determine the exact value
of σ: the question whether σ = 2 was already posed in the paper that introduced
the problem [9].

Related work. There has been much interest in universal point sets in recent
years. In one variation on the theme, we do not insist on straight-line edges
but instead allow more freedom in drawing the edges. For instance, we could
draw every edge with at most k bends, i.e., as a polygonal curve with at most
k + 1 segments. Everett et al. [19] showed that there is an n-universal point
set of size n for k = 1. If one insists that the bend-points are also embedded
on the universal set, then Dujmović et al. [18] showed that O(n2/ log n) points
suffice for k = 1, O(n log n) points suffice for k = 2, and O(n) points suffice for
k = 3. Very recently, Löffler and Tóth [24] showed that 6n − 10 points suffice
for k = 1. Angelini et al. [4] showed that n points suffice when we draw the
edges as circular arcs.

Alternatively, we could insist on straight-line edges, but restrict ourselves to
smaller graph classes. Fulek and Tóth [21] showed that there exist n-universal
point sets of size O(n3/2 log n) for planar 3-trees. Most other results in this
direction focus on variations of outerplanarity. Bose [7] showed that every set
of n points in general position is n-universal for outerplanar graphs. A graph
embedding is k-outerplane if deleting the vertices on its outer face yields a
(k − 1)-outerplane embedding, where 1-outerplane is defined simply as outer-
plane. A k-outerplanar graph is any graph that admits a k-outerplane em-
bedding. Very recently, Bruckdorfer et al. [12] described an n-universal point
set of size O(n log n) for 2-outerplanar graphs. Angelini et al. [3] showed that
O(n(log n/ log log n)2) points suffice for simply-nested planar graphs, a subclass
of k-outerplanar graphs.

2 Preliminaries

We follow the convention of explicitly distinguishing the terms planar (a prop-
erty of a graph) and plane (a property of an embedding). A plane straight-line
embedding of a graph G = (V,E) is completely determined by the embedding of
the vertex set. Hence, we frequently represent a plane straight-line embedding
by an injection φ : V → R2. Alternatively, if P is a set of |V | points, we rep-
resent such an embedding by a bijection π : V → P . We define π(G) to be the
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plane straight-line embedding defined by π(V ). An (unlabeled) planar 3-tree is
a maximal planar graph defined recursively as follows:

• A triangle is a planar 3-tree.

• If G = (V,E) is a planar 3-tree and 〈u, v, w〉 is any face of G, then the
graph obtained by adding a new vertex to V and connecting it to u, v and
w is again a planar 3-tree.

In the literature, planar 3-trees are sometimes considered to have an associated
embedding or a distinguished outer face. In this paper, we call planar 3-trees
with a distinguished outer face plane 3-trees. Since a planar 3-tree is a maximal
planar graph, it has n vertices and 2n−4 triangular faces and its combinatorial
embedding is fixed up to the choice of the outer face. Hence, the set of faces
of a planar 3-tree is uniquely defined, even if we do not consider a concrete
embedding. A triangle of a planar 3-tree is any (not necessarily facial) 3-cycle.

3 Large universal point sets

For every integer n ≥ 4, we define a family Tn of labeled planar 3-trees on the
set of vertices Vn := {v1, . . . , vn} as follows:

• T4 contains only the complete graph K4 on vertex set {v1, . . . , v4},

• If T is a graph in Tn−1 and 〈vi, vj , vk〉 is a face of T , then the graph
obtained by adding vn to T and connecting vn to vi, vj , and vk is in Tn.

We insist on the fact that Tn is a set of labeled abstract graphs, many of which
can in fact be isomorphic if considered as abstract (unlabeled) graphs. We also
point out that for n > 4, the class Tn does not contain all labeled planar 3-trees
on n vertices. For instance, the four graphs in T5 are shown in Figure 1, and
there is no graph for which both v1 and v2 have degree three.

Lemma 1 |Tn| = 2n−4 · (n− 3)! for all n ≥ 4.

