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Metric Dimension Parameterized
by Max Leaf Number
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Abstract

The metric dimension of a graph is the size of the smallest set of
vertices whose distances distinguish all pairs of vertices in the graph. We
show that this graph invariant may be calculated by an algorithm whose
running time is linear in the input graph size, added to a function of the
largest possible number of leaves in a spanning tree of the graph.
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1 Introduction

Since its initial formulation, the theory of parameterized complexity has had
great success in developing algorithms for NP-hard problems that are general
enough to handle all inputs, that are fast on inputs of low complexity (as
measured by the parameter of interest), and that degrade gracefully as this
parameter increases. For instance, by Courcelle’s theorem, a large number
of graph properties have fixed-parameter tractable algorithms when parame-
terized by treewidth [4]; these algorithms have running time bounds that are
linear in the size of the graph, multiplied by non-polynomial functions of the
treewidth. An even larger class of problems (essentially, all monotone graph
properties) have fixed-parameter tractable algorithms when parameterized by
tree-depth [21]. Nevertheless, for some important graph problems and parame-
ters, fixed-parameter tractable algorithms with these parameters are unknown
or (if standard complexity-theoretic assumptions hold) provably do not exist.
One example of this phenomenon is given by the metric dimension of a given
graph [13].

Definition 1 A locating set (or metric basis) for a graph G is a set S of
vertices with the property that, for every two vertices u and v in G, there exists
a vertex w ∈ S such that u and v have different distances to w. The metric
dimension of G is the minimum cardinality of a locating set for G.

Thus, the locating set gives a set of landmarks that can be used for un-
ambiguous navigation in G, and the metric dimension counts the number of
landmarks that are necessary for this purpose [16]. The graphs for which the
metric dimension is bounded may be recognized in polynomial time, by an ob-
vious brute-force search algorithm that tests whether each tuple with the given
size bound is a locating set. Generalizing an algorithm for metric dimension
in trees [13], the metric dimension may also be computed in polynomial time
for graphs of bounded cyclomatic number (the minimum number of edges the
removal of which breaks all cycles) [6]. However, the exponents of these algo-
rithms depend on their parameters, so they are not fixed-parameter tractable,
and the problem does not seem to fit into the standard classes of problems
that may be solved efficiently for graphs of bounded treewidth [5] or tree-depth.
Additionally, the metric dimension of a graph is complete for W[2] [14], again
implying that it is unlikely to be fixed-parameter tractable for its natural pa-
rameter. This negative result implies that, in order to find fixed-parameter
tractable algorithms for this problem, we must search for weaker parameters
that better distinguish the easy instances of these problems from the hard ones.

In this paper, we find such a result, parameterized by the max leaf number of
a graph. Our algorithms are particularly efficient for graphs with many degree-
two vertices and few vertices of other degrees, which are common for instance
in subway and train systems (Figure 1).

Definition 2 The max leaf number of a connected graph G is the maximum,
over all spanning trees of G, of the number of leaves in the spanning tree.
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Figure 1: The Toronto TTC subway system, a graph with 75 vertices, max
leaf number 7, and 8 branches. Public domain image by Paulshannon from
Wikimedia commons.

The max leaf number of G can equivalently be defined as the maximum
number of leaves in a star K1,` that is a minor of G, because contracting the
interior edges of a tree with ` leaves leads to a star minor [8]. It also equals
the maximum degree of a minor of G. Because of these equivalent definitions,
the max leaf number is minor-monotone. Testing whether the max leaf number
is at most a given threshold is NP-complete [12, ND4, p. 206] but the max
leaf number is fixed-parameter tractable with its natural parameter [8] and
parameterized algorithms for computing it have been the subject of extensive
algorithmic research (see e.g. Fernau et al. [10] and their references). After
an initial investigation by Fellows et al. [9], the max leaf number has by now
become one of the standard choices for parameterizing algorithms for other
graph problems [1, 2, 7, 18,19].

2 Max leaf number versus branches

Rather than parameterizing our algorithms directly by the max leaf number, it
will be convenient for us to instead use a different but (as we prove) functionally
equivalent parameter, the number of branches in the given graph.

Definition 3 A branch of a graph G is a maximal path or cycle in which every
internal vertex of the path has degree two in G. A vertex v belongs to a branch
if v is incident to an edge of the branch and it is not incident to edges of any
other branches.

http://commons.wikimedia.org/wiki/File:TTCsubwayRTmap-2007.svg
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Lemma 1 In any connected graph with max leaf number `, there can be at most
O(`2) branches.

