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Abstract

We give a polynomial delay algorithm, that for any graph G and pos-
itive integer k, enumerates all connected induced subgraphs of G of order
k. Our algorithm enumerates each subgraph in at most O((kmin{(n —
k), kA})*(A 4 logk)) and uses linear space O(n +m), where n and m are
respectively the number of vertices and edges of G and A is the maximum

degree.
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1 Introduction

Let G = (V, E) be an undirected graph of |V| = n vertices and m = |E| edges.
Given an integer k € Z,, we consider the problem GEN(G; k) of enumerating
(or generating) all subsets X C V of vertices such that | X| = k and the subgraph
G[X] induced on X is connected. Let us denote the family of such vertex sets
by C(G; k).

Typically, the size of C(G; k) is exponentially large in k. In fact, it was shown
in [I0] that there exists a family of connected graphs G with maximum degree
A < 22 for which |C(G; k)| > n(5)*~1. On the other hand, an upper bound of

k
A

An enumeration algorithm for C(G; k) is said to be output (or total) polyno-
mial if the algorithm outputs all the elements of C(G; k) in time polynomial in
n and |C(G;k)|. Avis and Fukuda [I] introduced the reverse search method for
enumeration, and used it to solve, among several other problems, the problem
of enumerating all connected induced subgraphs of size at most k. Uehara [10]
noted that such an algorithm is total polynomial for enumerating C(G; k) when
k is a fixed constant. In fact, since the algorithm of [I] enumerates the families
C(G;i) for all 1 <4 < k, the total the running time of the algorithm is bounded
by (see [10]):

on the size of C(G; k) was also given in [10].

k—1
o) <n+m+Z|C(G;i)| + k%|C(G; k)|>, (1)

i=1

which is upper bounded by O (n +m+ ((ZA_)l’“) k;2>, using the upper bound on

|C(G; k)| mentioned above.

However, we note that such a bound is not polynomial, when k is part of
the inputﬂ In fact, considering the lower bound example mentioned above, we
observe that, when k = n— A, the size of C(G; k) is at most (Z) < n®, while for
all i < 28 |C(G;i)| > n(5)"~!. Thus for i = 22 — 1, the total running time in
will be at least n(%)%’2. Setting, for instance, A = n° for some € € (0, ),
and assuming n is large enough, we get that i = 2n'=¢ — 1 < k = n — n¢, and
thus the running time in is at least

Q(1)

nE T m T S oG |BTO m) < fe(@sk) T

Thus, the algorithm suggested in [10] is not a total polynomial algorithm.

An enumeration algorithm for GEN(G; k) is said to have a polynomial delay
of p(n,m, k) if it outputs all the elements of C(G; k), such that the running time
between any two successive outputs is at most p(n, m, k). The algorithm is said

LAn analogy can be drawn from the enumeration of face lattices of polytopes, where enu-
merating all faces of dimension at most k is solvable in total polynomial time, while enumerat-
ing faces of dimension exactly k includes the well-known vertex enumeration problem, whose
complexity is an outstanding open question. This discrepancy is due to the fact that, there
are polytopes (the so-called fat-lattice polytopes, see e.g. [0} [4]) where the total number of
faces is exponentially large in the number of facets and vertices
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to use linear space, if the total space required by the algorithm (excluding the
space for writing the output) is O(n+m). Recently, Karakashian et al. [7] gave
an algorithm with delay O(AF) for solving GEN(G; k).

In this short note, we give a bound that is polynomial in k.

Theorem 1 There is an algorithm for solving GEN(G; k), for any graph G =
(V, E) and integer k € 7., with polynomial delay O((kmin{(n — k), kA})?(A +
logk)) and space O(n +m).

We remark that the polynomial delay bound can be improved if we do not
insist on using polynomial space (that is, the space used by the algorithm may
depend polynomially on |C(G;k)|); see Corollary (1 below.