Proof: By definition, |T4| = 1. Every graph in Tn is constructed by splitting
one of the 2(n− 1)− 4 = 2n− 6 faces of a graph in Tn−1. Each choice of a face
results in a different graph. We therefore have

|Tn| = |Tn−1| · (2n− 6) =

n∏
i=5

(2i− 6) = 2n−4
n∏

i=5

(i− 3) = 2n−4 · (n− 3)!

as required. �

Lemma 2 Given a set Pn = {p1, . . . , pn} of n ≥ 4 labeled points in the plane
and a bijection π : Vn → Pn, there is at most one T ∈ Tn such that π is a plane
straight-line embedding of T .
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Figure 1: The four planar 3-trees in T5, with vertex set {v1, v2, v3, v4, v5}.

Proof: Consider any such labeled point set Pn and assume without loss of
generality that π(vi) = pi for all i. Let πk be the restriction of π to {v1, . . . , vk}.
Let Sk be the set of graphs Tk ∈ Tk for which πk(Tk) is plane. The statement
of the lemma is equivalent to |Sn| ≤ 1.

We prove that |Sn| ≤ 1 by induction on n. For n = 4 we have |Sn| ≤ |Tn| = 1,
as required. Suppose that n ≥ 5. If Sn = ∅ then we are done, so suppose
that there is a graph Tn ∈ Sn. If we delete vn from πn(Tn), we get a plane
straight-line embedding πn−1(Tn−1) of a graph Tn−1. By definition of T we
have Tn−1 ∈ Tn−1 and since πn−1(Tn−1) is plane we have Tn−1 ∈ Sn−1. By the
induction hypothesis, |Sn−1| ≤ 1, and hence Sn−1 = {Tn−1}. Tn is one of the
2n− 6 possible extensions of Tn−1. In πn−1(Tn−1) the point pn is contained in
a triangular region 〈pi, pj , pk〉 corresponding to some face 〈vi, vj , vk〉 of Tn−1. If
Tn was constructed by inserting vn into a face different from 〈vi, vj , vk〉, then vn
is adjacent to some vertex v` 6∈ {vi, vj , vk}. But then the line segment pnp` in
πn(Tn) crosses the triangle 〈pi, pj , pk〉: a contradiction to the fact that Tn ∈ Sn.
Hence, Tn must be the unique graph obtained by taking Tn−1 and inserting vn
into the face 〈vi, vj , vk〉. Since Tn was chosen arbitrarily in Sn, we conclude that
Sn = {Tn}. Hence, |Sn| ≤ 1. �

Lemma 2 states that π is a plane straight-line embedding for at most one
T ∈ Tn. The reason for this is that some bijections π : Vn → Pn induce a crossing
for every labeled planar 3-tree in Tn. For example, recall that {v1, v2, v3, v4}
form a K4 for every graph in Tn. If π maps these vertices to set of four points
in convex position, then there will necessarily be a crossing, regardless of which
T ∈ Tn we consider. See Figure 2.

v1
v2

v3

v4v5
v4 v5

v3

v2
v1

Figure 2: If π maps v1, v2, v3, v4 to four points in convex position (on the left),
then π(T ) has a crossing for all T ∈ Tn. Otherwise, π(T ) is plane for at most
one T ∈ Tn (on the right).
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Lemma 3 Given a point set P ⊂ R2 of n points in general position, more than
a 3

8 ·
n−4
n -fraction of all four-element subsets of P is in convex position.

Proof: Ábrego and Fernández-Merchant [1] proved that every plane straight-
line embedding of the complete graph Kn has at least

cn :=
1

4

⌊n
2

⌋⌊n− 1

2

⌋⌊
n− 2

2

⌋⌊
n− 3

2

⌋
crossings. Note that for n ≤ 4 at least one of the floor expressions is zero,
whereas for n = 5 the theorem states that every straight-line embedding of K5

has at least one crossing. Every pair of crossing edges corresponds to a four-
tuple of points in convex position. Hence, cn is a lower bound on the number
of convex four-gons in P . We proceed to derive a floor-free lower bound on cn.
For odd n we have

cn =
1

4

(
n− 1

2

)(
n− 1

2

)(
n− 3

2

)(
n− 3

2

)
and for even n we have

cn =
1

4

(
n− 0

2

)(
n− 2

2

)(
n− 2

2

)(
n− 4

2

)
and so

cn >
1

4

(
n− 1

2

)(
n− 2

2

)(
n− 3

2

)(
n− 4

2

)
=

3

8
· n− 4

n
· n(n− 1)(n− 2)(n− 3)

