
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 19, no. 1, pp. 155–190 (2015)
DOI: 10.7155/jgaa.00352

Parameterized Algorithmics and Computational
Experiments for Finding 2-Clubs

Sepp Hartung 1 Christian Komusiewicz 1 André Nichterlein 1

1Institut für Softwaretechnik und Theoretische Informatik, TU Berlin,
Berlin, Germany

Abstract

Given an undirected graph G = (V,E) and an integer ` ≥ 1, the NP-
hard 2-Club problem asks for a vertex set S ⊆ V of size at least ` such
that the subgraph induced by S has diameter at most two. In this work,
we extend previous parameterized complexity studies for 2-Club. On the
positive side, we give polynomial-size problem kernels for the parameters
feedback edge set size of G and size of a cluster editing set of G and present
a direct combinatorial algorithm for the parameter treewidth of G. On the
negative side, we first show that unless NP ⊆ coNP/poly, 2-Club does
not admit a polynomial-size problem kernel with respect to the size of
a vertex cover of G. Next, we show that, under the strong exponential
time hypothesis, a previous O(2|V |−` · |V ||E|)-time search tree algorithm
[Schäfer et al., Optim. Lett. 2012] cannot be improved and that, unless
NP ⊆ coNP/poly, there is no polynomial-size problem kernel for the dual
parameter |V | − `. Finally, we show that, in spite of this lower bound,
the search tree algorithm for the dual parameter |V | − ` can be tuned
into an efficient exact algorithm for 2-Club that outperforms previous
implementations.

Submitted:
July 2013

Reviewed:
May 2014

Revised:
August 2014

Accepted:
February 2015

Final:
February 2015

Published:
March 2015

Article type:
Regular paper

Communicated by:
P. Mutzel

E-mail addresses: sepp.hartung@tu-berlin.de (Sepp Hartung) christian.komusiewicz@tu-berlin.de

(Christian Komusiewicz) andre.nichterlein@tu-berlin.de (André Nichterlein)

http://dx.doi.org/10.7155/jgaa.00352
mailto:sepp.hartung@tu-berlin.de
mailto:christian.komusiewicz@tu-berlin.de
mailto:andre.nichterlein@tu-berlin.de

156 Hartung et al. Algorithms and Experiments for Finding 2-Clubs

1 Introduction

Finding cohesive subnetworks is an important task in graph-based data mining
and social network analysis. The natural cohesiveness requirement is to demand
that the subnetwork is a complete graph, that is, a clique. This requirement is
often too restrictive and thus relaxed versions such as s-cliques [2], s-plexes [38],
and s-clubs [33] have been proposed. An s-club is a graph with diameter at
most s, and s-clubs are thus a distance-based relaxation of cliques (which are
exactly the graphs of diameter 1). For a constant integer s ≥ 1, the problem of
finding large s-clubs is defined as follows.

s-Club
Input: An undirected graph G = (V,E) and an integer ` ≥ 1.
Question: Is there a vertex set S ⊆ V of size at least ` such that the
subgraph induced by S has diameter at most s?

Clearly, 1-Club is equivalent to the well-known Clique problem where one has to
find a clique of size `. In this work, we consider 2-Club, the most basic variant of
s-Club that is different from Clique. Furthermore, 2-Club is also an important
special case concerning the applications: For biological networks, 2-clubs and
3-clubs have been identified as the most reasonable diameter-relaxations of
Clique [5, 35]; further applications of 2-Club arise in the analysis of social
networks [32]. Consequently, experimental evaluations concentrate on finding
2-clubs and 3-clubs [3, 5, 13, 14, 15, 23, 31]. From a theoretical viewpoint it
is also interesting that, in contrast to “being a clique”, the graph property
“being an s-club” for s ≥ 2 is not hereditary. That is, it is not closed under
vertex deletion. This seems to be a keypoint in causing the differences in the
computational complexity of the corresponding problems.

1.1 Related Work

For all s ≥ 1, s-Club is NP-complete even on graphs of diameter s + 1 [5];
2-Club is NP-complete even on split graphs and, thus, also on chordal graphs [4].
2-Club can be solved in polynomial time on bipartite graphs, on trees, and on
interval graphs [37]. For all s ≥ 1, s-Club can be solved in polynomial time on
chordal bipartite, strongly chordal, and distance-hereditary graphs [22]. On a
superclass of these graph classes, called weakly chordal graphs, it is NP-hard for
even s and can be solved in polynomial time for odd s [22].

For all s ≥ 1, s-Club is NP-hard to approximate within a factor of n1/2−ε [4];
a simple approximation algorithm obtains a factor of n1/2 for even s ≥ 2 and a
factor of n2/3 for odd s ≥ 3 [4]. Several heuristics [12, 14, 15] and integer linear
programming (ILP) formulations [3, 5, 13] for s-Club have been proposed and
experimentally evaluated [3, 5, 13, 14, 15, 23, 31].

The 1-Club problem is equivalent to Clique and thus W[1]-hard with
respect to `. In contrast, for s ≥ 2, s-Club is fixed-parameter tractable with
respect to ` [36, 37]. For the dual parameter n− `, the following simple search
tree algorithm [36, 37] solves s-Club in O(2n−` ·nm) time: As long as there is a

JGAA, 19(1) 155–190 (2015) 157

vertex pair whose distance is at least s+ 1, branch into the cases to either delete
the first or the second vertex.1 The same search tree algorithm can be analyzed
to run in O(αn · nm) time where α is the golden ratio α < 1.62 [15]. s-Club
can be formulated in monadic second order logic. Thus, it is fixed-parameter
tractable with respect to the treewidth of G [37]. Moreover, s-Club does not
admit a polynomial kernel with respect to ` unless NP ⊆ coNP/poly, but a
so-called Turing-kernel with at most `2 vertices for even s and at most `3 vertices
for odd s [36].

In companion work [24] (see [25] for an extended version) we provided a
systematic study of 2-Club with respect to a hierarchy of well-known structural
graph parameters. For example, 2-Club remains NP-hard on 6-degenerate
graphs, on graphs with a dominating set of size two, and on graphs that become
bipartite by deleting only one vertex. On the positive side, the problem becomes
fixed-parameter tractable when parameterized by the number of vertices that
have to be deleted to transform the input graph into a cograph. On the negative
side, it is W[1]-hard with respect to the h-index2 of the graph but there is a
so-called XP-algorithm, that is, an algorithm running in polynomial time for
constant parameter values.

1.2 Our Contribution

We make progress towards a systematic classification of the complexity of
2-Club with respect to structural parameters of the input graph. In Section 2,
we give an O(k2)-vertex kernel for the parameter size of a cluster editing set and
an O(k)-size kernel for the parameter feedback edge set size. The kernelization
results for these rather large parameters are motivated by our negative results:
2-Club does not admit a polynomial kernel with respect to the size of a vertex
cover of the underlying graph, unless NP ⊆ coNP/poly. This excludes polynomial
kernels for many prominent structural parameters such as feedback vertex set
size, pathwidth, and treewidth.

In Section 3, we give a direct combinatorial algorithm solving 2-Club in
2O(2ω)n2 time on graphs of treewidth ω. Notably, up to a constant in the
exponent, this is also the current best running time for the parameter vertex
cover size (which we present in Theorem 5 in Section 3).

In Section 4, we prove that unless the Strong Exponential Time Hypothesis
(SETH) fails, s-Club cannot be solved in O((2−ε)n−` · |G|O(1)) time for all ε > 0.
This is evidence that the above-mentioned search tree algorithm [36] is optimal
with respect to the parameter n − `. To prove this, we give a reduction from
Cnf-Sat to s-Club where the value of n− ` in the resulting s-Club instance
is equal to the number of variables in the Cnf-Sat-instance. The reduction also
implies that s-Club does not admit a polynomial kernel with respect to n− `,
unless NP ⊆ coNP/poly.

1Schäfer et al. [36] actually considered finding an s-club of size exactly `. The claimed
fixed-parameter tractability with respect to n− ` however only holds for the problem of finding
an s-club of size at least `.

2The largest number k such that the graph has at least k vertices of degree at least k.

158 Hartung et al. Algorithms and Experiments for Finding 2-Clubs

Having explored the theoretical limits of fixed-parameter algorithms for the
dual parameter n − `, we then examine its usefulness for solving 2-Club in
practice (in Section 5). To this end, we implemented the search tree strategy
for the dual parameter together with data reduction rules that are partially
deduced from our findings in Section 2. We explore the effectiveness of our
algorithm on random as well as on large-scale real world graphs and show that
our implementation outperforms all previously implemented exact algorithms
for 2-Club on random and on large-scale real world graphs. Especially on large
graphs the concept of Turing kernelization turns out to be the most efficient
technique in our “parameterized toolbox”.

1.3 Preliminaries

We only consider undirected and simple graphs G = (V,E) where n := |V |
and m := |E|. For a vertex set S ⊆ V , let G[S] denote the subgraph induced
by S and G−S := G[V \S]. We use distG(u, v) to denote the distance between u
and v in G, that is, the length of a shortest path between u and v; we omit
the subscript if the graph is clear from the context. For a vertex v ∈ V and
an integer t ≥ 1, denote by Nt(v) := {u ∈ V \ {v} | dist(u, v) ≤ t} the set of
vertices within distance at most t to v. Moreover, set Nt[v] := Nt(v) ∪ {v},
N [v] := N1[v], and N(v) := N1(v). Finally, let N(V ′) :=

⋃
v∈V ′ N(v) \ V ′

and N [V ′] := N(V ′) ∪ V ′ denote the open and closed neighborhood of a vertex
set V ′ ⊆ V . A cut-vertex of a graph is a vertex whose deletion increases the
number of connected components by at least one.

A vertex cover of a graph G = (V,E) is a vertex subset V ′ ⊆ V such that
∀{v, u} ∈ E : {v, u} ∩ V ′ 6= ∅. A feedback edge set F of a graph is an edge
set whose deletion leads to a forest. A cluster editing set of G is a set of edge
additions and deletions that transforms G into a vertex-disjoint union of cliques.
Formally, for a graph G = (V,E) an edge set D ⊆ V 2 is a cluster editing set
for G if GD := (V, (E \D)∪ (D \E)) is a cluster graph, that is, a graph in which
every connected component is a clique (called cluster).

Two vertices v and w are twins if N(v) \ {w} = N(w) \ {v}. Note that u
and v may be non-adjacent. The following simple observation will be used
throughout this work.

Observation 1 Let S be an s-club in a graph G = (V,E) and let u, v ∈ V be
twins. If u ∈ S and |S| > 1, then S ∪ {v} is also an s-club in G.

Parameterized Algorithmics. We provide a short introduction to parame-
terized algorithmics. A problem is fixed-parameter tractable (FPT) with respect
to a parameter k if there is a computable function f such that any instance (I, k)
can be solved in f(k)·|I|O(1) time. A kernelization algorithm reduces any instance
(I, k) in polynomial time to an equivalent instance (I ′, k′) with |I ′|, k′ ≤ g(k) for
some computable g. The instance (I ′, k′) is called kernel of size g and in the
special case of g being a polynomial it is a polynomial kernel. A kernel is often
described by the application of several so-called data reduction rules, that are,

JGAA, 19(1) 155–190 (2015) 159

polynomial time algorithms that transform an instance (I, k) into an equivalent
instance (I ′, k′). The equivalence of (I, k) and (I ′, k′) is called the correctness
of the data reduction rule. We say that an instance is reduced with respect to
a data reduction rule if its application would not change the instance.

The monographs of Downey and Fellows [19], Flum and Grohe [20], Nie-
dermeier [34] contain a more comprehensive introduction. However, a recent
concept not presented in these monographs is Turing kernelization. Roughly
speaking, in Turing kernelization one creates many problem kernels instead of
just one problem kernel. Then, the solution to the parameterized problem can
be computed by solving the problem separately on each of these problem kernels.
Throughout this work, we assume that, unless stated otherwise, the structural
parameter (for example, a feedback edge set) under consideration is provided as
an additional input of the 2-Club instance.

The Strong exponential time hypothesis (SETH) states that the satisfiability
problem for n-variable boolean formulas F in conjunctive normal form, called
Cnf-Sat, cannot be solved in O((2 − ε)n · |F|O(1)) time for any ε > 0; refer
to [30] for a survey on (S)ETH-based lower bounds.

2 Kernelization: Algorithms and Lower Bounds

In this section, we provide polynomial-size problem kernels for 2-Club param-
eterized by cluster editing set size and feedback edge set size, respectively. While
these parameters can often be rather large, we show that for the (also relatively
large) parameter vertex cover size of G, there exists no polynomial-size problem
kernel unless NP ⊆ coNP/poly.

2.1 A Quadratic-Vertex Kernel for the Parameter Cluster
Editing Set Size

We show how to obtain an O(k2)-vertex kernel when k is the size of a (not
necessarily minimum-cardinality) cluster editing set. Note that if a cluster editing
set D is not given, then we can use a polynomial-time 2.5-factor approximation
algorithm for Cluster Editing [39]. The parameterized complexity of Cluster
Editing has been extensively studied [6].

Let G = (V,E), an integer `, and a cluster editing set D be an instance of
2-Club; the parameter is k := |D|. Denote by V (D) the set of all endpoints
of the edges in D. Then, the graph G − V (D) is a cluster graph, that is, all
connected components of G− V (D) are cliques. Observe that N(v) = N(w) for
any two vertices v, w in the same clique of G− V (D). The following two rules
yield an O(k2)-vertex kernel for 2-Club.

Rule 1 Let C be a cluster in G − V (D) and set DC = N(v) ∩ V (D) for
some v ∈ C. If C or N [C ∪DC] is a 2-club of size at least `, then reduce to a
constant-size yes-instance. Otherwise, if |DC | ≤ 1, then delete C.

160 Hartung et al. Algorithms and Experiments for Finding 2-Clubs

Lemma 1 Rule 1 is correct and can be exhaustively applied in O(n2m) time.
Furthermore, the resulting graph G has at most k clusters in G−V (D) and each
of them has size less than `.

Proof: We first prove correctness. Observe that N(v) = N(w) for any two
vertices v and w in a cluster C of G−V (D). Clearly, if C or N [C∪DC] are 2-clubs
of size at least `, it is correct to reduce to a yes-instance. Otherwise, the rule
deletes C if |DC | ≤ 1. If DC = ∅, it is correct to delete C, because C is an isolated
clique with |C| < `. In the remaining case |DC | = 1. Consequently, C ∪DC is
a clique. Thus the set N [C ∪DC] is a 2-club of size less than ` and it is the
largest 2-club containing any vertex from C. Therefore, it is correct to delete C.

