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Abstract

We investigate the complexity of finding a minimum connected (s, t)-
vertex separator ((s,t)-CVS) and present an interesting chordality di-
chotomy: we show that (s,t)-CVS is NP-complete on graphs of chordal-
ity at least 5 and present a polynomial-time algorithm for (s,¢)-CVS on
chordality 4 graphs. Further, we show that (s,¢)-CVS is unlikely to have
dlog®~“n-approximation algorithm, for any e > 0 and for some ¢ > 0, un-
less NP has quasi-polynomial Las Vegas algorithms. On the positive-side
of approximation, we present a [$]-approximation algorithm for (s,t)-
CVS on graphs with chordality ¢ > 3. Finally, in the parameterized
setting, we show that (s,t)-CVS parameterized above the (s,t)-vertex
connectivity is W[2]-hard.
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1 Introduction

The vertex or edge connectivity of a graph and the corresponding separators
are of fundamental interest in Computer Science and Graph Theory. For a
connected graph, a vertex separator is a subset of vertices whose removal dis-
connects the graph into two or more connected components and the vertex
connectivity refers to the size of a minimum vertex separator. Many kinds of
vertex separators, stable vertex separators [1}7 clique vertex separators [18]7 con-
strained vertex separators [13], and a-balanced separators [13] are of interest to
the research community.

As far as complexity results are concerned, finding a minimum vertex separator
and a clique vertex separator are polynomial-time solvable, whereas, finding a
stable vertex separator and other constrained separators reported in [13] are
NP-hard. This shows that imposing an appropriate constraint on the well-
studied vertex separator problem makes the problem NP-hard. Interestingly,
constrained vertex separators have received much attention in parameterized
complexity as well [13, 12]. In particular, Marx et al. in [I3] considered
the parameterized complexity of constrained separators satisfying some hered-
itary properties, for example, clique separators and stable separators. It is
shown in [I3] that the above problems have an algorithm whose running time
is f(k) - nPW | where k is the size of a constrained separator. Algorithms of
this nature are popularly known as fixed-parameter tractable algorithms (FPT)
with parameter as the solution size [I5]. Subsequently, in [14], Marx et al.
looked at the computational problem of finding a minimum (s, ¢)-vertex sepa-
rator ((s,t)-CVS) satisfying some non-hereditary property, like connectedness.
Interestingly, in [I4] it is shown that (s,¢)-CVS is in FPT.

When a computational problem is known to be NP-complete, it is natural to look
at the complexity of the same in special graph classes such as chordal graphs,
Ps-free graphs, planar graphs, etc. Well known problems such as maximum
clique, maximum independent set, and minimum vertex cover have polynomial-
time algorithms restricted to chordal graphs which are NP-complete in general
graphs. Recent breakthrough due to Lokshtanov et al. [10] reveals that maxi-
mum independent set problem in Ps-free graphs is polynomial time. Essentially,
classical problems which are known to be NP-complete in general graphs have
nice polynomial-time algorithms when the input is restricted to graphs with
forbidden subgraphs. Moreover, this line of research has received a significant
attention in the past as it helps to identify the gap between the NP-Hardness
and the polynomial-time solvable input instances. Having highlighted the im-
portance of special graph classes, in this paper, we investigate the complexity
of (s,t)-CVS in chordal graphs (graphs with no induced cycle of length at least
3) and its super classes. It is a well-known fact that in chordal graphs every
minimal vertex separator is a clique [7]. It is clear that (s,t)-CVS is trivially
solvable in chordal graphs. It is now natural to study (s,¢)-CVS on graphs of
higher chordality. A graph is said to have chordality ¢ (¢ > 3), if it does not con-
tain any induced cycle of length at least ¢+ 1. To the best of our knowledge the
complexity of (s,t)-CVS in graphs of higher chordality (henceforth, chordality
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c graphs) is open. With these motivations, in this paper, we focus our attention
on the computational complexity of minimum connected (s, t)-vertex separator
in chordality ¢ graphs.