4 · 3 · 2

=
3

8
· n− 4

n
·
(
n

4

)
for all n. �

We use Lemma 3 to bound the number of graphs from Tn that admit a plane
straight-line embedding on a given point set in Lemma 4 below. As opposed to
Lemma 2, the point set P in the statement below is not a labeled point set. That
is, when we say that a labeled planar 3-tree G ∈ Tn admits a plane straight-line
embedding on P , it means simply that there is a bijection ϕ between P and G
such that ϕ is a plane straight-line embedding of G.

Lemma 4 On any set P ⊂ R2 of n ≥ 4 points, fewer than 1
8 (5n+ 12)(n− 1)!

graphs from Tn admit a plane straight-line embedding.

Proof: Let P ⊂ R2 be a set of n points and denote by Fn ⊆ Tn the set of
labeled planar 3-trees from Tn that admit a plane straight-line embedding onto
P . We represent a straight-line embedding of a graph T ∈ Tn onto P by a
permutation π of the points of P , where each vertex vi is mapped to point π(i).
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Let Sn be the set of all permutations of P . We define a map ψ : Fn → Sn by
assigning to each T ∈ Fn some ψ(T ) ∈ Sn such that ψ(T ) is a plane straight-line
embedding of T (such an embedding exists by definition of Fn).

By Lemma 2, every permutation π ∈ Sn is a plane straight-line embedding
of at most one T ∈ Fn. It follows that ψ is a injection, and hence ψ : Fn → Π,
with Π = Im(ψ), is a bijection and so |Fn| = |Π| ≤ |Sn| = n!.

Next we quantify the difference between Π and Sn using Lemma 3. Note that
the general position assumption is not a restriction, since in case of collineari-
ties, a slight perturbation of the point set yields a new point set that still admits
all plane straight-line embeddings of the original point set. Consider a permu-
tation π = 〈p1, . . . , pn〉 such that 〈p1, p2, p3, p4〉 form a convex quadrilateral.
As discussed after Lemma 2, π is not a plane straight-line embedding for any
T ∈ Fn. It follows that π ∈ Sn \Π. We know from Lemma 3 that more than a
fraction of (3/8) · (n− 4)/n of the 4-tuples of P are in convex position. Hence,
a (3/8) · (n − 4)/n-fraction of all permutations in Sn start with four points in
convex position: these permutations are not in Π. So we can bound the number
of possible labeled plane straight-line embeddings by

|Π| <
(

1− 3

8
· n− 4

n

)
n! =

(
8n− 3n+ 12

8n

)
n! =

1

8
(5n+ 12)(n− 1)!

as required. �

We are now ready to prove Theorem 1.

Theorem 1 There is no n-universal point set of size n for any n ≥ 15.

Proof: Consider an n-universal point set P ⊂ R2 with |P | = n. Being universal,
in particular P has to accommodate all graphs from Tn. By Lemma 1, there
are exactly 2n−4 · (n − 3)! graphs in Tn, whereas by Lemma 4 no more than
1
8 (5n + 12)(n − 1)! graphs from Tn admit a plane straight-line drawing on P .
Combining both bounds we obtain

2n−1 ≤ (5n+ 12)(n− 1)(n− 2).

Setting n = 15 yields 214 = 16′384 ≤ 87·14·13 = 15′834, which is a contradiction
and so there is no 15-universal set of 15 points. For n = 14 the inequality reads
213 = 8′192 ≤ 82 · 13 · 12 = 12′792 and so there is no indication that there
cannot be a 14-universal set of 14 points. To prove the claim for any n > 15,
consider the two functions f(n) = 2n−1 and g(n) = (5n + 12)(n − 1)(n − 2)
that constitute the inequality. Since f is exponential in n and g is just a cubic
polynomial, f certainly dominates g, for sufficiently large n. Moreover, we know
that f(15) > g(15). Noting that f(n)/f(n− 1) = 2 and g(n) > 0, for n > 2, it
suffices to show that g(n)/g(n− 1) < 2 for all n ≥ 16. We can bound

g(n)

g(n− 1)
=

(5n+ 12)(n− 1)(n− 2)