Our proof of Theorem [1]is also based on using the the reverse search method
[1]. In fact we will consider more generally the supergraph method for enumera-
tion, which can be thought of as a generalization of the reverse search method.
This method will be briefly explained in the next section. Then we prove The-
orem [[in Sections [ and [l

The problem of enumerating of connected induced subgraphs of size k arises
in several applications, such as keyword search over RDF graphs in Information
Retrieval, and consistency analysis in Constrained Processing; see, e.g., [B []
and the references therein.

2 The Supergraph Approach

This technique generally works by building and traversing a directed (super)graph
G = (C(G;k),E), defined on the family C(G; k). The arcs of G are defined by a
neighborhood function N : C(G; k) — 2€(G+F) | that to any X € C(G; k) assigns a
set of its successors N (X) in G. A special node Xy € C(G; k) is identified from
which all other nodes of G are reachable. The algorithm works by traversing,
either, in depth-first or breadth-first search order, the nodes of G, starting from
Xo. If G is strongly connected then Xy can be any node in C(G; k).

To avoid confusion, in the following, we will distinguish the vertices of G
and G by referring to them as vertices and nodes, respectively.

The following fact is known about this approach (see e.g. [T} 2] [6] []):
Proposition 1 Consider the supergraph G and suppose that
(i) G is strongly connected;
(ii) a node Xg in G can be found in time to(n, m,k);

(iii) for any node X in G, IN(X)| < N(n,m,k) and we can generate N(X)
with delay t(n,m, k);

then C(G; k) can be generated with delay O(max{to(n,m, k), (t(n,m, k)+log|C(G; k)|)-
N(n,m,k)} and space O(n +m + k|C(G;k)|). If instead of (i),
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(iv) there is a function f : C(G;k) \ {Xo} — C(G;k), that for every node
X # Xo in G, identifies (in a unique way), in time t;(n,m,k), a node
X' = f(X) in G such that X € N(X'), and f satisfies the following
acyclicity property: there exist no X1 = X1, Xo,..., Xy € C(G; k) such
that Xz = f(Xz+l) fOT‘i = ]., .. .g,

then C(G; k) can be generated with delay O(max{to(n,m, k), (t(n,m, k)+t1(n,m, k))-
N(n,m,k)} and space O(n+m).

The proof is straightforward. For the first claim, we essentially traverse a
breadth-first search (BFS) tree on G, starting from node X,. We maintain a
balanced binary search tree (BST) on the elements generated, sorting them, say,
according to some lexicographic order. We also keep a queue of all elements
that have been generated but whose neighborhoods have not been yet explored.
When processing a node X in the queue, we output X and then generate all its
neighbors in G, but only insert in the queue a neighbor X' if it has not been yet
stored in the BST.

To achieve the second claim, we instead traverse a depth-first search (DFS)
tree on G, starting from node Xj. (This is essentially the reverse search method)
When traversing a node X, we generate all neighbors of X in G, but only proceed
the search on a neighbor X', if X = f(X’) is the unique ”parent” defined in
(iv). The fact that f is a function satisfying the acyclicity property implies that
all the nodes in G are processed exactly once (since for any node X in G there
is a unique path leading to Xj). In order to obtain the claimed delay bound,
we output a node X just after the first visit to it, if the depth of X in the tree
is odd (assume the root Xy has depth 1), or X is a leaf; otherwise, X is output
just before coming back to the parent. (Note that this way of distributing the
outputs over time ensures that the delay between two successive outputs is not
more than the time to generate at most two nodes. Indeed, if X has odd depth
or X is a leaf, then the last node output before X would be the closet ancestor
of X at odd depth; if X has even depth, then the last node output before X
would be the closest node with even depth (or a child leaf if no such node exists)
on the right-most path descending from X.) Note that we do not need to store
the history along any search path since the parent of any node can be generated
efficiently.