Remark: The (s,t)-CVS can also be motivated from the theory of graph mi-
nors. We observe that there is an equivalence between the computational prob-
lems of finding a minimum connected (s, t)-vertex separator and a minimum
set of edges whose contraction reduces the (s,t)-vertex connectivity to one. It
is important to note that the analogous computational problem of reducing
the (s,t)-edge connectivity to zero by a minimum number of edge deletions is
polynomial-time solvable, because this is computationally equivalent to finding
a minimum (s,t)-cut and deleting all edges in it.

Our Results: In this paper, we consider connected undirected unweighted non-
complete simple graphs. For a graph G, let (s,t) denote a fixed non-adjacent
pair of vertices in G. Throughout this paper, when we refer to edge contraction,
we do not contract edges incident on s and edges incident on t.

1. As mentioned in the introduction, on chordal graphs every minimal vertex
separator is a clique and therefore the (s,t)-CVS is immediately guar-
anteed in chordal graphs. Further, finding a minimum (s,¢)-CVS in
chordal graphs is equivalent to finding a minimum vertex separator which
is polynomial-time solvable [7]. We show that deciding (s,t)-CVS is NP-
complete on graphs of chordality 5 and on chordality 4 graphs (s,¢)-CVS
is polynomial-time solvable. This result is due to a very interesting struc-
tural property of minimal vertex separators in chordality 4 graphs and it
says that every minimal vertex separator S is either connected or there
exist two vertices u and v such that both v and v have a neighbour to
each connected component of S in G.

2. As far as approximation algorithms are concerned, we present two re-
sults. We first present a [§]-approximation algorithm for (s,¢)-CVS on
graphs with chordality ¢ > 3. We then establish an approximation pre-
serving polynomial-time reduction from the Group Steiner Tree [9, [6] to
(s,t)-CVS. Consequently, it follows that there is no polynomial-time ap-
proximation algorithm with approximation factor §log®>~n for some 6 > 0
and for any € > 0, unless NP has quasi-polynomial Las Vegas algorithms.

3. Our final result is from parameterized complexity theory. As mentioned
before Marx et al. [I4] have shown that (s,t)-CVS is in FPT with pa-
rameter as the size of the connected vertex separator. Since an important
lower bound for (s,t)-CVS is the (s, t)-vertex connectivity itself. It is now
natural to consider the following parameterization: the size of a (s,t)-
CVS minus the (s,t)-vertex connectivity. This type of parameterization
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is known as the above guarantee parameterization [11 [§]. We show that
(s,t)-CVS parameterized above the (s, t)-vertex connectivity is unlikely to
be fixed-parameter tractable under the standard parameterized complex-
ity assumption, and in the terminology of parameterized hardness theory,
it is hard for the complexity class W[2] in the W-hierarchy.

Graph Preliminaries: Notation and definitions are as per [7, [16]. Let G =
(V, E) be a connected undirected unweighted simple graph where V(G) is the
set of vertices and E(G) is the set of edges. For S C V(G), G[S] denote the
graph induced on the set S and G\ S is the induced graph on the vertex
set V(G)\ S. A vertex separator S C V(G) is called a (s,t)-vertex sepa-
rator if in G\ S, s and ¢ are in two different connected components and S
is minimal if no proper subset of it is a (s,t)-vertex separator. A minimum
(s,t)-vertex separator is a minimal (s,¢)-vertex separator of least size. The
(s,t)-vertex connectivity denote the size of a minimum (s, t)-vertex separator.
A connected (s, t)-vertex separator S is a (s,t)-vertex separator such that G[S]
is connected and such a set S of least size is a minimum connected (s, t)-vertex
separator. For a minimal (s,t)-vertex separator S, let Cs and C; denote the
connected components of G\ S such that s is in Cs and ¢ is in C;. We let
G - e denote the graph obtained by contracting the edge e = {u,v} in G such
that V(G -e) = V(G) \ {u,v} U{zu} and E(G - e) = {{zup, 2} | {u,z} or
{v,2} € E(G)} U{{z,y} | {z,y} € E(GQ) and = # u,y # v}. A graph is said to
have chordality c, if it contains no induced cycle of length at least ¢ + 1. i.e.,
every cycle C of length at least ¢ + 1 in G has a chord (an edge joining a pair
of non-consecutive vertices in C).