(5(n− 1) + 12)(n− 2)(n− 3)
=

(5n+ 12)(n− 1)

(5n+ 7)(n− 3)

<
(5n+ 15)n

5n(n− 3)
=

5n(n+ 3)

5n(n− 3)
=
n+ 3

n− 3
,

which is easily seen to be upper bounded by two, for n ≥ 9. �
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4 Simultaneous Geometric Embeddings

The number of non-isomorphic planar 3-trees on n vertices was computed by
Beineke and Pippert [6], and appears as sequence A027610 on Sloane’s Ency-
clopedia of Integer Sequences. For n = 15, this number is 321′776. Hence we
can also phrase our result in the language of simultaneous embeddings [9].

Corollary 1 There is a collection of 321′776 planar graphs that do not admit
a simultaneous geometric embedding without mapping.

In the following we will give an explicit construction for a much smaller family
of graphs that not admit a simultaneous embedding without mapping. In order
to do so, we first study how planar 3-trees on n vertices can be embedded on a
fixed set P of n points. In particular, we want to show that after selecting the
outer face of a planar 3-tree G and embedding it on three points of P , there is
at most one way to complete the embedding to a plane straight-line embedding
of G on P . We prove this with the following two lemmas. We do not claim
originality for the proofs: ideas similar to Lemma 5 appeared in [26] and a
proof for Lemma 6 in a slightly different setting appeared in [27].

Lemma 5 Let G be a labeled planar 3-tree on the vertex set Vn = {v1, . . . , vn},
for n ≥ 3, and let C denote any triangle in G. Then G can be constructed
starting from C by iteratively adding a new vertex and connecting it to the three
vertices of some facial triangle of the partial graph constructed so far.

Proof: Note that C does not have to be a facial triangle. We prove the state-
ment by induction on n. For n = 3 we have G = C. For n > 3, we can
iteratively construct G from some triangle in the way described by definition
of planar 3-trees. Without loss of generality suppose that adding vertices in
the order 〈v1, v2, . . . , vn〉 yields such a construction sequence. Denote by Gi the
graph that is constructed by the sequence 〈v1, . . . , vi〉, for 1 ≤ i ≤ n.

Let C = 〈vi, vj , vk〉 such that i < j < k. Consider the graph Gk: In the
last construction step, vk is added as a new vertex into some facial triangle T of
Gk−1. As vk is a neighbor of both vi and vj in G, both vi and vj are vertices of
T ; denote the third vertex of T by vx. Note that all of 〈vi, vj , vk〉 and 〈vi, vk, vx〉
and 〈vj , vx, vk〉 are facial triangles in Gk.

If k = 4, then 〈vi, vj , vk, vx, v5, . . . , vn〉 is a construction sequence for G,
starting with C, as required. If k > 4, then 〈vi, vj , vx〉 is a separating triangle in
Gk. By the induction hypothesis we obtain a construction sequence S for Gk−1
starting with the triangle 〈vi, vj , vx〉. The desired sequence for G is obtained
as 〈vi, vj , vk, vx, S−, vk+1, . . . , vn〉, where S− is the suffix of S that excludes the
starting triangle 〈vi, vj , vx〉. �

And now we can prove the desired property that the mapping for the selected
outer face completely determines the mapping for the remaining vertices.
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Lemma 6 Given a labeled planar 3-tree G on vertex set Vn = {v1, . . . , vn},
a triangle c = 〈c1, c2, c3〉 in G, and a set P ⊂ R2 of n points with convex
hull 〈p1, p2, p3〉, there is at most one way to complete the partial embedding
{c1 7→ p1, c2 7→ p2, c3 7→ p3} to a plane straight-line embedding of G on P .