Proof: We prove in the opposite direction that if there are b branches then
there is a tree with Ω(

√
b) leaves. So, suppose that we have a connected graph

G with b branches. We partition into cases:

• Suppose that at least
√
b of these branches end in a degree-one vertex.

Then contracting all the other branches leaves a tree with at least
√
b

leaves.

• If we are not in the previous case, form a graph G′ (the 2-core of G) by
recursively removing all degree-one branches from G. There can be O(

√
b)

removed branches, and each removed branch may cause two remaining
branches to merge, so G′ has b−O(

√
b) branches. Let t be the number of

vertices in G′ of degree three or more. If t = O(
√
b), then at least one of

these vertices must have Ω(
√
b) branches incident to it, giving a tree with

Ω(
√
b) leaves.

• In the remaining case, we have b− O(
√
b) branches in G′ and t = Ω(

√
b)

vertices of degree three or more. Contracting each branch of G′ to a single
edge forms a graph with t = Ω(

√
b) vertices, each of which has degree at

least three. A classical theorem of Kleitman and West [17] implies that the
contracted graph has a tree with Ω(

√
b) leaves. Undoing the contraction

results in a tree with the same number of leaves in G itself.

Thus in every case G has max leaf number Ω(
√
b) �

Example 1 A complete graph Kn has max leaf number n − 1 and n(n − 1)/2
branches. This example shows that Lemma 1 is asymptotically tight.

Lemma 2 Every connected graph with b > 0 branches has max leaf number at
most 2b.

Proof: If a graph G has max leaf number `, then it has a tree T with ` leaves,
and therefore (if ` > 2) it has at least ` branches. Each branch of G can give
rise to at most two branches of T , so the number b of branches of G obeys the
inequality 2b ≥ `. The case when ` ≤ 2 is even easier, for in this case the graph
must be a path with b = 1 and ` = 2. �

Corollary 1 Any graph algorithm that is fixed-parameter tractable for max leaf
number is fixed-parameter tractable for the number of branches, and vice versa.

Proof: This follows immediately from Lemma 1 and Lemma 2. �

3 Metric dimension

With these preliminaries about numbers of branches in hand, we are ready to
start describing our algorithm for the metric dimension.
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3.1 Indistinct sets

In a graph with a small number of branches, a single vertex in a locating set
will necessary distinguish most of the pairs of vertices in the graph.

Lemma 3 Let G be a graph, B be a branch of G, and s be any vertex of G.
Then B may be partitioned into at most three contiguous paths within which the
distance from s is monotonic.

Proof: If s is not within B, then let v be the point of B where distance from s
is largest. Then splitting B into two paths at v necessarily gives two contiguous
paths on which the distance is monotonic: neither path can contain a local
minimum of distance, because the only possible such point within a path is s
itself, and neither path can contain a local maximum, because there would have
to be a local minimum between any local maximum and v.

If s is within B, then split B into three paths at s and at the point v where
distance from s is largest. The two paths ending at v are monotone for the
same reason as before. The third path, from s to the other endpoint w of B,
must also be monotone. For, if it had a local maximum at a point u, then the
shortest path from s to w would be shorter than both of the paths from s to
u and s to v, and would therefore have to avoid both u and v, but there is no
path in G from s to w that avoids both u and v. �

Definition 4 Let G be a graph, with A and B being two of its branches, and
let s be a vertex in a locating set for G. Then the indistinct set for s, A, and
B is defined to be the set of pairs of vertices (a, b) with a ∈ A and b ∈ B with
d(s, a) = d(s, b). We do not require A and B to be distinct, so A = B is allowed
in this definition.

Lemma 4 Let G be a graph, with A and B being two of its branches, and let s
be a vertex in a locating set for G. Then the indistinct set for s, A, and B has
size O(min(|A|, |B|)) .