Roadmap: In Section we analyze the complexity of (s,t)-CVS on chordality
¢ graphs and present our dichotomy result. We then present an approximation
algorithm with approximation ratio as a function of chordality of the graph. In
Section [3] we present a classical and an approximation hardness for (s,¢)-CVS.
We conclude Section [3] by presenting a parameterized hardness for the above
guarantee (s,t)-CVS.

2 Complexity of (s,1)-CVS on Chordality c graphs

The objective of this section is to look at the complexity of (s,t)-CVS with
chordality as the parameter. Towards this end, we show that (s,¢)-CVS is NP-
complete on chordality 5 graphs and we present a polynomial-time algorithm
for (s,t)-CVS on chordality 4 graphs. We conclude this section with a [§]-
approximation algorithm for (s,t)-CVS on graphs of chordality ¢ > 3. In our
reduction, we choose Steiner tree problem as the candidate problem and it is
defined as follows;
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Steiner tree problem:

Instance: A graph G, a terminal set R C V(G), and an integer r
Question: Is there a subtree in G that contains all of R with at most r
edges.

Theorem 1 (s,t)-CVS is NP-complete on chordality 5 graphs.

Proof: (s,t)-CVS is in NP: Given an input instance (G, s,t,q) of (s,t)-
CVS, the certificate on Yes instances is a set S C V(G) which is a connected
(s, t)-vertex separator of cardinality at most g. Clearly, S can be verified in
polynomial time by standard reachability algorithms [2].

(s,t)-CVS is NP-hard: It is known from [I7] that Steiner tree problem on
split graphs is NP-complete and this can be reduced in polynomial time to
(s,£)-CVS in chordality 5 graphs using the following construction. Note that
any split graph G can be seen as a graph with V(G) = V5 U V, such that
G[V1] is a clique and G[V3] is an independent set. Also, split graphs are
a subclass of chordal graphs and hence have chordality 3. We map an in-
stance (G, R,r) of Steiner tree problem on split graphs to the corresponding
instance (G', s,t,q =1+ 1) of (s,t)-CVS as follows: V(G') = V(G) U {s,t} and
E(G") =E(G)U{{s,v} | ve R}U{{t,v} | v € R}. An example is illustrated
in Figure [II We now show that instances created by this transformation have
chordality 5. i.e., in G’, any cycle C of length at least 6 has a chord. Clearly,
C must contain either s or ¢ but not both. Let {s,u1,...,u,},p > 5 denote the
ordering of vertices in C.

6

7

8

(G,R={2,5,6},r)

Figure 1: Reduction: Steiner tree in Split Graphs to (s,t)-CVS in Chordality 5
graphs

Case 1: {u1,u,} C V5. Since G is a split graph, {us, u,—1} C Vi, and therefore,
{u2,up—1} € E(G) which is a chord in C.

Case 2: uy € V5 and u, € V4. Clearly, us € V; and {us,u,} € E(G), a chord
in C.

Therefore, we conclude that chordality of G’ is at most 5. We now show that
(G, R, r) has a Steiner tree with at most r edges if and only if (G, s,t,q =r+1)
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has a (s,t)-CVS of size at most r + 1. For only if claim, G has a Steiner tree
T containing all vertices of R and at most 7 edges. By our construction of G’,
to disconnect s and ¢, we must remove the set N (s) which is R, as there is an
edge from each element of N¢/(s) to t. Since G has a Steiner tree T with at most
r edges, implies that T has at most r + 1 vertices. Clearly, in G’, T' guarantees
a (s,t)-CVS of size at most r + 1. For if claim, G’ has a (s,t)-CVS S with at
most 7+ 1 vertices. Note that any spanning tree on at most 41 vertices has at
most r edges. From our construction of G’, it follows that Ng/(s) C S and the
(s, t)-vertex connectivity is |[Ngs(s)|. This implies that G has a Steiner tree with
at most r edges containing R = Ng(s) as the terminal set. Hence the claim.
V(G| = |V(G)|+2and |E(G")| < |E(G)|+2|V(G)| and the construction of G’
takes O(|E(G)|). Hence, this is a polynomial-time reduction. As a consequence,
it follows that (s,¢)-CVS in chordality 5 graphs is NP-hard. Thus, we conclude
(s,t)-CVS in chordality 5 graphs is NP-complete. O

2.1 (s,t)-CVS in Chordality 4 Graphs is Polynomial time

In this section, we present the other half of our dichotomy result which says that
(s,t)-CVS in chordality 4 graphs is polynomial-time solvable. We now present a
sequence of combinatorial results on the structure of minimal vertex separators
in chordality 4 graphs, using which we show that (s,¢)-CVS in chordality 4
graphs is polynomial-time solvable.