Proof: We use Lemma 5 to relabel the vertices in such a way that 〈c1, c2, c3〉
becomes 〈v1, v2, v3〉 and the order 〈v1, . . . , vn〉 is a construction sequence for G.
Embed vertices 〈v1, v2, v3〉 onto 〈p1, p2, p3〉. We iteratively embed the remaining
vertices as follows. When we construct G by following the construction sequence
〈v1, . . . , vn〉, vertex vi is inserted into some face 〈vj , vk, v`〉. Note that vj , vk, v`
have already been embedded on some points pj , pk, p`. The vertices contained
in the triangle 〈vj , vk, v`〉 (except vi) are partitioned into three sets by the cycles
〈vi, vj , vk〉 (n1 vertices) and 〈vi, vk, v`〉 (n2 vertices) and 〈vi, v`, vj〉 (n3 vertices).
We claim that we must embed vi on a point pi such that 〈pi, pj , pk〉 contains
exactly n1 points, 〈pi, pk, p`〉 contains exactly n2 points and 〈pi, p`, pj〉 contains
exactly n3 points. Indeed, if some triangle has too few points, then it will not
be possible to embed the subgraph of G enclosed by the corresponding cycle
there, and the resulting straight-line embedding will have a crossing. It remains
to show that there is always at most one choice for pi. Suppose that there are
two candidates for pi, say p′i and p′′i . Then p′′i must be contained in 〈p′i, pj , pk〉
or 〈p′i, pk, p`〉 or 〈p′i, p`, pj〉 (or vice versa). Without loss of generality, let it be
contained in 〈p′i, pj , pk〉: now 〈p′′i , pj , pk〉 contains fewer points than 〈p′i, pj , pk〉,
which is a contradiction. The lemma follows by induction. �

In light of this lemma, it is not surprising that we can easily find three graphs
that do not admit a simultaneous geometric embedding without mapping if the
mapping for the outer face is specified for each of them.

Lemma 7 There is no set P ⊂ R2 of five points with convex hull pa, pb, pc such
that every graph shown in Figure 3 has a plane straight-line embedding on P
where the vertices a, b and c are mapped to the points pa, pb and pc, respectively.

Proof: The point p for the central vertex that is connected to all of a, b, c must
be chosen so that (i) it is not in convex position with pa, pb and pc and (ii) the
number of points in the three resulting triangles is one in one triangle and zero
in the other two. That requires three distinct choices for p, but there are only
two points available. �

a b

c

a b

c

a b

c

Figure 3: Three planar graphs that do not admit a simultaneous geometric
embedding with a fixed mapping for the outer face.
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a b

c

(a) T1

a b

c

(b) T2

a b

c

(c) T3

a b

c

(d) T4

a b

c

(e) T5

a b

c

(f) T6

a b

c

(g) T7 (h) B

Figure 4: (a)–(g): Seven planar graphs, no three of which admit a simultaneous
geometric embedding with a fixed mapping for the outer face; (h): the skeleton
B of a triangular bipyramid.

In fact, there are many such triples of graphs. Denote by T = {T1, . . . , T7}
the family of seven graphs on eight vertices depicted in Figure 4. We consider
these graphs as abstract but rooted graphs, that is, one face is designated as the
outer face and the counterclockwise order of the vertices along the outer face
(the orientation of the face) is 〈a, b, c〉 in each case. Observe that all graphs in
T are planar 3-trees.

Lemma 8 Let P ⊂ R2 be a set of eight points with convex hull 〈pa, pb, pc〉.
Then the partial embedding {a → pa, b → pb, c → pc} can be extended to a
complete plane straight-line embedding for at most two of graphs in T .

Informally, no three of the graphs in Figure 4(a-g) admit a simultaneous ge-
ometric embedding with a fixed mapping for the outer face. The lemma can
be verified with help of a computer program that exhaustively checks all order
types. Refer to Appendix A for some details on the implementation. The graphs
in T were discovered using a (different) computer program.