Clearly, we may and will assume in the rest of the paper that the graph G is
connected. In the next section, we will prove that this assumption implies that
the supergraph G in our case is strongly connected (and in fact has diameter
0 < n—k). Let us now set the other parameters in Proposition corresponding
to our problem GEN(G; k). We assume an order on the vertices of G, defined by
an arbitrary DFS tree, which also naturally defines a lexicographic order ”<”
on the vertex sets. Clearly, the lexicographically smallest node Xy € C(G;k)
can be found in time to(n,m, k) = O(kA) by traversing the DFS tree starting
from the smallest vertex in G and processing vertices in DFS order until exactly
k vertices are visited.
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Given a node X € C(G; k), we have, with the neighborhood definition given
below, |N(X)| < k- min{(n — k),kA}, and each element in N (X) can be
generated in timd?] ¢(n,m, k) = O(k(A + logk)). These bounds, together with
the upper bound |C(G; k)| < % imply that the set C(G; k) can be generated
with polynomial delay O(k? -min{(n —k), kA}(A+logk)) and space O(n+m +
kIC(G; E))).

In order to achieve a polynomial space bound (independent of |C(G;k)l),
we will need a stronger claim, namely that every node X € C(G;k) \ {Xo}
is reachable from Xy by a monotonically increasing lexicographically ordered
sequence of nodes. This claim will be proved for any DFS ordering on the
vertices of G, and allows us to identify the parent X’ of any node X by defining,
for instance, X’ = X U {u} \ {v}, where u € V'\ X and v € X are respectively
the smallest and largest vertices (in the DFS order) such that X’ < X and the
graph G[X U {u} \ {v}] is connected. Note that finding X’ can be done in time
ti(n,m, k) < t(n,m, k) -min{(n — k), kA}.

3 The Neighborhood Operator for C(G;k)

For a set X € C(G; k), it is natural to define the neighbors of X as those which
are obtained from X by exchanging one vertex:

NX)={X'€C(G:k): XNX =Fk—1)}.

It is worth comparing our neighborhood definition to the one suggested in [I]
for generating all connected induced subgraphs of size at most k. In the latter
definition, two sets X, X’ C V are neighbors if they differ in exactly one vertex.
The claim of strong connectivity follows immediately from the simply facts that
if X C V is such that G[X] is connected then there is a vertex u € X such that
G[X \ {u}] is also connected, and similarly, there is a vertex u € V' \ X such
that G[X U {u}] is connected.

4 Strong Connectivity

We prove first that the supergraph G is strongly connected.

Lemma 1 Let XY be two distinct elements of C(G; k). Then there exist vertex
sets X1,Xa,...,Xe € C(G;k) such that X1 =X, Xy =Y, {<n—k+1, and
fori=1,...0—-1, X;11 EN(XZ)

Proof: Let d(Z, Z’) be the (shortest) distance between the two vertex sets Z, Z'
in G. Suppose we have already constructed X;. We consider two cases.

Case 1. d(X;,Y) > 0 (and hence X;NY = ). Let ug, u1, - ..,u, be the ordered
sequence of vertices on the shortest path between X; and Y in G, where ug € X;

2This can be achieved by using a simple disjoint-set data structure; see e.g. Theorem 21.1
in [3]. We remark that this bound can be improved through the use of more sophisticated
data structures.
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and u. € Y. Let T be a spanning tree in G[X;]. Then T has a leaf v # uy.
We define X;11 = X; U {ui} \ {v}. By construction, X;11 € C(G;k), and
d(Xi41,Y) < d(X;,Y). Since d(X1,Y) < n — 2k + 1, we will arrive at case 2
after at most n — 2k + 1 iterations.