After exhaustive application of Rule 1, |DC | > 1 for each cluster C in
G−V (D). Since |V (D)| ≤ 2k this implies that the number of clusters in G−V (D)
is at most k and each of them has size less than `. The running time follows from
applying for each cluster an all-pair-shortest path algorithm. Clearly, clusters in
G− V (D) can be identified in O(n+m) time. �

Since each cluster in G− V (D) has size at most `− 1 (Lemma 1) it follows
that if ` ≤ 2k + 1, then there are at most 2k2 + 2k vertices left and we are done.

We next provide a second data reduction rule that is applied after Rule 1 if
` > 2k + 1. To bound the size of the clusters in G− V (D) we use the following
observation. Its correctness follows from the fact that two vertices in different
clusters of G− V (D) are not adjacent and have no common neighbor.

Observation 2 For every 2-club S in G there is at most one cluster C in
G− V (D) such that S has a nonempty intersection with C.

Observation 2 implies that every 2-club of size at least ` contains at least `− 2k
vertices from exactly one cluster C of G−V (D). Since all vertices in C are twins,
Observation 1 now implies that an inclusion-maximal 2-club either contains
all or no vertices from C. Hence, for ` > 2k + 1 decreasing ` and the size of
each cluster C by `− 2k − 1 produces an equivalent instance. This leads to the
following data reduction rule.

Rule 2 If ` > 2k + 1, then delete `− 2k− 1 arbitrary vertices in each cluster C
of G− V (D) and set ` := 2k + 1.

Note that in case |C| ≤ ` − 2k − 1 we simply delete all vertices of C. After
exhaustive application of Rule 2 for each cluster C it holds that |C| < 2k + 1.
Thus, we arrive at the following.

Theorem 1 2-Club parameterized by the cluster editing set size k admits a
(2k2 + 2k)-vertex kernel that can be computed in O(n2m) time.

Proof: Let I = (G, `,D) be an instance where Rules 1 and 2 have been applied.
Since I is reduced with respect to Rule 1, there are at most k clusters each of
size less than ` in G− V (G). Finally, ` ≤ 2k + 1 due to Rule 2. Altogether this
implies that G contains at most 2k2 + 2k vertices.

JGAA, 19(1) 155–190 (2015) 161

As to the running time, Rule 1 can be performed in O(n2m) time (Lemma 1).
The clusters in G − V (D) can be computed in O(n + m) time and deleting
`− 2k − 1 vertices in C (Rule 2) is clearly doable in O(|C|2) time. Hence, the
corresponding running time is dominated by the application of Rule 1. �

The correctness of Rule 2 is based on Observation 2 which is only valid for
2-clubs. For s > 2 it is open whether there exists a polynomial kernel for s-Club
parameterized by the size of a cluster editing set. However, the more general case
of Weighted s-Club, where the vertices have positive weights ω and the task
is to find an s-club S such that ω(S) :=

∑
v∈S ω(v) ≥ `, has even a linear vertex

kernel. It is motivated by the fact that all vertices in a cluster C of G− V (D)
are twins and thus by Observation 1 either all or non of them are contained in a
maximum s-club.

The linear vertex kernel for Weighted s-Club is an adaption of the quadratic
vertex kernel for 2-Club (see Theorem 1). We first adapt Rule 1 for weights.
Therefore, note that the proof of Lemma 1 uses the restrictions of 2-clubs only
in case N [C ∪DC] is a 2-club.

Rule 3 If there is a cluster C in G − V (D) with ω(C) ≥ `, then reduce to a
constant-size yes-instance. Otherwise, if N(C) ∩ V (D) = ∅, then delete C.

After exhaustively applying Rule 3, there are at most 2k remaining clusters
in G as each cluster has at least one neighbor in V (G) and |V (G)| ≤ 2k. The
next data reduction rule uses the weights on the vertices in order to merge the
remaining clusters in G− V (D) into one vertex.

Rule 4 For each cluster C in G− V (D), delete all but one vertex in C and set
the weight of the remaining vertex to ω(C).

The correctness of the data reduction rule follows from Observation 1. After
applying Rule 4, each cluster C has size one and, hence, the application of
Rules 3 and 4 leads to the following.

Theorem 2 The Weighted s-Club problem parameterized by the size k of a
cluster editing set admits an O(n+m)-time computable 4k-vertex kernel.

Clearly, assigning weight one to each vertex is a trivial reduction from s-Club
to Weighted s-Club. Thus, Theorem 2 implies a single-exponential time
algorithm solving (weighted) s-Club parameterized by the size of a cluster
editing set.

Corollary 1 (Weighted) s-Club for s ≥ 2 parameterized by the size k of a
cluster editing set can be solved in O(6.86k · k3 + n+m) time.

Proof: First, apply Rules 3 and 4 and thus by Theorem 2 the remaining instances
consists of at most 4k vertices. Hence, applying the search tree algorithm running
in O(1.62n · nm) time [15], yields a O(6.86k · k3 + n+m)-time algorithm. �

162 Hartung et al. Algorithms and Experiments for Finding 2-Clubs

2.2 A Linear Kernel for the Parameter Feedback Edge Set
Size

A feedback edge set F of a graph G is an edge set whose deletion transforms
the graph G into a forest. In this section, we study 2-Club parameterized by
the size of F . Given an instance (G = (V,E), `) of 2-Club, we first compute
a minimum-size feedback edge set F of G in linear time. This can be done by
computing a spanning forest T of G in O(n + m) time and then adding to F
each edge of E that is not contained in T . In the following, let k := |F | denote
the parameter feedback edge set size. We present two reduction rules for 2-Club
and show that exhaustively applying these rules yields a problem kernel with at
most 5k + 1 vertices and at most 6k edges.

The first rule checks whether G contains a trivial 2-club of size at least `. The
correctness of the rule follows from the fact that for each vertex v the set N [v] is
a 2-club. Note that we can check in linear time whether the rule is applicable.

Rule 5 If there is a vertex v ∈ V with |N [v]| ≥ `, then replace (G, `) by a
yes-instance with one vertex.

If the rule applies at least once, then we have obtained the claimed problem
kernel as the resulting graph has only one vertex. Thus, assume in the following
that Rule 5 does not apply. The second rule identifies vertices that are only in
trivial 2-clubs. As Rule 5 does not apply, these trivial 2-clubs are to small. Such
vertices may thus be safely removed from the graph.

As we will show, in a non-trivial 2-club, any vertex needs to be on a path
between two feedback edges of the 2-club. These paths and the corresponding
vertices are defined as follows.

Definition 1 Let G = (V,E) be a graph with a feedback edge set F . For a
feedback edge {u, v} ∈ F the path P{u,v} between u and v in T = (V,E \ F) is
called feedback edge path. If a vertex w lies on P{u,v}, then {u, v} is a spanning
feedback edge of w. We also say that {u, v} spans w.

Lemma 2 Let (G, `) be an instance of 2-Club to which Rule 5 does not apply
and let S be a 2-club of size at least ` in G. Then, for each vertex w ∈ S, G[S]
contains a feedback edge {u, v} that spans w.

Proof: Let S be a 2-club and let w ∈ S be a vertex w such that G[S] does
not contain a spanning feedback edge of w. We show that this implies |S| < `.
Since G[S] does not contain any spanning feedback edge of w, the vertex w is
not contained in any cycle in G[S]. Therefore, either w has degree one in G[S]
or w is a cut-vertex in G[S]. In the first case, S is completely contained in
the neighborhood of w’s neighbor in G[S]. In the second case, S ⊆ N [w].
Since Rule 5 does not apply, this implies |S| < `. �

We now exploit the above lemma by identifying those vertices that are not
close enough to any spanning feedback edge. We define this closeness as follows.

JGAA, 19(1) 155–190 (2015) 163

Definition 2 Let G be a graph with a feedback edge set F . A vertex w is
satisfied by a feedback edge {u, v} ∈ F in G if {u, v} spans w and if w has in G
distance at most two to u and to v.

If there exists at least one feedback edge that satisfies w, then w is called satisfied.
The rule now deletes vertices that are too far away from all spanning feedback
edges.

Rule 6 Let (G, `) be an instance to which Rule 5 does not apply. If G contains
a vertex w that is not satisfied, then delete w.

Lemma 3 Rule 6 is correct and can be exhaustively applied in O(n2m) time.

Proof: We first prove correctness by showing that w is not contained in a 2-club
of size at least `. Let S be a 2-club containing w. Since w is not satisfied it has
in G distance at least three to at least one endpoint of every feedback edge that
spans w. Thus, S contains at most one endpoint of every feedback edge that
spans w. Thus, G[S] contains no feedback edge that spans w. By Lemma 2, this
implies |S| < `. Therefore, removing w from G yields an equivalent instance.

The running time can be achieved as follows. First, by starting a breadth-first
search from each vertex in G, compute in O(nm) time the set N2(v) for all v ∈ V .
Then, in O(nm) time, store this information in a matrix. This allows to test
whether u ∈ N2(v) in constant time. For all feedback edges e, compute in O(n)
time the set of vertices that are on the feedback edge path Pe. Now check for
each vertex v on each Pe whether both endpoints of e are in N2(v). If this is the
case, then label v as satisfied. Finally, remove all unlabeled vertices in O(n+m)
time. Altogether, one application of the rule runs in O(nm) time and the rule
can be applied at most n times. �

The kernelization algorithm now first checks once whether Rule 5 applies and
then exhaustively applies Rule 6. This algorithm produces in O(n2m) time an
instance that is reduced with respect to Rules 5 and 6. It remains to bound
the size of the reduced instance. In order to obtain a tight bound on the vertex
number, we analyze the relationship between feedback edges. To this end, we
introduce the following definition (see Figure 1 for an illustration).

Definition 3 Let G be a graph with spanning forest T and feedback edge set F .
We say that a feedback edge e covers a feedback edge e′ if the path Pe completely
contains the path Pe′ .

In the proof of the size bound, we iteratively add the edges of F to T to obtain G.
The following lemma states that this can be done in such a way that the new
edge does not cover any other edge in the current graph.

Lemma 4 Let G be a graph with spanning forest T and feedback edge set F .
Then there is a set of graphs T0, . . . , Tk such that T0 = T , Tk = G, and Ti, i > 0,
is obtained from Ti−1 by adding one edge e such that Ti−1 contains all feedback
edges that cover e and no feedback edge that is covered by e.

164 Hartung et al. Algorithms and Experiments for Finding 2-Clubs

u a b c v w

Figure 1: Illustration of the definitions used in the proof of Theorem 3.
Herein, bold edges are feedback edges, regular edges are edges of T . The
path P{u,v} connects the endpoints of the feedback edge {u, v} in T . The
feedback edge {u,w} covers the feedback edge {u, v}; the feedback edge {u, v}
is u-minimal; the u-neighbor of {u, v} is a, the v-neighbor is c; the vertices a, b
and c are all satisfied.

Proof: Start with T0 := T and iteratively add a feedback e from G such that Pe
has maximum length. If an edge e is added in step i, then all edges that cover e
are in Ti−1 since their feedback edge paths are longer. Similarly, for each edge
in Ti−1, the feedback edge path is at least as long as Pe. Thus, Ti−1 does not
contain an edge that is covered by e. Since in each step one feedback edge is
added and since |F | = k we have Tk = G. �

Now we can prove the size bound on the kernel.

Theorem 3 2-Club parameterized by the size k of a feedback edge set admits
a kernel with at most 5k + 1 vertices and at most 6k edges. This kernel can be
computed in O(n2m) time.

Proof: Let (G, `) be an instance that is reduced with respect to Rules 5 and 6.
If Rule 5 was successful, then G has only one vertex and the size bound trivially
holds. Otherwise, the number of vertices in G can be bounded as follows. There
are at most 2k vertices incident with feedback edges; let X denote this vertex
set. To show the kernel size, we show that the set Y := V \X of vertices not
incident with any feedback edge has size at most 3k. Note that all vertices in G
are satisfied since the instance is reduced with respect to Rule 6.

The main idea of the proof is to consider a sequence of graphs T0, . . . , Tk
that fulfills the properties of Lemma 4 and to bound the number of satisfied
vertices in each Ti by 3i. Since Tk = G this implies |Y | ≤ 3k. To this end, we
show how to construct a set Yi ⊆ {(v, e) | v ∈ V, e ∈ F} that contains pairs
of satisfied vertices and spanning feedback edges to which they are attributed.
The central property for Yi is that each satisfied vertex in Ti is contained in at
least one pair of Yi. Thus, the number of satisfied vertices in Ti is at most |Yi|.
We show this property by induction. We maintain one further property of Yi
that is needed in the proof of the inductive step. To formulate this property we
introduce some further terminology (see Figure 1): A feedback edge {u, v} is
called u-minimal in Ti if there is in Ti no feedback edge {u,w} that is covered
by {u, v}. A vertex w is a u-neighbor of a feedback edge {u, v} if {u, v} spans w
and w is in T a neighbor of u.

JGAA, 19(1) 155–190 (2015) 165

By induction on i we show the main claim:

For each i ∈ {0, . . . , k} there is a set Yi with the following properties:

1. |Yi| ≤ 3i.

2. Each vertex satisfied in Ti is in at least one pair contained in Yi.

3. If a feedback edge {u, v} is u-minimal in Ti, then Yi contains
the pair (a, {u, v}) where a is the u-neighbor of {u, v}.

Base case: Let Y0 := ∅. Then, Property 1 holds as |Y0| = 0. Moreover,
no vertex in T0 is satisfied so Property 2 holds. Finally, T0 does not contain
feedback edges so Property 3 holds. Hence, the claim holds for i = 0.

Inductive step: By induction, the claim holds for i− 1. Let {u, v} be the
feedback edge that is added from Ti−1 to Ti. We construct Yi fulfilling the three
properties as follows. Initially, set Yi := Yi−1. Let a be the u-neighbor of {u, v}
and let c be the v-neighbor of {u, v}. Add the pairs (a, {u, v}) and (c, {u, v}) to Yi.
Next, if there is a vertex b that is in T adjacent to a and c, then add (b, {u, v})
to Yi. After these additions, |Yi| ≤ |Yi−1|+ 3 since we have added at most three
pairs. Thus, Yi fulfills Properties 1 at this point. It also fulfills Property 3 since
the only edge that can be minimal in Ti and not in Ti−1 is {u, v} and we have
added the pair (a, {u, v}) and the pair (b, {u, v}).

Let Z ⊆ Y denote the set of vertices that are satisfied in Ti and not yet
contained in any pair of Yi. Then, add the set of pairs {(z, {u, v}) | z ∈ Z} to Yi.
Now Yi fulfills Properties 2 and 3 of the claim but possibly not Property 1. To
restore Property 1, we show how to remove |Z| pairs from Yi without violating
Properties 2 and 3.