Using T we construct a family G of graphs as follows. Start from the skeleton
B of a triangular bipyramid, that is, a triangle and two additional vertices, each
of which is connected to all vertices of the triangle. See Figure 4h. The graph
B has five vertices and six faces and it is a planar 3-tree.
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We obtain G from B by planting one of the graphs from T onto each of the
six faces of B. Each face of B is a (combinatorial) triangle where one vertex has
degree three (one of the pyramid tips) and the other two vertices have degree
four (the vertices of the starting triangle). On each face f of B a selected graph
T from T is planted by identifying the three vertices bounding f with the three
vertices bounding the outer face of T in such a way that vertex c (which appears
at the top in Figure 4) is mapped to the vertex of degree three (in B) of f . In
the next paragraph, we will explain why we do not need to specify how a and b
are matched to f . The same graph from T may be used for more than one face.
We define t(f ′) := T for each new face f ′ that is created by planting T onto f .
The family G consists of all graphs on 5+6 ·5 = 35 vertices that can be obtained
in this way. By construction all these graphs are planar 3-trees. Therefore by
Lemma 6 on any given set of 35 points, the plane straight-line embedding is
unique (if it exists), once an outer face has been selected and its mapping onto
the point set has been fixed.

Observe that T is flip-symmetric with respect to horizontal reflection. In
other (more combinatorial) words, for every T ∈ T we can exchange the role of
the bottom two vertices a and b of the outer face (and thereby also its orienta-
tion) to obtain a graph that is also in T . The graphs form symmetric pairs of
siblings (T1, T2), (T3, T4), (T5, T6), and T7 flips to itself. Therefore, regardless
of the orientation in which we plant a graph from T onto a face of B, we obtain
a graph in G, and so G is well-defined.

Next, we give a lower bound on the number of nonisomorphic graphs in G.

Lemma 9 The family G contains at least 9′805 pairwise nonisomorphic graphs.

Proof: Consider the bipyramid B as a face-labeled object. There are 76 differ-
ent ways to assign a graph from T to each of the six now distinguishable faces.
Denote this class of face-labeled graphs by F . For many of these assignments
the corresponding graphs are isomorphic if considered as abstract (unlabeled)
graphs. However, the following argument shows that every isomorphism be-
tween two such graphs maps the vertex set of B to itself.

The two tips of B have degree three and are incident to three faces. Onto
each of the faces one graph from T is planted, which increases the degree by
four (for T1, . . . , T6) or three (for T7) to a total of at least twelve. The three
triangle vertices start with degree four and are incident to four faces. Every
graph from T planted there adds at least one more edge, to a total degree of at
least eight. But the highest degree among the interior vertices of the graphs in
T is seven, which proves the claim.

Hence we have to look for isomorphisms only among the symmetries of the
bipyramid B. The tips are distinguishable from the triangle vertices, because the
former are incident to three high degree vertices, whereas the latter are incident
to four high degree vertices. There are thus 12 ways to map one bipyramid to
another (2 ways to map the tips and 3! = 6 ways to map the triangle). Hence,
every graph in F is isomorphic to at most 12 graphs from F . It follows that
there are at least 76/12 > 9′804 pairwise nonisomorphic graphs in G. �
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We now give an upper bound on the number of graphs of G that can be simul-
taneously embedded on a common point set.

Lemma 10 At most 7′392 pairwise nonisomorphic graphs of G admit a simul-
taneous geometric embedding without mapping.

Proof: Consider a subset G′ ⊆ G of pairwise nonisomorphic graphs and a point
set P that admits a simultaneous embedding of G′. Since G′ is a class of maximal
planar graphs, the convex hull of P must be a triangle. For each G ∈ G′ we
select an outer face f(G) and a mapping π(G) for the vertices bounding f(G)
to the convex hull of P so that the resulting straight-line embedding, which by
Lemma 6 is completely determined by f(G) and π(G), is plane.

Recall that we associated with each face f ′ ofG the graph t(f ′) ∈ {T1, . . . , T7}
from which it originates. Let us group the graphs from G′ into bins, according
to the maps f and π. For f , there are 7 · 11 possible choices: one of the eleven
faces of one of the seven graphs in T . For π there are three choices: one of the
three possible rotations to map the face chosen by f to the convex hull of P .
Note that regarding π there is no additional factor of two for the orientation
of the face, because by flip-symmetry such a change corresponds to a different
graph (for T1, . . . , T6) or a different face of the graph (for T7), that is, a different
choice for f . Altogether this yields a partition of G′ into 3 · 77 = 231 bins.