Theorem 2 FEvery minimal (s,t)-vertex separator S in a chordality 4 graph G
satisfies one of the following properties:

(1) G[S] is connected.

(2) Let {X1,...,X,},r > 2 denote the set of connected components in G[S|
and V(X;) denotes the vertex set of the component X;. In G\ S, there
exists u in Cs and there exists v in Cy such that for all 1 <i < r, Ng(u)N
V(X;) # 0 and Ng(v)NV(X;) # 0, where Cs and Cy denote the connected
components in G\ S containing s and t, respectively.

Proof: Our proof is by induction on n = |[V(G)|. Base: |V(G)| = 3. The only
non-complete chordality 4 graph on 3 vertices is a path on 3 vertices. Clearly,
the lemma is true for the base case. Let us now assume all chordality 4 graphs
on less than n, n > 4 vertices satisfy our claim. Consider a chordality 4 graph
G on n > 4 vertices. Let S be a minimal (s, t)-vertex separator in G. If |S| =1,
then S is a cut vertex w and our claim is true. Since w is a cut-vertex, w has a
neighbour w in Cy and v in Cy, where C;,4 € {1,2} is a connected component
in G\ {w}. For |S| > 2, we consider two cases to complete the induction. For
clarity purpose, the case analysis is considered to complete the induction.

Case 1: G[9] is not an independent set. Let e = {z,y} be an edge contained
in a connected component X of G[S]. Consider the graph G - e obtained from
G by contracting e. Clearly, |[V(G-e)] =n—1. Let S" = (S\ {z,y}) U {2y }-
Edges incident on x or y are now incident on z,,. Observe that S’ is a minimal
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(s, t)-vertex separator in G -e. If G[S’] is connected in G - e then it implies that
G|[S] is connected in G as well. Otherwise, by the induction hypothesis, in G - e,
there exists u and v with the desired property. In particular, V(X’) N Ng..(u)
and V(X’) N Ng..(v) are non empty where X’ = (X \ {z,y}) U{zgy} and X is
the connected component in S containing x and y. Since X’ is obtained from
X and {z,y} € E(G), it follows that v and v are adjacent to X in G. Thus,
both u and v have the desired property in G too. A snapshot is illustrated in

Figure

I

Configuration of Sin G Configuration of S in G.e

Figure 2: A snapshot illustrating Case 1 of Theorem 2]

Case 2: G[S5] is an independent set. Now consider z,y € S. Consider the
graph G- zy obtained by contracting the non-adjacent pair {z,y}. Let S’ = (S'\
{z,y})U{zsy} and edges incident on x or y are now incident on z,,,. Observe that
S’ is a minimal (s, t)-vertex separator in G-zy. Clearly, |V(G-zy)| = |V(G)|—1
and hence, by the induction hypothesis, in G-zy, there exists u in C, and v in C}
satisfying our claim where C’, and Cj are connected components in (G - zy) \ S’
containing s and ¢, respectively. Let S = {x,y,u1,...,u,},p > 0. We now prove
in G the existence of vertex u in Cy satisfying our claim. If {u,z}, {u,y} € E(G),
then clearly u € Cs is the desired vertex in G. Otherwise, without loss of
generality assume that z ¢ Ng(u). Thus, S\ {z} C Ng(u). Let P;, denote a
shortest path between x and u such that the internal vertices are in Cs. Consider
the vertex w in P2, such that {z,w} € E(G). Such a w exists as S is a minimal
(s,t)-vertex separator in G. If for all z € S, {w, 2z} € E(G), then w is a desired
vertex in Cs. Otherwise, there exists z € S such that {w,z} ¢ E(G). Let
P, denote the subpath of PJ, on the vertex set {w = w1,...,wy = u},q > 2.
Let 4, 2 < i < ¢ be the smallest integer such that, {z,w;} € E(G). In this
case, P35, {w;, z} P}, form an induced cycle of length at least 5 in G where Pj,,.
denote the subpath of P72, on the vertex set {z,w = wy,...,w;},2 < i < q.
Note that {z,z} ¢ F(G) as S is an independent set. However, this contradicts
the fact that G is a graph of chordality 4. Therefore, there exists a vertex
@ € {u,w} in Cs with the desired property. i.e., either u or w is adjacent to
each element (connected component) in S. The proof for the existence of vertex
v in Cy is symmetric. A snapshot is illustrated in Figure O
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S S
e e
y y
/.\ /.\
\ \
P U=z : u=z
] > 1 ] ] v
1 1
R o]
_— . ) w (smallest integer)
wisadjacent to al of S w is non-adjacent to Z '