To this end, we first observe a property of Z. Let z ∈ Z, we show that z is
a neighbor of u or v. First, assume towards a contradiction, that z is satisfied
by e = {u, v}. Since z /∈ {a, b, c}, it has in T distance at least three from either u
or v, say v. Since z is satisfied by {u, v}, there is some feedback edge e′ such
that the length-two path from z to v contains e′. Then one of the endpoints
of e′ is a neighbor of z in T and thus contained in P{u,v}, the other endpoint
is v. Then, the edge e′ is covered by e which contradicts our assumption on the
sequence of the Ti’s. Thus, z is not satisfied by {u, v}. In this case, z becomes
satisfied because there is in Ti a length-two path to some endpoint of e that is
not contained in Ti−1. This length-two path contains {u, v} which means that z
is a neighbor of u or v. This also implies that z is not in P{u,v} since z /∈ {a, c}.

Now, partition Z into Zu := Z ∩N [u] and Zv := Z ∩N [v]. Such a partition
is possible since the vertices of Z are not contained in P{u,v}. Thus, every vertex
of Z is in T a neighbor of either u or v but not of both. Now consider the set Zv,
and let z1, . . . , zq denote the vertices in Zv.

By definition, each zj is adjacent to v and there is a feedback edge e such
that zj is satisfied by e in Ti but not in Ti−1. Consequently, u is one of the
endpoints of e, that is, e = {u,wj} for some wj . Since zj is not contained
in P{u,v} but a neighbor of v we have that P{u,zj} contains P{u,v}. Thus, {u,wj}
covers {u, v}. Furthermore, for all zj ’s the wj ’s are pairwise distinct. Thus,

166 Hartung et al. Algorithms and Experiments for Finding 2-Clubs

u
a v

z1 w1

z2 w2
. . .

zq wq

Figure 2: Illustration of the vertices in Zv and of the corresponding spanning
edges.

the situation is as depicted in Figure 2. We now show that for each zj there
is a pair (a, {u, pj}) (recall that a is the u-neighbor of {u, v}) in Yi that can
be removed from Yi without violating Property 2 or 3. First, note that in Ti−1
there is for each feedback edge {u,wj} a u-minimal edge {u, pj} that is covered
by {u,wj}. By construction, Ti−1 does not contain feedback edges that are
covered by {u, v}. Thus, we have pj 6= pr if j 6= r. By Property 3, Yi−1 contains
the pair (a, {u, pj}). Since Yi is, currently, a superset of Yi−1 this pair (a, {u, pj})
is also contained in Yi. Now the main observation is that since Ti contains {u, v}
the edge {u, pj} is not u-minimal in Ti. Recall that the pair (a, {u, v}) is already
contained in Yi and that {u, v} is u-minimal. Consequently, for each zj ∈
Zv, the pair (a, {u, pj}) can be removed without violating Properties 2 or 3.
Hence, we can remove |Zv| pairs from Yi without violating either property.
Analogously, we can remove |Zu| further pairs corresponding to the vertices
in Zu without violating either property. The resulting set Yi of pairs has size at
most |Yi−1|+ 3 + |Z| − |Zv| − |Zu| = |Yi−1|+ 3 ≤ 3 · (i− 1) + 3 = 3i. Thus, Yi
fulfills Property 1 as well and the claim also holds for i.

The overall kernel bound now follows from |Y | ≤ |Yk| ≤ 3k. This implies
that |V | = |X| + |Y | ≤ 5k. The number of edges in T is at most 5k − 1.
Since |F | = k, the number of edges in G is thus at most 6k − 1. �

Applying the O(1.62n · nm)-time algorithm [15] on the kernel we obtain a
single-exponential running time in k.

Corollary 2 2-Club parameterized by the feedback edge set size k can be solved
in O(11.1k · k3 + n2m) time.

2.3 Lower Bounds for Kernelization

We next show that 2-Club does not admit a polynomial kernel with respect to
the parameters bandwidth of the input graph and vertex cover size of the input

JGAA, 19(1) 155–190 (2015) 167

graph. The first result implies that 2-Club does not admit a polynomial kernel
for the parameter maximum degree. The second result implies that 2-Club does
not admit a polynomial kernel for parameters such as feedback vertex set number,
and treewidth.

First, we show a lower bound for bandwidth. A graph has bandwidth k if it
has a linear arrangement of its vertices v1, . . . , vn such that the length |i − j|
of each edge {vi, vj} is at most k. Furthermore, we observe that, given a linear
arrangement with bandwidth k, a linear-vertex Turing kernel can be achieved.

Proposition 1 2-Club parameterized by the bandwidth k does not admit a
polynomial kernel unless NP ⊆ coNP/poly; it admits a 2k-vertex Turing kernel
which can be computed in O(nm) time.

Proof: We first show that 2-Club does not admit a polynomial problem kernel
by showing that it is compositional. A parameterized problem L is compositional
if there is a polynomial-time algorithm (a composition) that takes as input
instances (I1, k), . . . , (It, k) of L and computes a new instance (I, k′) where k′

is upper-bounded by a polynomial in k and (I, k′) is a yes-instance if and only
if (Ij , k) is a yes-instance for some 1 ≤ j ≤ t. Unless NP ⊆ coNP/poly, an
NP-hard parameterized problem does not admit a polynomial kernel if it is
compositional [8]. Note that the parameter bandwidth k is not the size of
the 2-club. It is, however, sufficient to show a composition for instances that
have the same `, since ` defines a polynomial equivalence relation on 2-Club
instances [10].

Since 2-clubs are connected, taking the disjoint union of t input graphs gives
a composition. If the t input graphs have bandwidth k, then the disjoint union
has also bandwidth k. Hence, 2-Club does not admit a polynomial kernel.

We next show that 2-Club parameterized by bandwidth has a linear Turing
kernel. Let G = (V,E) be a graph with bandwidth k and let the vertices
be labeled v1, . . . , vn such that for each edge {vi, vj} ∈ E it holds that |i −
j| ≤ k. The Turing kernel can be obtained by creating for each vi ∈ V the
graph G[{vi, vi+1, . . . , vi+2k}]. The idea of the Turing kernel is simply to try all
possibilities to choose the vertex vi which has the lowest index of the 2-club
vertices. By definition of bandwidth, all vertices vj , j > i within distance two
of vi are in {vi+1, vi+2, . . . , vi+2k} and, hence, S ⊆ {vi, vi+1, . . . , vi+2k}. Thus,
the Turing kernel follows. �

The hardness result in Proposition 1 directly implies that 2-Club also has no
polynomial kernel for the parameter maximum degree. Next, we show that
2-Club parameterized by vertex cover does not admit a polynomial kernel.
This implies the same lower bound for many other parameters such as size of a
feedback vertex set, treewidth, degeneracy, distance to cluster graphs, etc. (see
[24, Fig. 1] for a more detailed description of related parameters).

Theorem 4 2-Club parameterized by the size of a vertex cover has no polyno-
mial kernel unless NP ⊆ coNP/poly.

168 Hartung et al. Algorithms and Experiments for Finding 2-Clubs

G′G

v12 , . . . , v
n
2 v13 , . . . , v

n
3 v15 , . . . , v

n
5

e2,3

VE

e2,3
e3,5 e3,5

v1 v4

v3

v1

v2

v4 v5

Figure 3: Example of the construction in the proof of Theorem 4. The graph G
is an input for Clique parameterized by vertex cover. The gray vertices are
a vertex cover in G. The graph G′ is constructed as described in the proof of
Theorem 4.

Proof: We give a polynomial-time and -parameter reduction [9] from Clique
parameterized by vertex cover to 2-Club parameterized by vertex cover. Unless
NP ⊆ coNP/poly, Clique does not admit a polynomial kernel with respect
to the size of a vertex cover [10]. Let (G = (V,E), X, h) be an instance of
Clique that asks for the existence of a clique of size h. Here, X is a vertex
cover of G. We construct a graph G′ as follows (for an illustration see Figure 3).
First, add for each vertex vi ∈ X exactly n vertices {v1i , . . . , vni } to G′. The
construction will ensure that these n vertices are twins in G′. Next, add a set VE
of “edge-vertices” as follows. For each edge {vi, vj} ∈ E between two vertex
cover vertices vi, vj ∈ X add an edge-vertex ei,j to G′ and make ei,j adjacent to
all vertices in {v1i , . . . , vni , v1j , . . . , vnj }. Then, add edges such that VE is a clique.
The idea of the construction is to ensure that if a 2-club contains two vertices
vxi and vyj , then vi and vj are adjacent in G. Hence, a 2-club containing such
vertices corresponds to a clique in G.

In order to handle the case where a size-h clique K in G contains a vertex
from V \X, add the vertex set V \X to G′. Then, for each added vertex v ∈ V \X
and each edge-vertex ei,j ∈ VE add an edge if v is adjacent to vj and vi in G.
Observe that the construction runs in polynomial time, that it ensures that VE
is a vertex cover for G′, and that |VE | ≤

(|X|
2

)
. Thus, it is a polynomial-time

and -parameter reduction. We complete the proof by showing that

G has a clique of size h ⇔ G′ has a 2-club of size at least |VE |+ (h− 1)n+ 1.

“⇒”: Let K be a size-h clique in G. Observe that |K \X| ≤ 1 since K is a
clique. Then, every pair of vertices vi, vj ∈ K ∩X has the common neighbor ei,j
in G′. Hence, by Observation 1, the vertex set S containing the twins of all
vertices in K ∩ X and VE is a 2-club. In case K ⊆ X, this 2-club is of size
|VE | + hn. Otherwise, one can add the vertex v ∈ K \ X to S. Then, S has
size |VE | + (h − 1)n + 1 and it is also a 2-club: each vertex vxi ∈ S \ VE has
with v the common neighbor ei,j where vj is some other vertex in K; similarly,
each vertex in VE has a common neighbor with v.

JGAA, 19(1) 155–190 (2015) 169

“⇐”: Let S be a 2-club of size at least |VE |+ (h− 1)n+ 1 in G′. A twin-free
set in S is a subset of S \ (VE ∪ (V \X)) that does not contain twins. First,
since |V \X| < n+ 1, it follows that S contains a twin-free set of size at least
h− 1. Moreover, for each vertex pair {vi, vj} in a twin-free set, the vertex ei,j
has to be contained in S as well: otherwise vi and vj have distance greater than
two in G[S]. Thus, vi is adjacent to vj in G. Therefore, a twin-free set in S
corresponds to a clique in G. Hence, if there is a twin-free set of size at least h,
then there is a size-h clique in G. It thus remains to consider the case where
a largest twin-free set F is of size h − 1. In this case, S contains at least one
vertex v ∈ V \X. Since S is a 2-club, there is for each vertex vi ∈ F at least one
edge-vertex ei,j ∈ S that is adjacent to vi and v. By construction, this implies
that vi is adjacent to v in G. Consequently, F ∪ {v} is a size-h clique in G. �

3 A Fixed-Parameter Algorithm for Treewidth

In this section, we show that 2-Club is fixed-parameter tractable when parame-
terized by treewidth. Although, this was already shown by Schäfer [37] via a
monadic second order logic formulation we here present a direct combinatorial
algorithm. Surprisingly, up to some constants in the exponent, this is, so far,
even the best algorithm for much larger parameters such as size of a vertex cover.
To demonstrate the principle idea behind the algorithm, we first describe its
principles for the parameter vertex cover.

Theorem 5 s-Club is solvable in O(2k · 22k · nm) time where k denotes the
size of a vertex cover.

Proof: Let (G = (V,E), X, s, `) be an s-Club instance where X is a vertex
cover of G with |X| = k . First, branch into all possibilities to choose the subset
X ′ ⊆ X that is contained in the desired s-club. Then, remove X \X ′ and all
vertices that are not within distance s to all vertices in X ′. Clearly, V \X forms
an independent set. Moreover, by Observation 1, it follows that two vertices
u, v ∈ V \X that are twins with respect to X ′ are either both contained in a
maximal s-club or none of them. Since there are at most 2|X

′| ≤ 2k different
twins, branching into all possibilities to add them to the s-club takes 22

k

time.
Finally, check in O(nm) time whether the resulting graph forms an s-club. In

total, s-Club can be solved in O(2k · 22k · nm) time. �

Extending the ideas behind Theorem 5, we now give a direct combinatorial
algorithm for the parameter treewidth. More specifically, we provide a dynamic
programming algorithm on a nice tree decomposition of the input graph G (see
Niedermeier [34, Chapter 10] for more details about nice tree decompositions):
It is a tree decomposition T , that is, a tree with vertices X1, . . . , Xr called bags
such that

⋃
iXi = V (G) and for each {u, v} ∈ E(G) there is a bag Xi with

{u, v} ∈ Xi. Additionally, for each v ∈ V (G) the bags containing v induce a
connected component in T . In a nice-tree decomposition, each bag Xi is either
a join node (it has exactly two children with Xi = Xj = Xl), an introduce node

170 Hartung et al. Algorithms and Experiments for Finding 2-Clubs

(|Xi \Xl| = 1 for the only child Xl), a forget node (|Xl \Xi| = 1 for the only
child Xl), or a leaf node (no children). An arbitrary tree decomposition can be
restructured in linear time into a nice tree decomposition without an increase in
the size of the largest bag [27]. Deciding whether a graph has treewidth ω and
(in case of its existence) constructing a corresponding tree decomposition can be

done in 2O(ω3) · n time [7].

Lemma 5 Let G = (V,E) be a graph and let S ⊆ V . Then, for any tree-
decomposition of G there is at least one vertex v ∈ S such that there is a bag
that contains N [v] ∩ S.

Proof: Let T = (X1∪. . .∪Xr, E) be a tree-decomposition of G. Fix an arbitrary
vertex u ∈ S and denote by Xu any bag in T that contains u. Now, choose a
vertex v ∈ S such that the length of the path from Xu to the first bag that
contains v is maximum. Denote this bag by Xv. We show that N(v) ∩ S ⊆ Xv.
Suppose there is a neighbor w ∈ N(v) ∩ S that is not contained in Xv. Since w
and v are adjacent they are together contained in at least one bag. Since Xv is
the first bag containing v on the path from Xv to Xu and the bags containing w
induce a connected component, from w /∈ Xv and w ∈ N(v) it follows that
the path from Xu to the first bag containing w is via Xv and thus longer; a
contradiction to the choice of v. �

Theorem 6 2-Club is solvable in 2O(2ω) ·n time where ω denotes the treewidth
the input graph.