Now consider one of the bins X and let {G1, . . . , Gk} = X. For all 1 ≤ i, j ≤
k we have t(f(Gi)) = t(f(Gj)) by the way in which we divided the graphs into
bins. Let G′i be the subgraph of Gi that contains only t(f(Gi)) and B. Note
that G′i = G′j : the graphs Gi and Gj can differ only in what was embedded in
the remaining five faces of B. Furthermore, the subgraphs that were embedded
in each of these five remaining faces of B contain exactly five extra vertices (not
counting the vertices belonging to B), because each of T1, . . . , T7 has the same
size. Hence, following the proof of Lemma 6, we see that the plane embedding
of G′i onto P with the mapping π of f(G′i) onto the convex hull not only exists
(by choice of f and π) but is in fact unique, provided we insist that each of the
remaining five faces of B contains the correct (five) number of points of P in
the embedding.

It follows that for all graphs in the same bin the graphs from T planted onto
the faces of B are mapped to the same point sets. Any two (nonisomorphic)
graphs from G′ differ in at least one of those faces – and by definition not in
the one in which the outer face was selected by f . In order for the graphs in
a bin to be simultaneously embeddable on P , by Lemma 8 there are at most
two different graphs from T mapped to any of the remaining five faces of B.
Therefore there cannot be more than 25 = 32 graphs from G′ in any bin. Hence
|G′| ≤ 231 · 32 = 7′392, as claimed. �

Since there are strictly more nonisomorphic graphs in G than can possibly be
simultaneously embedded, not all graphs of G admit a simultaneous embedding.
In particular, any subset of 7′392 + 1 nonisomorphic graphs in G is a collection
that does not have a simultaneous embedding. This proves our Theorem 2.
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n: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ≥ 15
# universal point sets: 1 1 1 1 1 5 45 364 5′955 2′072 ? ? ? ? 0

Table 1: The number of (non-equivalent) n-universal point sets of size n.

5 Small n-universal point sets

As we have seen in Section 3, there are no n-universal point sets of size n for
n ≥ 15. In this section, we consider the case n < 15. Specifically, we used a
computer program to show the following:

Theorem 3 There exist n-universal point sets of size n for all 1 ≤ n ≤ 10.

We use a straightforward brute-force approach. The two main ingredients are
the aforementioned order type database [2] with point sets of size n ≤ 10 and
the plantri program for generating maximal planar graphs [10, 11]. Refer to
Appendix A for some details on the implementation. Work on the case n = 11
is still in progress at the time of writing. For n > 11 the approach unfortunately
becomes infeasible; it is unknown whether or not there exist n-universal point
sets of size n for 11 ≤ n ≤ 14. Table 1 gives the number of n-universal point
sets of size n and Figure 5 shows one universal point set for each n = 5, . . . , 10.

(138, 72)
(255, 69)

(69, 255)

(149, 116)

(0, 0)

(253, 136)

(194, 131)

(63, 182)

(101, 83)

(65, 15)

(5, 240)

(180, 140)

(148, 122)

(177, 107)

(219, 61)

(170, 194)

(92, 132)

(36, 112)

(151, 161)

(150, 186)

(126, 232)

(254, 82)

(162, 107)

(124, 125)

(2, 24)

(88, 60)

(27011, 31063)

(29367, 32804)

(29348, 30469)

(29312, 31921)

(29060, 31627)

(28635, 30173)

(32686, 28235)

(28014, 34715)

(25174, 31591)

(21851, 49497)

(45873, 38514)

(43249, 34704)

(36513, 24768)

(23183, 47690)

(26329, 42168)
(26104, 43895)

(30430, 8698)

(61273, 56838)

(4263, 46244)

Figure 5: One universal point set for each n = 5, . . . , 10. Each pair of points is
connected with a line segment.