Proof: By Lemma 3 the vertices in A and in B may be divided into at most
three paths per branch, within which the distance from s is monotonic. There-
fore, there are O(1) points in both A and B that have a given distance d from s,
and only O(1) pairs of one point from A and one point from B that both have
this distance. The total number of pairs that are not distinguished is the sum
of this O(1) bound over the at most min(|A|, |B|) different distances that need
to be distinguished. �

When plotted in two dimensions, with the position of a in A as one Cartesian
coordinate and the position of b in B as the other, an indistinct set has the
structure of O(1) line segments with slopes ±1 (Figure 2). By rotating this
coordinate system by 45◦ we may use a more convenient coordinate system
in which these segments are all horizontal or vertical, rather than diagonal.
However, we must be careful when using this rotated system: only half of the
integer points (the ones with even sums of coordinates) correspond to the integer
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Figure 2: Two branches A and B arranged by their distances from a locating
point s (left), and their indistinct set (of pairs not distinguished by s) plotted
using the positions in the branches as Cartesian coordinates (right).

points in the un-rotated system, which are the only points that can be members
of an indistinct set.

Observation 1 Set S is a valid locating set if, for every pair of branches A
and B, the different indistinct sets for the different points in S have an empty
intersection.

3.2 Stems

Now, consider how the indistinct set of s, A and B changes as the position of s
varies along a third branch C in the given graph.

Definition 5 We say that two indistinct sets are combinatorially equivalent if
there is a one-to-one correspondence between the diagonal segments of the two
sets with the following properties:

• If s is a diagonal of one indistinct set, then the corresponding diagonal in
the other set has the same slope as s.

• If s and t are two diagonals of one indistinct set that intersect each other,
then the corresponding diagonals in the other set also intersect each other.

• If s, t, and u are three diagonals of one indistinct set, with t and u both
intersecting s, then the corresponding two intersections of diagonals in the
other intersecting set have the same (northwest-to-southeast or northeast-
to-southwest) ordering.

Combinatorial equivalence is an equivalence relation and we define the combina-
torial structure of an indistinct set to be its equivalence class in this equivalence
relation.
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Definition 6 We define a stem to be a maximal contiguous subset of a branch
C of the given graph G within which the indistinct sets of all points s in C and
all pairs (A,B) of branches have the same combinatorial structure.

Lemma 5 For a given pair of branches (A,B) and a third branch C, there are
O(1) positions along C such that the indistinct set of a vertex s of C and the
pair (A,B) changes structure at that position.

Proof: The structure changes only at two types of position along C:

• positions where the shortest path from s to an endpoint of A or B switches
from going through one end of C to going through the other, and

• positions where the endpoints of the two branches A and B and the points
of maximum distance from s change their relative positions in the arrange-
ment by distance from s.

There are two possibilities for the shortest path from s to a given endpoint v of
A or B: it must consist of a path in C from s to one endpoint of C together
with the shortest path in G from that endpoint of C to v. These two paths can
change their ordering only once as s moves along C. Therefore, each endpoint
of A or B contributes at most four breakpoints of the first type.

Because it has only one breakpoint of the first type, each endpoint of A or B
has a distance from s that (as a function of the position of s along C) is piecewise
linear with only one breakpoint. By similar reasoning, the distance from s to
the farthest point within A or B is also piecewise linear with O(1) breakpoints.
Therefore, in the arrangement by distance, these points can exchange positions
only O(1) times. �

At all points of C other than these, the indistinct set for s, A, and B main-
tains the same combinatorial structure. The positions of its segments either
remain fixed as s varies along the path, or they shift linearly with the position
of s along C.

Lemma 6 Every graph G with b branches has O(b3) stems.

Proof: There are O(b2) pairs of branches, each of which (by Lemma 5) con-
tributes O(1) breakpoints to branch C, so each branch has O(b2) stems and
there are O(b3) stems in the whole graph. �

3.3 The algorithm

Lemma 7 The metric dimension of every graph with b branches is O(b).

Proof: A set S that includes the endpoints of all branches and an interior point
of each branch is certainly a valid locating set, and has |S| = O(b). �

Theorem 1 The metric dimension of any graph with n vertices and b branches
may be determined in time O(n) + 2O(b3 log b) log n.
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Proof: We may assume without loss of generality that the graph is connected,
for otherwise we could partition it into connected components and process each
component separately. Partitioning the graph into branches may be performed
in time O(n). After this step all shortest path computations in the given graph
can be performed by instead using a weighted graph with O(b) vertices and
edges, in which each edge represents a branch of the original graph and is
weighted by that branch’s length. In particular, after partitioning the graph
into branches, we may partition the branches into stems in total time bO(1).