Proof: Let (G, k) be an input instance of 2-Club and let (X1 ∪ . . . ∪Xr, E)
be a nice tree decomposition for G of width ω. Fix a maximum-size 2-club S.
By Lemma 5 there is a vertex v ∈ S such that N [v] ∩ S ⊆ X for a bag X.
Let Nv := N [v] ∩ S ⊆ X. First, since r = O(n) there are O(n · ω · 2ω) cases for
choosing the bag X, the vertex v and its neighbors Nv in X. After having done
this, we root the nice tree decomposition in X. Furthermore, we may assume
that X = Nv, as otherwise one can add a path of forget nodes that starts in X
and step-wisely deletes all vertices in X \Nv. Next, we describe a bottom-up
dynamic programming algorithm.

Denote by 2P the set of all subsets of a set P . Let Xi be an arbitrary bag.
We have for each combination of some P ⊆ Xi and some T ⊆ 2P an integer
table entry Tabi(P, T) which is the size of the largest set Ki(P, T) fulfilling the
following properties:

1. Ki(P, T) is a subset of the vertices in the subtree rooted in Xi and
Ki(P, T) ∩Xi = P ,

2. each type T ⊆ P is in T if and only if there is a vertex v ∈ Ki(P, T) \ P
of type T , that is, N(v) ∩ P = T , and

3. in G[Ki(P, T)] each vertex in Ki(P, T) has distance at most two to all
vertices in Ki(P, T) \ P .

JGAA, 19(1) 155–190 (2015) 171

Intuitively, Ki(P, T) is almost a 2-club as only the vertices from P are allowed
to have distance more than two and all vertices not in Xi are of one of the types
in T . Clearly, the table has at most 2ω · 22ω entries per bag and we show how
to compute each entry in O(22

ω

) time. This implies, together with first step to
guess X and Nv, the claimed running time of 2O(2ω) · n.

Before showing how to compute the table entries, we prove the claim that
a largest value Tab(Nv, T) for any T in the table of the root X is equal to the
size of a largest 2-club in G that contains Nv:

First, consider a table entry Tab(Nv, T). By Property 1 it follows that
Nv = K(Nv, T)∩X and since Nv ⊆ N [v] it follows by Property 3 that K(Nv, T)
is a 2-club. Hence, |S| ≥ |K(Nv, T)|. In the other direction, let S′ be a 2-club
in G with Nv ⊆ S′. Let T be the set containing all T ⊆ Nv where a vertex
u ∈ S′ \Nv with N(u) ∩Nv = T exists. By definition, S′ fulfills Properties 1
and 2 for K(Nv, T) and since S′ is a 2-club also Property 3, implying that
|S′| ≤ K(Nv, T).

Computation of the table entries. We now specify how to compute the
table Tabi(P, T) for a bag Xi by distinguishing whether Xi is a leaf, an introduce
node, a join node, or a forget node. Table entries where a corresponding set
fulfilling Properties 1, 2 and 3 do not exists are set to -∞.

Leaf node: Let Xi be a leaf in the tree decomposition. Clearly, since K(P, T)
has to be a subset of vertices in the subtree of Xi (Property 1), by Property 2
we only have to consider the case where T = ∅. Then K(P, T) is equal to P ,
hence, we set Tabi(P, T) = |P | if T = ∅ and otherwise Tabi(P, T) = −∞.

Introduce node: Let Xi be an introduce node with the child node X` and
let u ∈ Xi \ X` be the introduced vertex. First, assume u /∈ P . Then, by
Property 1 it is correct to set Tabi(P, T) to the value of Tab`(P, T).

Second, assume u ∈ P . By Property 1 all vertices in Ki(P, T) \ P are
not in Xi and since u ∈ Xi \ X`, if there is a type T ∈ T with u ∈ T , then
we set Tabi(P, T) = −∞ as Property 2 cannot be fulfilled. Additionally, if
there is a type T ∈ T with T ∩ N(u) = ∅, then also set Tabi(P, T) = −∞ as
Property 3 cannot be fulfilled. In all other cases, observe that K`(P \{u}, T)∪{u}
fulfills all properties for Ki(P, T), hence, it is correct to set Tabi(P, T) =
Tab`(P \ {u}, T) + 1.

Forget node: Let Xi be a forget node with the child node X` and u ∈ X`\Xi.
Since u /∈ P and because of Properties 1 and 2, u ∈ K(P, T) can be true only if
Tu = N(u) ∩ P ∈ T . Hence, if Tu /∈ T , then set Tabi(P, T) equal to Tab`(P, T).

Consider the remaining case where Tu ∈ T . Let Ku
i (P, T) be a maximum

set fulfilling Properties 1, 2 and 3 for Ki(P, T) such that u ∈ Ku
i (P, T). Then,

Ku
i (P, T) either contains only vertex u as Tu-type vertex or at least two vertices

of type Tu. If there are at least two, then |Ku
i (P, T)| = |K`(P ∪ {u}, T)|. In

case of one Tu-type vertex, the size of Ku
i can be at most equal to those of

K`(P ∪ {u}, T \ {Tu}). However, to ensure Property 3 in this case one has to
additionally check whether vertex u has in G[K`(P ∪ {u}, T \ {Tu})] distance at
most two to all vertices in P (by Property 2 this can be checked by just knowing P
and T). If this check was positive, then we have |Ku

i (P, T)| = max{|K`(P ∪
{u}, T)|, |K`(P ∪ {u}, T \ {Tu})|}, otherwise |Ku

i (P, T)| = |K`(P ∪ {u}, T)|.

172 Hartung et al. Algorithms and Experiments for Finding 2-Clubs

Finally, since either u ∈ Ki(P, T) or not, it follows in case of Tu ∈ T that

Tabi(P, T) = |Ki(P, T)| = max{|Ku
i (P, T)|,Tab`(P, T)}.

Join node: Let Xi be a join node and let X` and Xj be the two child nodes
with Xi = X` = Xj . We call two subsets T`, Tj ⊆ T consistent, if T` ∪ Tj = T
and for any two types T, T ′ ∈ T with T ∩ T ′ = ∅ it either holds that T, T ′ ∈ T`
or T, T ′ ∈ Tj . We prove that it is correct to set

Tabi(P, T) = max
∀ consistent T`,Tj⊆T

Tab`(P, T`) + Tabj(P, Tj)− |P |.

Let K`
i (Kj

i) be the intersection of Ki(P, T) with the vertices in the subtree

rooted in X` (Xj , respectively). Clearly, K`
i ∩K

j
i = P . Additionally, let T` ⊆ T

(Tj ⊆ T) be the types of the vertices in K`
i (Kj

i , respectively). Observe that, by

Property 3 each vertex u ∈ K`
i \ P has distance at most two to any v ∈ Kj

i \ P .
However, by the properties of a tree decomposition u and v cannot be adjacent
and thus N(u) ∩ N(v) ⊆ P . Hence the types of u and v have a non-empty
intersection, implying that T` and Tj are consistent. Moreover, K`

i fulfills all

properties for K`(P, T`) and Kj
i fulfills all properties for Kj(P, Tj). This holds

because removing from Ki(P, T) a set of vertices A with either A ⊆ K`
i \ P or

A ⊆ Kj
i \ P may violate only Property 2. Hence, there are consistent T` and Tj

such that |Ki(P, T)| ≤ |K`(P, T`)|+ |Kj(P, Tj)| − |P |.
In the other direction, one can see that for each pair of consistent sets

T`, Tj ⊆ T it holds that K`(P, T`) ∪ Kj(P, Tj) fulfills all properties (except
maximality) for Ki(P, T): Since Xi = X` = Xj it is clear that Property 1 is
fulfilled. Moreover, as for each type T ∈ T it holds that T ∈ T` or T ∈ Tj , also
Property 2 is fulfilled. Finally, by the definition of consistency, also Property 3
is fulfilled. �

4 On the Optimality of the Dual Parameter Al-
gorithm

In this section, we prove running time and kernelization lower bounds for s-Club
when parameterized by the dual parameter k′ := n− `. We first show that there
is a reduction from Cnf-Sat to s-Club with certain properties that allows to
infer these lower bounds.

Cnf-Sat
Input: An n-variable boolean formula F in conjunctive normal
form (CNF).
Question: Is there an assignment to the variables in F that evaluates
to true?

As a side result, the reduction also implies that the s-Club Cluster Vertex
Deletion problem does not admit a polynomial kernel for all s ≥ 2. This
answers an open question by Liu et al. [29]. The s-Club Cluster Vertex

JGAA, 19(1) 155–190 (2015) 173

Deletion problem is to decide for a given graph G and an integer k whether
by deleting at most k vertices in G one can obtain a graph whose connected
components are 2-clubs.

Lemma 6 For any s ≥ 2 there is a polynomial-time reduction from Cnf-Sat
to s-Club that computes for any n-variable CNF formula an equivalent s-Club-
instance (G, `) with dual parameter k′ = n such that there are exactly k′ pairwise
disjoint vertex pairs each having distance s+ 1.

Proof: Let F be a CNF formula with n variables and assume without loss of
generality that F does not contain a clause that contains the positive and the
negative literal of the same variable. We describe how to construct an n′-vertex
graph G such that for k′ := n the graph G has an s-club of size at least n′ − k′
if and only if F has a satisfying assignment: First, add the literal vertex set V
to G, that is, a set that contains for each variable x in F the two vertices vx, vx.
Here, vx corresponds to x and is called positive literal vertex, and vx corresponds
to ¬x and is called negative literal vertex. Next, add the clause vertex set C that
contains for each clause C in F two clause vertices c1, c2. Additionally, if the
literal x (¬x) occurs in the clause C, then make the corresponding clause vertices
c1 and c2 adjacent to the positive (negative) literal vertex vx (vx, respectively).

The basic idea of the construction is that for each variable x the two vertices
vx and vx have distance s + 1 and thus one has to delete one of them. These
are the k′ = n vertex pairs corresponding to the requirements on G in Lemma 6.
The clause vertices c1, c2 have the literal vertices corresponding to the literals
in C as common neighbors and there is no path of length at most s between
them that avoids all of these common neighbors. Hence, the remaining literal
vertices (exactly one for each variable) correspond to a satisfying assignment
for F if and only if for each clause C the clause vertices c1, c2 still have at least
one literal vertex as a common neighbor.

We extend the graph G to fulfill the above-mentioned properties: For each
vertex pair {u,w} ⊆ V ∪C not equal to {vx, vx} for some variable x and also not
equal to {c1, c2} for some clause C, add a vertex lu,w, add a length-b s2c path
from lu,w to w, and also a length-b s2c path from lu,w to u. This implies that
dist(u,w) = s in case of even s and dist(u,w) = s− 1 otherwise. Collect all the
vertices lu,w to the set L and denote by P all vertices on the b s2c-length paths
except the endpoints. Clearly, in case of s ∈ {2, 3} all the paths inserted above
are only edges between the endpoints and thus P = ∅.

Finally, if s is odd, then add a distinguished vertex l which is adjacent to
each vertex in L and otherwise, if s is even, add edges such that L is a clique.

This ensures that a pair {u,w} ⊆ V ∪ C has distance at most s if and only if
there is some vertex lu,w ∈ L or {u,w} is equal to the clause vertices {c1, c2} for
some clause C. We next prove that (G, `) with ` = n′ − k′ is a yes-instance of
s-Club ⇔ F has a satisfying assignment.

“⇒”: Let D be a vertex subset of G such that |D| ≤ k′ and G − D is an
s-club. Since the positive vx and negative literal vertex vx of each variable x
have distance s+ 1, either vx ∈ D or vx ∈ D and since there are k′ = n variables

174 Hartung et al. Algorithms and Experiments for Finding 2-Clubs

it follows that D ⊆ V . Hence all clause vertices are contained in G−D and thus
the pair {c1, c2} for each clause C has distance at most s. This implies that there
is a vertex u ∈ V such that c1 and c2 are adjacent to u. By the construction,
u corresponds to a literal in the clause C and thus the remaining literal vertices
in G−D correspond to a satisfying assignment of F .

“⇐”: Assume that there is a satisfying assignment for F and let D ⊆ V be
the set of literal vertices whose corresponding literals in F are assigned to be
false. Clearly, |D| = k′ = n and it remains to prove that G−D is an s-club:

By construction, for any two vertices {u,w} ⊆ V ∪ C there is either a vertex
lu,w ∈ L or if {u,w} corresponds to some {c1, c2} for some clause C, then there
is common literal neighbor in V not contained in D, implying that in each
case distG−D(u,w) ≤ s. To prove the remaining cases observe that each vertex
in v ∈ V ∪ C ∪ P ∪ L ∪ {l} has a length at most b s2c path to at least one vertex
in L. Moreover, it holds that the distance from a vertex in P ∪ L ∪ {l} to any
vertex in L is at most b s2c+ 1 in case of odd s and at most s

2 for even s, implying
that G−D is a s-club. �

The Strong Exponential Time Hypothesis (SETH) fails if Cnf-Sat for n-variable
CNF formulas F can be solved in O((2− ε)n · |F|O(1)) time for some ε > 0 [26].
Thus, by Lemma 6 an algorithm for s-Club running in O((2 − ε)k′ · |G|O(1))
time for some ε > 0 would disprove the SETH. This bound is tight since s-Club
can be solved in O(2k

′ · nm) time [36].

Corollary 3 Unless the SETH fails, s-Club on a graph G parameterized by
the dual parameter k′ := n− ` cannot be solved in O((2− ε)k′ · |G|O(1)) time for
all s ≥ 2.

Chen et al. [16] showed that Cnf-Sat parameterized by the number of variables
does not admit a polynomial kernel unless NP ⊆ coNP/poly. Since Lemma 6
provides a polynomial-time and parameter transformation [11] this lower bound
result transfers to 2-Club.

Corollary 4 s-Club for all s ≥ 2 parameterized by the dual parameter k′ does
not admit a polynomial problem kernel unless NP ⊆ coNP/poly.

Finally, as Lemma 6 states that the graph constructed in the reduction from
Cnf-Sat to s-Club has k′ pairwise disjoint vertex pairs where from each pair one
has to delete at least one vertex, in this special case s-Club Cluster Vertex
Deletion is equivalent to s-Club parameterized by the dual parameter k′.
Thus by the same argumentation as for Corollary 4 the following holds.

Corollary 5 s-Club Cluster Vertex Deletion for all s ≥ 2 does not admit
a polynomial problem kernel unless NP ⊆ coNP/poly.