Case 2. d(X;,Y) = 0. Then there exists a vertex z € X; NY. Let C(X;;z2) be
(the vertex set of) the connected component containing z in G[X;NY]. We claim
that there exists a vertex set X;11 € N(X;) such that |C(X;11;2)| > |C(X;; 2)].
Indeed, let us contract C'(X;;z) into a single vertex w and denote the new
graph by G’. Then, by the connectivity of G[Y], there is an edge {w,u} in
the graph G'[Y U {w} \ C(X;;2)], where u € Y (u # w). Similarly, the graph
G'[X;U{w}\ C(X;; )] is connected and hence has a spanning tree T. Let v # w
be aleafin T. Then X, 1 = X;U{u}\{v} satisfies the claim. This claim implies
that in at most k — 1 iterations of case 2, we will have X;1; =Y. O

In view of Proposition |1} Lemma [1| implies that all the elements of C(G; k)
can be enumerated with polynomial delay.

Corollary 1 There is an algorithm for solving GEN(G; k), for any graph G =
(V,E) and integer k € Z., with polynomial delay O(k? -min{(n — k), kA}- (A +
logk)).

In order to prove that GEN(G; k) can be solved also with polynomial space,
we need the following result.

Lemma 2 Consider the lexicographic ordering "= on C(G;k) defined by a
DF'S order on the vertices of G. Let X be any element in C(G; k) that is not
lexicographically smallest. Then there is an X' € C(G; k) such that X' € N(X)
and X' < X.

Proof: Let us denote the lexicographically smallest element of C(G; k) by Xo.
Since Xo < X, it holds that w := min,ex,\x v < 2 := min,ex\x, u. We use
the following simple property of the DFS tree: for z < y, the DFS-tree walk
(that is, the sequence of vertices visited on the way in the DFS order) from z
to y contain only nodes z < y. We consider a number of cases:

Case 1. z is not a cut-vertex in G[X] (that is, G[X] — z is connected). We
consider two subcases.

Subcase 1.1. The DFS-tree walk from w to z enters X at a vertex x # z through
an edge {y,z}. Thus z € X, y ¢ X and y < z. Since z is not a cut vertex,
there is a spanning tree in G[X] which has z as a leaf. Then X' = X U{y}\ {z}
satisfies the claim.

Subcase 1.2. The DFS-tree walk from w to z enters X at z through an edge
{y, z}. If all vertices u € X \ {z} satisfy u > z, then let z # z be a leaf in a
spanning tree in G[X], and set X' = X U {y} \ {z} which satisfies the claim.
Otherwise, there is a vertex x in X N X that precedes z in the DFS order. Then
x necessarily precedes w (otherwise we are in case 1.1, as the DFS walk from
w to & would enter X through an edge {u,v}, where u < x < z), and the DFS
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walk between x and w must exit X through some edge {u,v} with v € X and
v ¢ X such that v < w < z. Then setting X’ = X U{v}\ {z} satisfies the claim.

Case 2. z is a cut-vertez in G[X]. Let X7 be the vertex set of the connected
component in G[X] — z containing the smallest vertex u in X \ {2z}, and let X»
be the vertex set of any other connected component in G[X] — z. Let v # z be
a leaf in a spanning tree in G[X3 U {z}]. We consider two subcases.

Subcase 2.1. The DFS-tree walk from u to v does not go through z. Then it
must be the case that the walk leaves X7, and hence X, through an edge {z,y},
where x € X7 and y € X. Since y < v, the set X' = X U {y} \ {v} satisfies the
claim.

Subcase 2.2. The DFS-tree walk from u to v does go trough z. Then z < v and
the DFS walk from w to z enters X at a vertex x # v through and edge {y,z},
where y & X. Since y < z < v, we can set X' = X U {y} \ {v} to satisfy the
claim. 0

We note that the conclusion of Lemma [2] is not true if we replace the DFS
order of the vertices by an arbitrary order. Consider for instance, the case
when G is a path with vertices numbered 1,2,...,k,n,,k+1,...,n — 1, in
the order they appear on the path, where n > 2k + 1. Then the set X =
{k+1,k+2,...,2k} has two neighbors, namely, X' = {n, k+1,k+2,...,2k—1}
and X" ={k+2,k+2,...,2k + 1}, both of which are lexicographically larger
than X.
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