542 Cardinal et al. Universal Point Sets for Planar Graphs

6 Conclusions

We proved that there exists an n-universal point set of size n for every n ≤ 10
and that no such point set exists for n ≥ 15. The cases 11 ≤ n ≤ 14 are still
open. The main open problem remains to close the gap between the linear lower
bound and the quadratic upper bound on the size of an n-universal point set. On
the topic of simultaneous embeddings we proved that σ < 7393 by describing
7393 graphs that do not admit a simultaneous geometric embedding without
mapping. The tantalizing question of whether σ = 2, as originally asked by
Brass et al. [9], remains open.
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A Notes on implementation

We provide the code to prove Lemma 8 and Theorem 3 at [13]. This package
contains the source code of a program universal to generate all universal point
sets of size n ≤ 10 and the source code of a program verifygraphs to verify
Lemma 8. The programs are similar and rely on two dependencies: the order
type database [2] with point sets of size n ≤ 10 and the plantri program for
generating maximal planar graphs [10, 11]. The file README in the package
contains detailed instructions on how to download the dependencies, compile
the programs, and run the programs. In the remainder we give some notes on
the implementation of these programs.

A.1 Common code

The programs universal and verifygraphs share some basic code. They both use
an implementation of the Graham-Andrew algorithm to compute the convex
hull of a point set, following the pseudocode given in [15, pages 6–7]. They also
share code to verify whether a straight-line embedding of a graph on a point
set P is plane. One naive approach is to test for every pair of edges whether
the corresponding line segments intersect. Instead, the programs use the fact
that the plantri program outputs not only the maximal planar graphs but also
their unique combinatorial embedding in the form of a rotation system. The
rotation system of an embedding describes for every vertex v the circular order
of the edges incident to v. To determine whether a straight-line embedding E
of G onto P is plane, it suffices to check whether the rotation system output
by plantri coincides (up to global reflection) with the rotation system of E . All
common code has been tested against an independent implementation.

A.2 Generating universal point sets

The program universal enumerates all point sets in the order type database.
To determine if a point set P of size n is n-universal, it tests if for all maximal
planar graphs G = (V,E) on n vertices, there exists a bijection ϕ : V → P
such that straight-line drawing of G induced by ϕ is plane. If such a bijection
exists for all G, then P is universal. Otherwise, there is a graph G that has
no plane straight-line embedding on P . Note that it is sufficient to consider
maximal planar graphs since adding edges only makes the embedding problem
more difficult.

A.3 Verifying Lemma 8

The program verifygraphs iterates over all point sets P of size n = 8 in the order
type database. Let P = {p0, . . . , p7} be such that {p0, p1, p2} forms the convex
hull. Then for every possible bijection φ : {a, b, c} → {p0, p1, p2}, the program
counts the number of graphs from Figure 4(a-g) for which φ can be extended
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to a plane straight-line embedding. This number is always at most two: this
proves Lemma 8.

A.4 Heuristics

The program universal has two compile-time options that enable heuristics to
improve the running time of the program. These heuristics are disabled by
default, since they increase the complexity of the code and may thus make it
more difficult to check its correctness. The code outputs the same universal
point sets, regardless of which heuristics are enabled. Enabling both heuristics
decreases the time required to generate all universal point sets of size n ≤ 9 on
a 2011 notebook computer from approximately 90 minutes to 20 minutes.

The reorder heuristic reorders the list of graphs whenever a graph is found
that could not be embedded on the point set under consideration. This graph
is moved to the front of the list. The idea is that some graphs may admit an
embedding on fewer point sets and hence computation time may decrease if such
graphs are checked first.

The permutation heuristic exploits an observation we made earlier in the
paper. Let us label the vertices of G by 〈v1, . . . , vn〉 and treat a straight-line
embedding of G as a permutation 〈p1, . . . , pn〉 of P so that each vi is mapped
to pi. If the partial embedding of 〈v1, . . . , vk〉 onto 〈p1, . . . , pk〉 already contains
a crossing, then none of the permutations of P that start with 〈p1, . . . , pk〉
will result in a plane straight-line embedding of G. The permutation heuristic
proceeds as follows. It first checks whether 〈p1, . . . , pn〉 is a plane straight-
line embedding of G. If not, it performs a binary search to find the k such
that there is no crossing for the partial embedding onto 〈p1, . . . , pk−1〉, but
there is a crossing for the partial embedding onto 〈p1, . . . , pk〉. It then skips all
permutations that start with 〈p1, . . . , pk〉.
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