We search for locating sets of size O(b) (according to Lemma 7) by choosing
nondeterministically the number of vertices in the locating set S, and the stem
containing each vertex (but not the location of the vertex within the stem).
There are 2O(b log b) possible choices of this type. This choice determines the
combinatorial structure of each indistinct set.

Next, for each pair (A,B) of branches (allowing A = B) and each member
s of the locating set (now associated with a specific stem but not placed at
a particular vertex within that stem), we consider the line segments forming
the indistinct sets for s, A and B, in the rotated coordinate system for which
these line segments are horizontal and vertical. For a given pair (A,B) there
are O(b) line segments (O(1) for each member of the locating set) and each
line segment may be specified by the two Cartesian coordinate pairs for its
endpoints. Rather than choosing these coordinate values numerically, we choose
nondeterministically the sorted order of the x-coordinates and similarly the
sorted order of the y-coordinates, allowing ties in our nondeterministic choices.
In other words, separately for the x and y coordinates, we select a weak ordering
of the segment endpoints, specifying for any two segment endpoints whether
they have equal coordinate values or, if not, which one has a smaller coordinate
value than the other. We also choose nondeterministically the parity of each
Cartesian coordinate. Each of the O(b2) pairs of branches has 2O(b log b) choices

for these orderings and parities, so there are 2O(b3 log b) possible nondeterministic
choices overall. For each such choice and each pair (A,B) we verify that, if we
can find a placement of the vertices of the locating set that gives rise to the
chosen sorted orderings, then the intersection of the indistinct sets for A and B
will not contain any integer points (in the un-rotated coordinate system).

To test whether two indistinct sets have a non-empty intersection, we test
each pair of a line segment from one set and a line segment from the other set for
an intersection. Two horizontal line segments intersect each other if and only
if they have the same y-coordinate and overlapping intervals of x-coordinates;
a symmetric calculation is valid for two vertical line segments. A horizontal
line segment intersects a vertical line segment if and only if the y-coordinate
of the horizontal segment is within the range of y-coordinates of the vertical
segment, the x-coordinate of the vertical segment is within the range of x-
coordinates of the horizontal segment, and the parities of the coordinates of the
two segments cause their crossing point to land on an integer point rather than
on a half-integer point. In this way, the existence of an intersection point can be
determined in time polynomial in b, using only the information about the sorted
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order and parities of coordinates that we have chosen nondeterministically.

When these nondeterministic choices find a collection of indistinct sets, and
a sorted ordering of the features of those sets, for which every pair of branches
has an empty intersection of indistinct sets, it remains to determine whether
there exists a placement of each locating set vertex within its stem, in order to
cause the indistinct set features to have the sorted orders that we have already
chosen. Each ordering constraint between two features that are consecutive in
one of the sorted orders translates directly to a linear constraint between the
positions of two locating set vertices s and s′ within their stems; therefore,
the problem of finding positions that satisfy all of these constraints can be
formulated and solved as an integer linear programming feasability problem,
with O(b) variables (the positions of the locating vertices on their stems) and
O(b3) constraints (sorted orderings of O(b) items for each of O(b2) pairs of
branches, specified with numbers of O(log n) bits (the lengths of the stems). By
standard algorithms for low-dimensional integer linear programming problems,
this problem can be solved in time 2O(b log b) log n. [3, 11,15,20].

The product of the numbers of nondeterministic choices made by the algo-
rithm with the time for integer linear programming for each choice gives the
stated time bound. �

Corollary 2 The metric dimension of a graph with max leaf number ` may be
determined in time O(n) + 2O(`6 log `) log n.

4 Conclusions

We have shown that metric dimension is fixed-parameter tractable in the max
leaf number, but our algorithms have time bounds that are too high to be prac-
tical. It would therefore be of interest to reduce this dependence, for instance
to be singly-exponential in the max leaf number.

It would also be of interest to extend this method to stronger parameters.
For instance, the fact that the metric dimension is relatively easy on trees [13]
makes it plausible that, for general graphs, we could reduce the problem to
one on the 2-core of the graph (the subgraph that remains after repeatedly
removing degree-one vertices). The branch-count of the 2-core of any graph is
proportional to the graph’s cyclomatic number, so such a result would mean
that the metric dimension could be computed in fixed-parameter tractable time
in the cyclomatic number. Is this possible?
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