5 Implementation and Experiments

In this section we present our experimental findings for 2-Club. We implemented
a search tree algorithm, multiple data reduction rules, and a Turing kernelization

JGAA, 19(1) 155–190 (2015) 175

and we combined them in several ways to get multiple exact algorithms. We then
tested them on randomly created instances as well as on a collection of real-world
instances taken from the 2nd & 10th DIMACS challenge [17, 18]. We compare
our findings to the performance of the Gurobi 5.62 [1] solver running the integer
linear programming formulation of Bourjolly et al. [13] and an implementation
of Chang et al. [15] of the same basic search tree algorithm.3 In the following we
first describe the algorithms and their variants, the instances and the benchmark
setting, and, finally, we describe our experimental findings.

5.1 Implemented Algorithms

Search tree-based algorithm. We implemented the following search tree
algorithm, briefly denoted by ST, to find a maximum 2-club S in a given
graph G = (V,E): If G is not a 2-club, then find a vertex v ∈ V such that |N2(v)|
(number of vertices within distance two) is minimum among all vertices. Then,
branch into the cases to either delete v from G or to mark v to be contained in S
and subsequently delete all vertices in V \N2[v]. During branching we maintain
a lower bound, that is, the size `′ of a largest 2-club found so far; this lower
bound is initialized by the maximum degree plus one. The branching is aborted
if the current graph has less than `′ vertices. After exploring all branches, we
output the current lower bound (along with a 2-club of this size).

The above search tree algorithm was introduced by Bourjolly et al. [13].
Together with a data structure that maintains the two-neighborhood of all
vertices under vertex deletions, this search tree algorithm was implemented and
evaluated by Chang et al. [15]. The algorithm has running time O(αn · nm)
where α is the golden ratio [15]. A different analysis shows that this algorithm
runs in O(2k

′ · nm) time for the dual parameter k′ = n − ` (if branching is
aborted if more than k′ vertices have been removed) [36]. By Corollary 3, the
search tree size measured by k′ cannot be improved unless the SETH fails.

Our implementation of the search tree algorithm ST is accelerated in each
branching step by the extensive application of the following data reduction rules.
We describe the rules in descending order of observed effectiveness. Herein, let
G = (V,E) be the graph of the current branching step.

R1 Vertex Cover Rule: Let G′ = (V,E′) be the graph where two vertices are
adjacent if and only if they have distance at least three in G. Observe that
the size of a minimum vertex cover of G′ is a lower bound on the number
of vertex deletions that have to be performed to transform G into a 2-club.
We compute a 2-approximate vertex cover C for G′ that is disjoint to the
marked vertices (as they may not be deleted). If |V | − d|C|/2e is less than
the current lower bound, then abort this branch.4

3The source code and MAKE file of the C++ program of Chang et al. [15] is publicly
available (accessed March 2013); we compiled using gcc compiler version 4.7.2 (Debian 4.7.2-5).

4We use the well-known 2-approximation that recursively chooses an arbitrary edge {u, v},
takes u and v into the vertex cover, and deletes all edges incident with u and v.

176 Hartung et al. Algorithms and Experiments for Finding 2-Clubs

R2 Cleaning conflicts with marked vertices: If there is a vertex v ∈ V that has
distance at least three to a vertex that is marked to be contained in the
2-club, then delete v. If v is marked, then abort this branch.

R3 Common neighbors of marked vertices: If there are two non-adjacent
marked vertices with only one common neighbor v, then mark v.

R4 Degree-one vertices: Remove each vertex v that has degree one. If v is
marked, then abort this branch.

The correctness of Rules R1–R3 is obvious. Rule R4 is correct since we initialized
our lower bound by a 2-club formed by a maximum degree vertex and thus a
larger 2-club cannot contain degree-one vertices (note that Rule R4 is a special
case of Rule 6 on p. 163).

Turing Kernelization. We implemented the Turing kernelization which was
introduced by Schäfer et al. [36]. Therein, the basic observation is that for any
2-club S in a graph G = (V,E) it holds that S ⊆ N2[v] for all v ∈ S. Moreover,
after applying Rule 5 (in Subsection 2.2) in advance, |N2[v]| ≤ `2. We say that
N2[v] is the Turing kernel for vertex v.

Later on, running an algorithm for 2-Club together with Turing kernelization
means that in any step we choose a vertex v, mark v, and run the algorithm on the
graph induced by N2[v]. We update the current lower bound `′, delete v, delete
all vertices u where |N2[u]| ≤ `′ (they cannot be contained in any 2-club larger
than `′), and proceed by choosing the next Turing kernel.5 We implemented
three different strategies to choose the vertex v among all vertices: i) v has
minimum degree (DEG), ii) a feedback edge set in G[N2[v]] is of minimum size
(FES), and iii) the size of N2[v] is minimum (N2).

Note that using Turing kernelization with strategy N2 is indeed equivalent to
what the search tree algorithm does: In one case v is contained in the maximum
2-club S and thus S ⊆ N2[v], in the other case v is not contained and can
thus be deleted. This observation explains the effectiveness of the search tree
algorithms on the considered real-world data from social network analysis. There,
the smallest two-neighborhood in the graph is typically much smaller than the
entire vertex set.

5.2 Results

Setting and Algorithm Variants. We ran all our experiments on an Intel(R)
Xeon(R) CPU E5-1620 3.60 GHz machine with 64 GB main memory under the
Debian GNU/Linux 7.0 operating system. The program is implemented in Java
and runs under the OpenJDK runtime environment in version 1.7.0 03. The
source code is freely available from http://fpt.akt.tu-berlin.de/two_club/.

We tested our program on random instances as well as on real-world data
from the 2nd and 10th DIMACS challenge [17, 18]. We use the name scheme

5Deleting all vertices whose two-neighborhood is of size at most the current lower bound
can be viewed as a data reduction rule which strengthens R4.

http://fpt.akt.tu-berlin.de/two_club/

JGAA, 19(1) 155–190 (2015) 177

Table 1: Experimental results on random instances with 0.15 density. For each
combination of a, b, and n we created 100 instances by the random graph
generator proposed by Gendreau et al. [21]. Correspondingly, all other entries
namely, m (# edges), ∆G (maximum degree), ∅G (avg. degree), h-index, 2-club
(size of the largest 2-club), and the time in seconds for the solvers ST and CST

are the averages over all these 100 instances.

a b n m ∆G ∅G h-index 2-club ST CST

0 0.3 140 1453 39.3 20.8 27.4 71 0.77 1.0
150 1668 41.9 22.2 29.4 79.5 1.3 1.9
160 1899 45.0 23.7 31.2 89.8 1.2 2.1∑

3.27 5.0
0.05 0.25 140 1456 36.7 20.8 26.0 59.5 6.1 7.8

150 1671 38.9 22.3 27.9 68.1 10.9 15.4
160 1913 41.3 23.9 29.7 78.5 18.9 31.1∑

35.9 54.3
0.1 0.2 140 1456 33.9 20.8 25.0 50.5 23.9 28.8

150 1676 35.8 22.3 26.8 57.6 66.5 90
160 1911 37.7 23.9 28.5 64.7 194 306∑

284 425
0.15 0.15 140 1455 32.6 20.8 24.6 46.1 38.3 44.4

150 1679 34.7 22.4 26.4 52.9 109 140
160 1912 36.5 23.9 28.0 59.7 406 628∑

553 812

SOLVER-STRATEGY to denote the different variants of the solver, that is, SOLVER
is one of {ST,ILP,CST} where ILP refers to the Gurobi solver running the ILP
proposed by Bourjolly et al. [13] and CST refers to the search tree implementation
of Chang et al. [15]. STRATEGY indicates that Turing kernelization is used (if not,
it is just omitted), and it states one of the strategies {DEG,FES,N2} used therein.
For example, ST-FES denotes the solver running Turing kernelization with the
strategy FES and uses our implementation of the search tree algorithm to solve
each Turing kernel.

Random Instances. As in previous experimental evaluations [15, 31], we use
the random graph generator due to Gendreau et al. [21] where the density of
the resulting graphs is controlled by two parameters, 0 ≤ a ≤ b ≤ 1, and the
expected density is (a+ b)/2.

Table 1 summarizes the performance of ST and those of CST on instances
with density 0.15 (see Table 5, appendix, for a full list with different densities).
As first observed by Bourjolly et al. [13], density 0.15, a = 0.15, and b = 0.15
produces the hardest instances. On average the ST-solver solves instances of this
type for n = 160 within ≈ 400 s whereas CST needs ≈ 600 s. Note that Mahdavi

178 Hartung et al. Algorithms and Experiments for Finding 2-Clubs

5

10

20

50

100

250

500

1000

5 10 20 50 100 250 500 1000

C
S
T

ST

(a;b)=(0.15;0.15)

(a;b)=(0.1;0.2)

Figure 4: For each combination of (a, b) = (0.15, 0.15), (0.1, 0.2) and n =
100, 105, . . . , 155 we created 100 instances by the random graph generator pro-
posed by Gendreau et al. [21] and depicted the corresponding running times (in
seconds) of ST and CST. The solid line depicts all values where both algorithms
would have the same running time. Our ST-algorithm outperforms CST on most
instances; rare exceptions can be found for running times less than 50 s. Notably,
the greater the running times get the more ST dominates CST. However, the
performance increase is within a factor of two for most instances (marked by the
dashed lines).

and Balasundaram [31] needed about one hour on instances with n = 150.
A per-instance comparison of ST and CST (see Figure 4) shows that ST achieves
a constant speedup of ≈ 1.5 for most of the instances and it is always faster
on instances that take more than 250 s for both solvers. We observed that the
key point for the good behavior of our algorithm on random instances with
density 0.15 is the Vertex Cover Rule that allows quite frequently to prune
the search tree (see Table 4, appendix, for an extensive comparison of the
performance of ST with and without data reduction rules). As can be observed
in the full list of results, combining the ST solver with Turing kernelization
does slightly decrease (about 2 %) its performance but still outperforms other
combinations, e. g. ILP with Turing kernelization. This effect is in stark contrast
to the behavior on real-world instances, as there Turing kernelization yields a
dramatic performance increase. This is because the largest 2-club contains about
50 % of the vertices, hence, the beneficial decrease in the graph size obtained by

JGAA, 19(1) 155–190 (2015) 179

Table 2: Experimental results on random instances with 0.15 density, comparing
ILP-based solvers with ST. For each combination of a, b, and n we created 100
instances by the random graph generator proposed by Gendreau et al. [21].
Correspondingly, all other entries namely, m (# edges), ∆G (maximum degree),
2-Club (size of the largest 2-club), and the time in seconds for the solvers (last
five columns) are the average over all these 100 instance.

a b n m ∆G 2-club ST ILP ILP-DEG ILP-N2 ILP-FES

0 0.3 100 743 28.9 41.6 0.1 1.24 1.25 1.25 1.26
120 1 070 34.4 55.1 0.3 2.2 2.22 2.2 2.21
130 1 265 37.3 63.7 0.5 2.34 2.32 2.32 2.34

0.05 0.25 100 744 27.1 35.5 0.25 2.32 2.34 2.34 2.35
120 1 061 31.5 45.6 1.25 10.7 10.9 10.9 10.9
130 1 252 34.1 52.4 2.71 20.9 20.7 20.6 20.6

0.1 0.2 100 744 25 31.6 0.41 3.79 4.04 4.04 4.04
120 1 077 29.7 40.6 3.12 42.3 40.7 40.6 40.6
130 1 255 31.7 44.4 8.66 103.5 98.4 100.3 98.3

0.15 0.15 100 743 24.2 29.6 0.56 7.17 7.31 7.31 7.31
120 1 068 28.1 37.3 4.16 65.9 64.7 64.6 64.6
130 1 261 30.4 42.7 14.0 138.2 137.4 139.4 137.2∑

36.0 400.6 392.3 395.9 391.7

Turing kernelization is dominated by the time computing it.

Finally, we would like to emphasize that the ILP-solver, as the only program,
makes use of the four cores of the processor (all other programs set up only
a single thread). However, even when combining the ILP-solver with Turing
kernelization it is, against our a-priori intuition, significantly (about 10 times)
slower than the search tree-based algorithms ST and CST (see Table 2 for a
comparison of its performance on instances with density 0.15). Because of the
dramatic performance leak compared to ST and since the results in Table 2
suggest that the ILP-running time exponentially depends on n, we did not
perform any further benchmarks for it on random instances.

Real-world Instances. We considered real-world data from the 2nd & 10th
DIMACS challenge [17, 18]. To investigate the usefulness of 2-Club as natural
clique relaxation concept, we ran our algorithm on instances from the clustering
category [17]; a standard benchmark for graph clustering and community detec-
tion algorithms. To test our algorithm on large scale social network graphs we
ran it on graphs from the co-author and citation category [17]. These graphs were
obtained by the co-author relationship or the citation relation among authors
listed in the DBLP and Citeseer database. Moreover, we performed studies on
the instances from the clique category for the 2nd DIMACS challenge [18]. In
addition to the DIMACS instances, we created a further DBLP coauthor graph,

180 Hartung et al. Algorithms and Experiments for Finding 2-Clubs

Table 3: Experimental results on instances from the DIMACS implementation
challenges [17, 18]. The first column denotes the name of the instances, n the
number of vertices, m the number of edges, ∆G the maximum degree, and 2-Club
denotes the size of the largest 2-club. The last six columns contain for each
solver the required time in seconds and “#TK” denotes the number of Turing
kernels needed to solve.
name n/103 m/103 ∆G 2-club ST-DEG ST-FES ILP-DEG

time #TK time #TK time #TK

10th DIMACS
clustering
email 1.1 5.5 71 72 42.8 171 83.2 234 70.5 162
hep-th 8.4 15.6 50 51 0.94 0 0.94 0 0.93 0
netscience 1.6 2.7 34 35 0.03 0 0.03 0 0.03 0
PGPgiantcompo 10.7 24.3 205 206 1.14 0 1.15 0 1.14 0
power 4.9 6.6 19 20 0.25 0 0.25 0 0.24 0

10th DIMACS
co-author
citation
citationCiteseer 268.5 1 156.6 1 318 1 319 79.3 0 78.2 0 78.7 0
coAuthorsCiteseer 227.3 814.1 1 372 1 373 49.4 0 49.5 0 48.8 0
coAuthorsDBLP 299.0 977.7 336 337 85 0 85.2 0 86.7 0
graph thres 01 715.6 2 512.0 804 805 294 0 275 0 292 0

which is the largest instance in our experiments (dblp thres 1). Table 3 shows
the results (see Table 6, appendix, for a full list).

Since both, ST and CST, rely on space-consuming data structures to quickly
maintain vertex deletions, they are not suitable for graphs with more than
≈1000 vertices. Hence, we performed all tests with solvers where Turing ker-
nelization is applied. We observed that, since the average degree in real-world
graphs is small, Turing kernelization typically produces small graphs enabling
the corresponding solvers to solve them quickly. More specifically, in its fastest
variant, namely ST-DEG, our search tree algorithm together with Turing ker-
nelization solves all but one instance from the clustering category within 10
seconds.6 This is a significant performance increase in comparison to Mahdavi
and Balasundaram [31] who needed up to 70 min for these instances. Moreover,
although the co-author/citation graphs are quite large (up to 715 000 vertices),
Turing kernelization enabled us to handle them within roughly 1.5 min (in the
preliminary version we needed about 30 min). Interestingly, Turing kernelization
with the DEG-strategy turned out to be the most effective one. For example, on
the email graph from the clustering category, the DEG-strategy yields a speedup
factor of two compared to the other strategies. We conjecture that, since the
minimum degree vertex v forming the Turing kernel N2[v] can be marked, this

6The version of the ST-DEG-solver presented in previous work [23] was slightly faster on
these instances. This moderate worsening is due to some heuristic improvements leading to
significant accelerations on instances from the co-author citation category.

JGAA, 19(1) 155–190 (2015) 181

allows the solver to quickly mark a majority of v’s neighbors as well, because
otherwise v would not have a connection to its rather large two-neighborhood.
However, a more careful analysis of this phenomenon is necessary. Not to our sur-
prise after the results on random data, combining ILP with Turing kernelization
is not competitive with the combination of ST and Turing kernelization.

We also performed initial experiments with the combination of CST and
Turing kernelization. However, its performance is roughly similar to the results
for ST with Turing kernelization because instances formed by the Turing kernels
are only moderately hard and thus they are not suitable to spot the difference
between the corresponding solvers. Furthermore, our Turing kernelization is
implemented in Java and thus has to write an input file for each Turing kernel in
order to invoke the C++ program CST. Due to this we did not perform a further
systematic study here.

On a majority of the real-world instances we further observed the unexpected
behavior that the largest 2-club is “just” a maximum-degree vertex together with
its neighbors.7 From this, the question arises whether the resulting community
structures are meaningful. In a first step to examine this, we created from a
DBLP coauthor graph subgraphs of the pattern dblp thres i where two authors
are related by an edge if they coauthored at least i papers. We expected that
for moderate values of i, say 2 or 3, the resulting (2-club) communities would
have a stronger meaning because there are no edges between authors that are
only loosely related. Unfortunately, even for values up to i = 6 this seems not
to be the case. We think the main reason for this is the large gap between
the maximum-degree vertex (with degree around 1000) and the average degree
(less than 10). Thus, there seem to be some authors that dominate the overall
structure because of their large number of coauthors. Notably, there are only
few of these “dominating” authors: less than 200 authors have more than 200
coauthors.8

Altogether, our experiments demonstrate that for the hardest randomly
created instances as well as for huge real-world instances our implementation
of the search tree algorithm combined with Turing kernelization significantly
outperforms previous implementations.

6 Conclusion

On the theoretical side, we extended existing fixed-parameter tractability results
for the 2-Club problem by providing polynomial-size kernels for the parameters
cluster editing set size and feedback edge set size. We further gave a direct
algorithm for the parameter treewidth of G. Complementing these positive

7This seems to be the reason why “deleting vertices with too small two neighborhood” is
quite successful in Turing kernelization. Indeed, together with the (heuristically chosen) rule
that Turing kernelization is disabled as soon as it lowers to graph size by less than 50 %, it
causes the effect that the number of Turing kernels that need to be solved by the corresponding
solver in {ST,ILP,CST} is zero for most instances.

8This implies that the h-index of the real-world instances is low and thus a promising
parameter. Unfortunately, 2-Club is W[1]-hard with respect to the h-index [23].

182 Hartung et al. Algorithms and Experiments for Finding 2-Clubs

results, we showed lower bounds on the kernel size for parameter vertex cover and
on the running time as well as on the kernel size for the dual parameter k′ = n−`.
On the practical side, we provide the currently best implementation for 2-Club
which, as demonstrated in the experiments, solves 2-Club in up to five minutes
even on large real-world graphs with more than 700,000 vertices.

Still, there are many open questions that deserve further investigations: Is
there a substantially better algorithm for the parameter vertex cover than the
one for treewidth? Concerning the parameter solution size `, can the, so far
impractical, running time or the size of the Turing kernel be improved [36]?
Are there “stronger parameters” [28] than the ones considered here for which
2-Club admits polynomial-size problem kernels? Finally, it would be interesting
to transfer our results to 3-Club which is also of interest in practice [31, 35].

JGAA, 19(1) 155–190 (2015) 183

References

[1] Gurobi 5.6. Software, 2014.

[2] R. Alba. A graph-theoretic definition of a sociometric
clique. Journal of Mathematical Sociology, 3(1):113–126, 1973.
doi:10.1080/0022250X.1973.9989826.

[3] M. T. Almeida and F. D. Carvalho. Integer models and upper bounds for the
3-club problem. Networks, 60(3):155–166, 2012. doi:10.1002/net.21455.

[4] Y. Asahiro, E. Miyano, and K. Samizo. Approximating maximum diameter-
bounded subgraphs. In Proc. 9th LATIN, volume 6034 of LNCS, pages
615–626. Springer, 2010. doi:10.1007/978-3-642-12200-2 53.

[5] B. Balasundaram, S. Butenko, and S. Trukhanovzu. Novel approaches for
analyzing biological networks. Journal of Combinatorial Optimization, 10
(1):23–39, 2005. doi:10.1007/s10878-005-1857-x.

[6] S. Böcker and J. Baumbach. Cluster editing. In Proc.
9th CIE, volume 7921 of LNCS, pages 33–44. Springer, 2013.
doi:10.1007/978-3-642-39053-1 5.

[7] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions
of small treewidth. SIAM Journal on Computing, 25(6):1305–1317, 1996.
doi:10.1137/S0097539793251219.

[8] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On
problems without polynomial kernels. Journal of Computer and System
Sciences, 75(8):423–434, 2009. doi:10.1016/j.jcss.2009.04.001.

[9] H. L. Bodlaender, S. Thomassé, and A. Yeo. Kernel bounds for disjoint
cycles and disjoint paths. In Proc. 17th ESA, volume 5757 of LNCS, pages
635–646. Springer, 2009. doi:10.1007/978-3-642-04128-0 57.

[10] H. L. Bodlaender, B. M. P. Jansen, and S. Kratsch. Cross-composition:
A new technique for kernelization lower bounds. In Proc. 28th STACS,
volume 9 of LIPIcs, pages 165–176. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2011. doi:10.4230/LIPIcs.STACS.2011.165.

[11] H. L. Bodlaender, S. Thomassé, and A. Yeo. Kernel bounds for disjoint
cycles and disjoint paths. Theoretical Computer Science, 412(35):4570–4578,
2011. doi:10.1016/j.tcs.2011.04.039.

[12] J.-M. Bourjolly, G. Laporte, and G. Pesant. Heuristics for finding k-clubs
in an undirected graph. Computers & Operations Research, 27(6):559–569,
2000. doi:10.1016/S0305-0548(99)00047-7.

http://dx.doi.org/10.1080/0022250X.1973.9989826
http://dx.doi.org/10.1002/net.21455
http://dx.doi.org/10.1007/978-3-642-12200-2_53
http://dx.doi.org/10.1007/s10878-005-1857-x
http://dx.doi.org/10.1007/978-3-642-39053-1_5
http://dx.doi.org/10.1137/S0097539793251219
http://dx.doi.org/10.1016/j.jcss.2009.04.001
http://dx.doi.org/10.1007/978-3-642-04128-0_57
http://dx.doi.org/10.4230/LIPIcs.STACS.2011.165
http://dx.doi.org/10.1016/j.tcs.2011.04.039
http://dx.doi.org/10.1016/S0305-0548(99)00047-7

184 Hartung et al. Algorithms and Experiments for Finding 2-Clubs

[13] J.-M. Bourjolly, G. Laporte, and G. Pesant. An exact algo-
rithm for the maximum k-club problem in an undirected graph.
European Journal of Operational Research, 138(1):21–28, 2002.
doi:10.1016/S0377-2217(01)00133-3.

[14] F. D. Carvalho and M. T. Almeida. Upper bounds and heuristics for the
2-club problem. European Journal of Operational Research, 210(3):489–494,
2011. doi:10.1016/j.ejor.2010.11.023.

[15] M.-S. Chang, L.-J. Hung, C.-R. Lin, and P.-C. Su. Finding
large k-clubs in undirected graphs. Computing, 95(9):739–758, 2013.
doi:10.1007/s00607-012-0263-3.

[16] Y. Chen, J. Flum, and M. Müller. Lower bounds for kernelizations and other
preprocessing procedures. Theory of Computing Systems, 48(4):803–839,
2011. doi:10.1007/s00224-010-9270-y.

[17] DIMACS’12. Graph partitioning and graph clustering. 10th DIMACS imple-
mentation challenge, 2012. URL http://www.cc.gatech.edu/dimacs10/.
Accessed April 2012.

[18] DIMACS’93. NP-hard problems: Maximum clique, graph coloring, and
satisfiability. 2nd DIMACS implementation challenge, 1993. URL http:

//dimacs.rutgers.edu/Challenges/. Accessed November 2008.

[19] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer,
1999.

[20] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.

[21] M. Gendreau, P. Soriano, and L. Salvail. Solving the maximum clique
problem using a tabu search approach. Annals of Operations Research, 41
(4):385–403, 1993. doi:10.1007/BF02023002.

[22] P. A. Golovach, P. Heggernes, D. Kratsch, and A. Rafiey. Finding
clubs in graph classes. Discrete Applied Mathematics, 174:57–65, 2014.
doi:10.1016/j.dam.2014.04.016.

[23] S. Hartung, C. Komusiewicz, and A. Nichterlein. Parameterized al-
gorithmics and computational experiments for finding 2-clubs. In
Proc. 7th IPEC, volume 7535 of LNCS, pages 231–241. Springer, 2012.
doi:10.1007/978-3-642-33293-7 22.

[24] S. Hartung, C. Komusiewicz, and A. Nichterlein. On structural parameteriza-
tions for the 2-club problem. In Proc. 39th SOFSEM, volume 7535 of LNCS,
pages 231–241. Springer, 2013. doi:10.1007/978-3-642-35843-2 21.

[25] S. Hartung, C. Komusiewicz, and A. Nichterlein. On structural parameteri-
zations for the 2-club problem. Number arXiv:1305.3735v1, 2013.

http://dx.doi.org/10.1016/S0377-2217(01)00133-3
http://dx.doi.org/10.1016/j.ejor.2010.11.023
http://dx.doi.org/10.1007/s00607-012-0263-3
http://dx.doi.org/10.1007/s00224-010-9270-y
http://www.cc.gatech.edu/dimacs10/
http://dimacs.rutgers.edu/Challenges/
http://dimacs.rutgers.edu/Challenges/
http://dx.doi.org/10.1007/BF02023002
http://dx.doi.org/10.1016/j.dam.2014.04.016
http://dx.doi.org/10.1007/978-3-642-33293-7_22
http://dx.doi.org/10.1007/978-3-642-35843-2_21

JGAA, 19(1) 155–190 (2015) 185

[26] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):
512–530, 2001. doi:10.1006/jcss.2001.1774.

[27] T. Kloks. Treewidth. Computations and Approximations, volume 842 of
LNCS. Springer, 1994. ISBN 978-3-540-58356-1.

[28] C. Komusiewicz and R. Niedermeier. New races in parameterized algorith-
mics. In Proc. 37th MFCS, volume 7464 of LNCS, pages 19–30. Springer,
2012. doi:10.1007/978-3-642-32589-2 2.

[29] H. Liu, P. Zhang, and D. Zhu. On editing graphs into 2-club clusters.
In Frontiers in Algorithmics and Algorithmic Aspects in Information and
Management (FAW-AAIM 2012), volume 7285 of LNCS, pages 235–246.
Springer, 2012. doi:10.1007/978-3-642-29700-7 22.

[30] D. Lokshtanov, D. Marx, and S. Saurabh. Lower bounds based on the
exponential time hypothesis. Bulletin of the EATCS, 105:41–72, 2011.

[31] F. Mahdavi and B. Balasundaram. On inclusionwise maximal and maximum
cardinality k-clubs in graphs. Discrete Optimization, 9:84–97, 2012.

[32] N. Memon and H. L. Larsen. Structural analysis and mathematical methods
for destabilizing terrorist networks using investigative data mining. In
Proc. 2nd ADMA, volume 4093 of LNCS, pages 1037–1048. Springer, 2006.
doi:10.1007/11811305 113.

[33] R. J. Mokken. Cliques, Clubs and Clans. Quality and Quantity, 13:161–173,
1979. doi:10.1007/BF00139635.

[34] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Univer-
sity Press, 2006.

[35] S. Pasupuleti. Detection of protein complexes in protein interaction networks
using n-Clubs. In Proc. 6th EvoBIO, volume 4973 of LNCS, pages 153–164.
Springer, 2008. doi:10.1007/978-3-540-78757-0 14.

[36] A. Schäfer, C. Komusiewicz, H. Moser, and R. Niedermeier. Parameterized
computational complexity of finding small-diameter subgraphs. Optimization
Letters, 6(5):883–891, 2012. doi:10.1007/s11590-011-0311-5.

[37] A. Schäfer. Exact algorithms for s-club finding and related problems.
Diploma thesis, Friedrich-Schiller-Universität Jena, 2009.

[38] S. B. Seidman and B. L. Foster. A graph-theoretic generalization of
the clique concept. Journal of Mathematical Sociology, 6:139–154, 1978.
doi:10.1080/0022250X.1978.9989883.

[39] A. van Zuylen and D. P. Williamson. Deterministic pivoting algorithms for
constrained ranking and clustering problems. Mathematics of Operations
Research, 34(3):594–620, 2009. doi:10.1287/moor.1090.0385.

http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1007/978-3-642-32589-2_2
http://dx.doi.org/10.1007/978-3-642-29700-7_22
http://dx.doi.org/10.1007/11811305_113
http://dx.doi.org/10.1007/BF00139635
http://dx.doi.org/10.1007/978-3-540-78757-0_14
http://dx.doi.org/10.1007/s11590-011-0311-5
http://dx.doi.org/10.1080/0022250X.1978.9989883
http://dx.doi.org/10.1287/moor.1090.0385

186 Hartung et al. Algorithms and Experiments for Finding 2-Clubs

7 Appendix: Full experimental results

Table 4: Experimental results on random instances with 0.15 density. For each
combination of a, b, and n we created 100 instances by the random graph
generator proposed by Gendreau et al. [21]. Correspondingly, all other entries,
for example m (# edges) and ∆G (maximum degree), are the averages over
all these 100 instances. The table provides the time (in seconds), number of
recursive steps (RS), and the max. search tree depth (MD) for our ST-solver
with (default) and without data reduction rules (DR).

a b n m ∆G ST ST without DR
time RS MD time RS MD

0 0.3 75 416 22 0.02 526 48.8 0.05 4 299 50.8
0 0.3 100 741 28.8 0.10 2 272 65.8 0.77 52 259 66.5
0 0.3 110 889 31.3 0.19 3 922 72.2 2.62 160 974 72.6
0 0.3 120 1 065 33.8 0.35 6 906 78.2 8.48 463 762 78.6
0 0.3 130 1 266 37.2 0.52 9 386 80.9 22.5 1 061 549 81.0∑

1.18 23 012 346 34.42 1 742 843 349
0.05 0.25 75 416 20.7 0.03 810 50.1 0.08 6 470 52.9
0.05 0.25 100 746 27 0.25 5 724 69.0 2.06 151 652 70.4
0.05 0.25 110 899 29.1 0.55 11 452 77.1 7.88 511 986 77.8
0.05 0.25 120 1 072 31.6 1.19 23 569 84.0 34.1 1 997 022 84.9
0.05 0.25 130 1 257 34.2 2.97 53 754 91.3 173.0 9 072 472 92.0∑

4.99 95 309 371 217.1 11 739 602 378
0.1 0.2 75 416 19.3 0.04 1 032 50.4 0.09 7 498 54.4
0.1 0.2 100 741 25.1 0.39 8 881 71.3 3.08 234 315 73.5
0.1 0.2 110 901 27.3 1.16 24 830 79.2 17.5 1 243 749 81.3
0.1 0.2 120 1 065 29.4 3.05 58 953 87.3 84.5 5 410 285 89.2
0.1 0.2 130 1 257 31.5 7.82 135 258 95.4 442.0 24 729 684 96.9∑

12.5 228 954 384 547.2 31 625 531 395
0.15 0.15 75 414 19 0.04 1 087 51.2 0.09 7 774 54.9
0.15 0.15 100 742 24.4 0.50 11 445 71.8 3.67 287 616 74.5
0.15 0.15 110 901 26.5 1.49 31 109 79.4 20.8 1 487 177 82.2
0.15 0.15 120 1 075 28.4 4.53 86 955 88.0 139.0 9 029 970 90.3
0.15 0.15 130 1 256 30.5 12.8 218 125 96.3 879.0 51 068 817 98.2∑

19.4 348 721 387 1 043 61 881 354 400

JGAA, 19(1) 155–190 (2015) 187

E
x
p
e
ri
m
e
n
ta
l
R
e
su

lt
s
fo
r
R
a
n
d
o
m

In
st
a
n
ce

s
d

en
s.

a
b

n
m

∆
G

∅
G

h
-i

n
d

ex
2
-c

lu
b

S
T

S
T
-
D
E
G

S
T
-
N
2

S
T
-
F
E
S

C
S
T

0
.0

5
0

0
.1

1
8
0

8
1
2

2
0
.7

9
.0

1
4
.7

2
1
.7

0
.2

6
2
.4

3
.5

3
.8

0
.1

5
2
0
0

9
8
4

2
2
.5

9
.8

1
6
.1

2
3
.5

0
.3

7
3
.6

5
.1

5
.6

0
.2

1
0
.0

5
0
.0

5
1
8
0

8
1
0

1
7
.9

9
.0

1
3
.4

1
8
.9

0
.2

8
3
.6

4
.2

4
.7

0
.1

4
2
0
0

9
9
4

1
9
.5

9
.9

1
4
.6

2
0
.5

0
.3

9
5
.0

6
.7

7
.4

0
.2

1
∑

1
.3

1
4
.6

1
9
.5

2
1
.5

0
.7
2

0
.1

0
0
.2

1
7
0

1
4
2
7

3
3
.8

1
6
.8

2
3
.6

3
5
.1

3
.5

3
.6

3
.7

3
.7

3
.1

1
8
0

1
6
1
5

3
5
.7

1
7
.9

2
5
.3

3
7
.2

7
.1

7
.5

7
.6

7
.6

7
.3

1
9
0

1
8
0
1

3
8
.0

1
9
.0

2
6
.7

3
9
.7

1
4
.6

1
5
.0

1
5
.1

1
5
.1

1
6
.1

2
0
0

1
9
9
1

3
9
.4

1
9
.9

2
8
.1

4
1
.6

2
9
.2

2
9
.9

2
9
.9

3
0
.0

3
0
.4

0
.0

5
0
.1

5
1
7
0

1
4
3
5

3
0
.3

1
6
.9

2
2
.0

3
1
.4

2
.5

2
.6

2
.6

2
.7

2
.1

1
8
0

1
6
1
2

3
1
.7

1
7
.9

2
3
.4

3
2
.7

5
.0

5
.1

5
.2

5
.2

4
.2

1
9
0

1
8
0
2

3
3
.1

1
9
.0

2
4
.5

3
4
.2

9
.7

9
.9

9
.9

9
.9

8
.8

2
0
0

1
9
8
0

3
4
.8

1
9
.8

2
5
.7

3
5
.8

1
5
.3

1
5
.6

1
5
.6

1
5
.6

1
4
.8

0
.1

0
.1

1
7
0

1
4
3
3

2
8
.1

1
6
.9

2
1
.3

2
9
.2

2
.7

2
.7

2
.7

2
.7

1
.7

1
8
0

1
6
1
1

2
9
.7

1
7
.9

2
2
.5

3
0
.7

5
.2

5
.3

5
.3

5
.3

3
.5

1
9
0

1
7
9
7

3
0
.7

1
8
.9

2
3
.7

3
1
.7

1
0
.0

1
0
.2

1
0
.2

1
0
.2

7
.3

2
0
0

1
9
9
2

3
2
.3

1
9
.9

2
4
.9

3
3
.3

1
7
.1

1
7
.5

1
7
.5

1
7
.5

1
3
.5

∑
1
2
2

1
2
5

1
2
5

1
2
6

1
1
3

0
.1

5
0

0
.3

1
3
0

1
2
6
5

3
7
.3

1
9
.5

2
5
.8

6
3
.7

0
.5

0
0
.5

0
0
.5

1
0
.5

2
0
.6

1
1
4
0

1
4
5
3

3
9
.3

2
0
.8

2
7
.4

7
1
.0

0
.7

7
0
.7

7
0
.7

8
0
.7

9
1
.0

1
5
0

1
6
6
8

4
1
.9

2
2
.2

2
9
.4

7
9
.5

1
.3

1
.3

1
.3

1
.3

1
.9

1
5
5

1
7
8
2

4
3
.6

2
3
.0

3
0
.2

8
4
.8

1
.3

1
.4

1
.4

1
.4

2
.1

1
6
0

1
8
9
9

4
5
.0

2
3
.7

3
1
.2

8
9
.8

1
.2

1
.2

1
.2

1
.3

2
.1

0
.0

5
0
.2

5
1
3
0

1
2
5
2

3
4
.1

1
9
.3

2
4
.3

5
2
.4

2
.7

2
.7

2
.8

2
.8

3
.0

1
4
0

1
4
5
6

3
6
.7

2
0
.8

2
6
.0

5
9
.5

6
.1

6
.1

6
.2

6
.2

7
.8

1
5
0

1
6
7
1

3
8
.9

2
2
.3

2
7
.9

6
8
.1

1
0
.9

1
1
.0

1
1
.0

1
1
.0

1
5
.4

1
5
5

1
7
9
6

3
9
.8

2
3
.2

2
8
.9

7
3
.6

1
4
.8

1
4
.9

1
4
.9

1
4
.9

2
2
.1

1
6
0

1
9
1
3

4
1
.3

2
3
.9

2
9
.7

7
8
.5

1
8
.9

1
9
.0

1
9
.0

1
9
.0

3
1
.1

0
.1

0
.2

1
3
0

1
2
5
5

3
1
.7

1
9
.3

2
3
.3

4
4
.4

8
.7

8
.7

8
.8

8
.8

9
.0

1
4
0

1
4
5
6

3
3
.9

2
0
.8

2
5
.0

5
0
.5

2
3
.9

2
4
.2

2
4
.3

2
4
.3

2
8
.8

1
5
0

1
6
7
6

3
5
.8

2
2
.3

2
6
.8

5
7
.6

6
6
.5

6
7
.1

6
7
.1

6
7
.2

9
0
.0

1
5
5

1
7
9
0

3
6
.8

2
3
.1

2
7
.7

6
0
.7

1
1
4

1
1
5

1
1
5

1
1
5

1
7
3

1
6
0

1
9
1
1

3
7
.7

2
3
.9

2
8
.5

6
4
.7

1
9
4

1
9
6

1
9
6

1
9
6

3
0
6

188 Hartung et al. Algorithms and Experiments for Finding 2-Clubs

d
en

s.
a

b
n

m
∆

G
∅

G
h

-i
n

d
ex

2
-c

lu
b

S
T

S
T
-
D
E
G

S
T
-
N
2

S
T
-
F
E
S

C
S
T

0
.1

5
0
.1

5
1
3
0

1
2
6
1

3
0
.4

1
9
.4

2
3
.2

4
2
.7

1
4
.0

1
4
.2

1
4
.2

1
4
.2

1
4
.2

1
4
0

1
4
5
5

3
2
.6

2
0
.8

2
4
.6

4
6
.1

3
8
.3

3
8
.8

3
8
.8

3
8
.8

4
4
.4

1
5
0

1
6
7
9

3
4
.7

2
2
.4

2
6
.4

5
2
.9

1
0
9

1
1
0

1
1
0

1
1
0

1
4
0

1
5
5

1
7
9
2

3
5
.6

2
3
.1

2
7
.2

5
5
.3

2
4
3

2
4
6

2
4
6

2
4
6

3
4
6

1
6
0

1
9
1
2

3
6
.5

2
3
.9

2
8
.0

5
9
.7

4
0
6

4
0
9

4
1
0

4
1
0

6
2
8

1
6
5

2
0
3
1

3
7
.9

2
4
.6

2
8
.9

6
3
.1

5
8
1

5
8
6

5
8
7

5
8
6

7
6
3

∑
1
8
5
8

1
8
7
5

1
8
7
6

1
8
7
6

2
6
2
9

0
.2

0
.0

5
0
.3

5
2
0
0

3
9
8
8

6
6
.1

3
9
.9

4
7
.7

1
8
6
.2

0
.0

2
0
.0

3
0
.0

5
0
.1

0
0
.0

6
0
.1

0
.3

2
0
0

3
9
8
8

6
1
.6

3
9
.9

4
6
.0

1
9
1
.1

0
.0

2
0
.0

3
0
.0

5
0
.0

9
0
.0

5
0
.1

5
0
.2

5
2
0
0

3
9
8
0

5
8
.3

3
9
.8

4
4
.5

1
9
4
.4

0
.0

2
0
.0

3
0
.0

4
0
.0

9
0
.0

4
0
.2

0
.2

2
0
0

3
9
7
6

5
5
.6

3
9
.8

4
4
.1

1
9
5
.7

0
.0

2
0
.0

3
0
.0

4
0
.0

9
0
.0

3
∑

0
.0
7

0
.1
1

0
.1
8

0
.3
7

0
.1
9

T
a
b

le
5
:

F
u

ll
li
st

o
f

ex
p

er
im

en
ta

l
re

su
lt

s
o
n

ra
n

d
o
m

in
st

a
n

ce
s

w
it

h
0
.0

5
,

0
.1

,
0
.1

5
,

a
n

d
0
.2

d
en

si
ty

.
F

o
r

ea
ch

co
m

b
in

a
ti

o
n

o
f
a
,
b,

a
n

d
n

w
e

cr
ea

te
d

1
0
0

in
st

a
n

ce
s

b
y

th
e

ra
n

d
o
m

g
ra

p
h

g
en

er
a
to

r
p

ro
p

o
se

d
b
y

G
en

d
re

a
u

et
a
l.

[2
1
].

C
o
rr

es
p

o
n

d
in

g
ly

,
a
ll

o
th

er
en

tr
ie

s
n

a
m

el
y,

m
(#

ed
g
es

),
∆

G
(m

a
x
im

u
m

d
eg

re
e)

,
∅

G
(a

v
g
.

d
eg

re
e)

,
h

-i
n

d
ex

,
2
-C

lu
b

(s
iz

e
o
f

th
e

la
rg

es
t

2
-c

lu
b

),
a
n

d
th

e
ti

m
e

in
se

co
n

d
s

fo
r

th
e

so
lv

er
s
S
T
,
S
T
-
D
E
G
,
S
T
-
N
2
,S
T
-
F
E
S
,
C
S
T

a
re

th
e

a
v
er

a
g
e

o
v
er

a
ll

th
es

e
1
0
0

in
st

a
n

ce
.

JGAA, 19(1) 155–190 (2015) 189

E
x
p
e
ri
m
e
n
ta
l
R
e
su

lt
s
fo
r
R
e
a
l-
W

o
rl
d

In
st
a
n
ce

s

n
a
m

e
n

m
∆

G
∅

G
h

-I
n

d
ex

2
-c

lu
b

S
T
-
D
e
g

S
T
-
N
2

S
T
-
F
E
S

I
L
P
-
D
e
g

I
L
P
-
N
2

I
L
P
-
F
E
S

ti
m

e
#

T
K

ti
m

e
#

T
K

ti
m

e
#

T
K

ti
m

e
#

T
K

ti
m

e
#

T
K

ti
m

e
#

T
K

1
0
th

D
IM

A
C
S

c
lu

st
e
r
in

g
a
d

jn
o
u

n
1
1
2

4
2
5

4
9

7
1
3

5
0

0
.0

1
0

0
.0

1
0

0
.0

0
0

0
.0

0
0

0
.0

1
0

0
.0

0
0

ce
le

g
a
n

s
m

et
a
b

o
li

c
4
5
3

2
0
2
5

2
3
7

8
2
3

2
3
8

0
.1

0
0

0
.1

0
0

0
.1

1
0

0
.1

1
0

0
.1

0
0

0
.1

1
0

ce
le

g
a
n

sn
eu

ra
l

2
9
7

3
5
2
0

2
8
4

2
3

3
4

2
8
5

0
.0

3
0

0
.0

3
0

0
.0

3
0

0
.0

3
0

0
.0

3
0

0
.0

3
0

d
o
lp

h
in

s
6
2

1
5
9

1
2

5
9

1
3

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

1
0

0
.0

1
0

0
.0

1
0

em
a
il

1
1
3
3

5
4
5
1

7
1

9
3
3

7
2

4
2
.8

1
7
1

1
1
0

2
9
3

8
3
.2

2
3
4

7
0
.5

1
6
2

1
4
0

2
9
3

1
1
2

2
3
4

fo
o
tb

a
ll

1
1
5

6
1
3

1
2

1
0

1
2

1
6

0
.0

7
5

0
.3

8
6
6

0
.4

6
6
8

2
.7

3
4

0
.7

7
6
6

0
.8

7
6
8

h
ep

-t
h

8
3
6
1

1
5
7
5
1

5
0

3
2
7

5
1

0
.9

4
0

0
.9

3
0

0
.9

4
0

0
.9

3
0

0
.9

3
0

0
.9

5
0

ja
zz

1
9
8

2
7
4
2

1
0
0

2
7

4
1

1
0
3

0
.0

5
0

0
.0

5
0

0
.0

7
0

0
.2

3
0

0
.2

4
0

0
.2

6
0

k
a
ra

te
3
4

7
8

1
7

4
6

1
8

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

n
et

sc
ie

n
ce

1
5
8
9

2
7
4
2

3
4

3
1
9

3
5

0
.0

3
0

0
.0

3
0

0
.0

3
0

0
.0

3
0

0
.0

3
0

0
.0

3
0

P
G

P
g
ia

n
tc

o
m

p
o

1
0
6
8
0

2
4
3
1
6

2
0
5

4
5
2

2
0
6

1
.1

4
0

1
.1

5
0

1
.1

5
0

1
.1

4
0

1
.1

6
0

1
.1

5
0

p
o
lb

lo
g
s

1
4
9
0

1
6
7
1
5

3
5
1

2
2

8
7

3
5
2

9
.7

8
4

4
4
.9

4
2

2
1
.0

1
2

p
o
lb

o
o
k
s

1
0
5

4
4
1

2
5

8
1
5

2
8

0
.0

1
3

0
.0

3
1
0

0
.0

7
1
7

0
.0

6
5

0
.0

8
1
1

0
.1

4
1
8

p
o
w

er
4
9
4
1

6
5
9
4

1
9

2
1
2

2
0

0
.2

5
0

0
.2

5
0

0
.2

5
0

0
.2

4
0

0
.2

4
0

0
.2

5
0

1
0
th

D
IM

A
C
S

c
o
-a

u
th

o
r
c
it
a
ti
o
n

ci
ta

ti
o
n

C
it

es
ee

r
2
6
8
4
9
5

1
1
5
6
6
4
7

1
3
1
8

8
2
0
9

1
3
1
9

7
9
.3

0
8
2
.5

0
7
8
.2

0
7
8
.7

0
7
8
.5

0
8
2
.0

0
co

A
u

th
o
rs

C
it

es
ee

r
2
2
7
3
2
0

8
1
4
1
3
4

1
3
7
2

7
1
1
4

1
3
7
3

4
9
.4

0
4
9
.8

0
4
9
.5

0
4
8
.8

0
4
8
.7

0
4
9
.6

0
co

A
u

th
o
rs

D
B

L
P

2
9
9
0
6
7

9
7
7
6
7
6

3
3
6

6
1
3
2

3
3
7

8
5
.0

0
9
1
.6

0
8
5
.2

0
8
6
.7

0
8
5
.0

0
8
5
.3

0
g
ra

p
h

th
re

s
0
1

7
1
5
6
3
3

2
5
1
1
9
8
8

8
0
4

7
2
0
8

8
0
5

2
9
4

0
2
8
4

0
2
7
5

0
2
9
2

0
2
8
7

0
2
7
7

0
g
ra

p
h

th
re

s
0
2

2
8
2
8
3
1

6
4
0
6
9
7

2
0
1

4
9
6

2
0
2

6
2
.4

0
6
0
.6

0
5
9
.5

0
6
1
.3

0
5
9
.9

0
5
9
.2

0
g
ra

p
h

th
re

s
0
3

1
6
7
0
0
6

2
9
3
7
9
6

1
2
3

3
6
2

1
2
4

2
5
.7

0
2
5
.6

0
2
5
.5

0
2
5
.0

0
2
5
.1

0
2
5
.2

0
g
ra

p
h

th
re

s
0
4

1
1
2
9
4
9

1
6
8
5
2
4

8
8

2
4
6

8
9

1
4
.2

0
1
4
.3

0
1
4
.3

0
1
3
.9

0
1
3
.9

0
1
3
.9

0
g
ra

p
h

th
re

s
0
5

8
1
5
1
9

1
0
7
8
3
1

7
1

2
3
8

7
2

8
.9

3
0

8
.9

1
0

8
.9

7
0

8
.7

4
0

8
.7

0
0

8
.7

7
0

2
n
d

D
IM

A
C
S

c
li
q
u
e

b
ro

ck
2
0
0

2
2
0
0

9
8
7
6

1
1
4

9
8

9
9

2
0
0

0
.0

4
0

0
.1

0
0

0
.2

0
0

0
.9

2
0

0
.9

9
0

1
.0

8
0

b
ro

ck
2
0
0

4
2
0
0

1
3
0
8
9

1
4
7

1
3
0

1
2
8

2
0
0

0
.0

3
0

0
.1

5
0

0
.2

6
0

0
.8

6
0

0
.9

7
0

1
.0

9
0

b
ro

ck
4
0
0

2
4
0
0

5
9
7
8
6

3
2
8

2
9
8

2
9
4

4
0
0

0
.2

6
0

1
.9

5
0

4
.9

1
0

5
.9

0
0

7
.6

4
0

9
.6

2
0

b
ro

ck
4
0
0

4
4
0
0

5
9
7
6
5

3
2
6

2
9
8

2
9
4

4
0
0

0
.2

8
0

1
.9

8
0

4
.8

3
0

4
.7

8
0

6
.6

2
0

8
.4

9
0

190 Hartung et al. Algorithms and Experiments for Finding 2-Clubs

n
a
m

e
n

m
∆

G
∅

G
h

-I
n

d
ex

2
-c

lu
b

S
T
-
D
e
g

S
T
-
N
2

S
T
-
F
E
S

I
L
P
-
D
e
g

I
L
P
-
N
2

I
L
P
-
F
E
S

ti
m

e
#

T
K

ti
m

e
#

T
K

ti
m

e
#

T
K

ti
m

e
#

T
K

ti
m

e
#

T
K

ti
m

e
#

T
K

b
ro

ck
8
0
0

2
8
0
0

2
0
8
1
6
6

5
6
6

5
2
0

5
1
6

8
0
0

2
.1

7
0

1
5
.1

0
2
8
.3

0
9
6
.8

0
1
1
0

0
1
2
1

0
b

ro
ck

8
0
0

4
8
0
0

2
0
7
6
4
3

5
6
5

5
1
9

5
1
4

8
0
0

2
.1

4
0

1
4
.9

0
2
8
.0

0
8
3
.1

0
9
6
.0

0
1
0
7

0
C

1
2
5
.9

1
2
5

6
9
6
3

1
1
9

1
1
1

1
0
7

1
2
5

0
.0

1
0

0
.0

6
0

0
.0

9
0

0
.0

8
0

0
.1

3
0

0
.1

6
0

C
2
5
0
.9

2
5
0

2
7
9
8
4

2
3
6

2
2
3

2
1
9

2
5
0

0
.0

9
0

0
.5

7
0

0
.9

5
0

0
.8

1
0

1
.2

4
0

1
.6

2
0

C
5
0
0
.9

5
0
0

1
1
2
3
3
2

4
6
8

4
4
9

4
4
1

5
0
0

0
.6

3
0

9
.3

2
0

1
4
.7

0
5
.5

5
0

1
3
.8

0
2
0
.0

0
D

S
J
C

1
0
0
0
.5

1
0
0
0

2
4
9
8
2
6

5
5
1

4
9
9

5
0
0

1
0
0
0

2
.2

4
0

1
4
.4

0
3
0
.4

0
1
8
1

0
1
9
4

0
2
0
8

0
D

S
J
C

5
0
0
.5

5
0
0

6
2
6
2
4

2
8
6

2
5
0

2
5
0

5
0
0

0
.3

8
0

1
.9

9
0

5
.6

3
0

1
5
.7

0
1
7
.5

0
1
9
.9

0
g
en

2
0
0

p
0
.9

4
4

2
0
0

1
7
9
1
0

1
9
0

1
7
9

1
7
3

2
0
0

0
.0

4
0

0
.2

4
0

0
.3

7
0

0
.3

9
0

0
.6

0
0

0
.7

4
0

g
en

2
0
0

p
0
.9

5
5

2
0
0

1
7
9
1
0

1
9
0

1
7
9

1
7
3

2
0
0

0
.0

4
0

0
.2

4
0

0
.3

7
0

0
.4

0
0

0
.5

9
0

0
.7

4
0

g
en

4
0
0

p
0
.9

5
5

4
0
0

7
1
8
2
0

3
7
5

3
5
9

3
4
7

4
0
0

0
.3

1
0

3
.4

2
0

6
.6

0
0

2
.7

0
0

5
.9

2
0

8
.0

9
0

g
en

4
0
0

p
0
.9

6
5

4
0
0

7
1
8
2
0

3
7
8

3
5
9

3
4
9

4
0
0

0
.3

2
0

3
.4

2
0

6
.5

2
0

2
.6

8
0

5
.8

5
0

8
.0

8
0

g
en

4
0
0

p
0
.9

7
5

4
0
0

7
1
8
2
0

3
8
0

3
5
9

3
4
9

4
0
0

0
.3

1
0

3
.3

8
0

6
.4

8
0

2
.6

8
0

5
.9

2
0

8
.1

3
0

h
a
m

m
in

g
8
-4

2
5
6

2
0
8
6
4

1
6
3

1
6
3

1
6
3

2
5
6

0
.0

7
0

0
.2

9
0

0
.5

1
0

2
.2

5
0

2
.3

0
0

2
.7

2
0

k
el

le
r4

1
7
1

9
4
3
5

1
2
4

1
1
0

1
0
6

1
7
1

0
.0

2
0

0
.0

9
0

0
.1

6
0

0
.6

8
0

0
.7

4
0

0
.8

2
0

k
el

le
r5

7
7
6

2
2
5
9
9
0

6
3
8

5
8
2

5
6
5

7
7
6

2
.6

8
0

1
8
.7

0
3
1
.4

0
7
4
.7

0
9
1
.3

0
1
0
3

0
M

A
N

N
a
2
7

3
7
8

7
0
5
5
1

3
7
4

3
7
3

3
6
4

3
7
8

0
.3

0
0

3
.7

1
0

7
.3

9
0

0
.4

8
0

3
.5

8
0

6
.8

1
0

p
h

a
t1

5
0
0
-1

(1
)

1
5
0
0

2
8
4
9
2
3

6
1
4

3
7
9

4
5
6

1
5
0
0

2
6
.8

0
3
4
.6

0
5
5
.0

0
2
8
8

0
2
9
6

0
3
1
4

0
p

h
a
t3

0
0
-1

3
0
0

1
0
9
3
3

1
3
2

7
2

9
0

2
9
9

0
.0

6
0

0
.1

3
0

0
.3

0
0

1
.5

0
0

1
.4

7
0

1
.7

3
0

p
h

a
t3

0
0
-2

3
0
0

2
1
9
2
8

2
2
9

1
4
6

1
4
8

3
0
0

0
.0

9
0

0
.4

1
0

0
.6

5
0

2
.7

6
0

3
.0

1
0

3
.5

3
0

p
h

a
t3

0
0
-3

3
0
0

3
3
3
9
0

2
6
7

2
2
2

2
0
8

3
0
0

0
.1

2
0

0
.6

7
0

1
.3

7
0

1
.8

8
0

2
.4

7
0

2
.8

9
0

p
h

a
t7

0
0
-1

7
0
0

6
0
9
9
9

2
8
6

1
7
4

2
0
7

7
0
0

0
.7

4
0

1
.6

1
0

4
.8

8
0

2
1
.7

0
2
2
.7

0
2
5
.2

0
p

h
a
t7

0
0
-2

7
0
0

1
2
1
7
2
8

5
3
9

3
4
7

3
5
2

7
0
0

1
.0

2
0

6
.5

6
0

1
3
.3

0
4
9
.2

0
5
5
.4

0
6
1
.3

0
p

h
a
t7

0
0
-3

7
0
0

1
8
3
0
1
0

6
2
7

5
2
2

4
8
6

7
0
0

1
.7

0
0

1
4
.5

0
2
5
.4

0
3
3
.7

0
4
6
.7

0
5
6
.9

0

T
a
b

le
6
:

F
u

ll
li
st

o
f

ex
p

er
im

en
ta

l
re

su
lt

s
o
n

in
st

a
n

ce
s

fr
o
m

th
e

D
IM

A
C

S
im

p
le

m
en

ta
ti

o
n

ch
a
ll

en
g
es

[1
7
,

1
8
].

T
h

e
fi

rs
t

co
lu

m
n

d
en

o
te

s
th

e
n

a
m

e
o
f

th
e

in
st

a
n

ce
s,

n
th

e
n
u

m
b

er
o
f

v
er

ti
ce

s,
m

th
e

n
u

m
b

er
o
f

ed
g
es

,
∆

G
th

e
m

a
x
im

u
m

d
eg

re
e,

∅
G

th
e

a
v
g
.

d
eg

re
e,

a
n

d
2
-C

lu
b

d
en

o
te

s
th

e
si

ze
o
f

th
e

la
rg

es
t

2
-c

lu
b

.
T

h
e

la
st

tw
el

v
e

co
lu

m
n

s
co

n
ta

in
fo

r
ea

ch
so

lv
er

th
e

re
q
u

ir
ed

ti
m

e
in

se
co

n
d

s
a
n

d
“
#

T
K

”
d

en
o
te

s
th

e
n
u

m
b

er
o
f

T
u

ri
n

g
k
er

n
el

s
n

ee
d

ed
to

so
lv

e.

	Introduction
	Related Work
	Our Contribution
	Preliminaries

	Kernelization: Algorithms and Lower Bounds
	A Quadratic-Vertex Kernel for the Parameter Cluster Editing Set Size
	A Linear Kernel for the Parameter Feedback Edge Set Size
	Lower Bounds for Kernelization

	A Fixed-Parameter Algorithm for Treewidth
	On the Optimality of the Dual Parameter Algorithm
	Implementation and Experiments
	Implemented Algorithms
	Results

	Conclusion
	Appendix: Full experimental results