that is adjacent to z

Figure 3: A snapshot illustrating Case 2 of Theorem

Lemma 1 Let G be a chordality 4 graph with the (s,t)-vertex connectivity k.
The size of any minimum (s,t)-CVS in G is either k or k + 1.

Proof: Note that any minimum (s,t)-CVS is of size at least k as the (s,t)-
vertex connectivity is k. If a minimum (s, ¢)-vertex separator itself is connected
then we get a minimum (s, )-CVS of size k. Otherwise, every minimum (s, t)-
vertex separator S is such that G[S] is a collection of connected components.
In this case, we know from Theorem [2| there exists a vertex v in one of the
components of G\ S such that v has a neighbour in each connected component
of S. Therefore, S U {v} is a minimum (s,¢)-CVS of size k + 1. Hence, the
lemma is true. O

Remark: For a chordality 4 graph G with the (s, t)-vertex connectivity k, ask-
ing for a minimum (s,t)-CVS of size k is equivalent to checking whether G con-
tains a connected minimum (s, ¢)-vertex separator, i.e. a minimum (s, t)-vertex
separator which itself is connected. The Lemma [2| shows that this equivalence
checking is indeed polynomial-time solvable.

We now present two more combinatorial observations using which we can find
a minimum (s,¢)-CVS in chordality 4 graphs in polynomial time. We make
use of the notion of contractible edges. Given a connected graph G with the
(s,t)-vertex connectivity k, an edge e € E(G) is said to be contractible if
the (s,t)-vertex connectivity in G - e is at least k. Otherwise e is called non-
contractible. For a connected graph G with the (s, t)-vertex connectivity k > 2,
let FF = {{u,v} | {u,v} € E(G) and {u,v} is contained in a minimum (s,)-
vertex separator }. i.e., the set F' is the set of all non-contractible edges in G.
We use F' to denote the set of non-contractible edges in G. By G - F', we mean
the graph obtained from G by contracting all edges in F'.

Computing the set F: The set F' can be computed in polynomial time. Given
a graph G with the (s, t)-vertex connectivity k, for each edge e in G, compute
G - e and check whether the (s, t)-vertex connectivity is k — 1. If so, then ¢ € F.
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Checking the vertex connectivity of a graph can be done in polynomial time
using standard Max-flow Min-cut algorithm [2].

Lemma 2 G - F contains a cut-vertex if and only if there exists a minimum
(s,t)-vertex separator S such that G[S] is connected.

Proof: If: Suppose, G- F does not contain a cut-vertex. This implies that after
contracting edges in F, in G - F', every minimum vertex separator S induces
at least two connected components. Moreover, this is true even in G as well,
contradicting the fact that there exists a connected minimum (s, t)-vertex sep-
arator in G. Only if: Suppose every minimum (s, t)-vertex separator S is such
that G[S] has at least two connected components. Since any edge contraction
can not disconnect a graph which is already connected, any sequence of edge
contractions of edges in F' results in a graph with the vertex connectivity at
least two, contradicting the fact that G - F' contains a cut-vertex. Hence, the
claim follows. O

Corollary 1 For a connected graph G, deciding whether G contains a connected
minimum (s, t)-vertex separator is polynomial-time solvable.

Proof: From Lemma it is clear that checking for a connected minimum
(s,t)-vertex separator in G is equivalent to checking whether G - F' contains
a cut-vertex or not. This testing can be done using Depth First Search tree
computed on G - F' and hence, the claim. O

Lemma 3 For a chordality 4 graph G with the (s,t)-vertex connectivity k, de-
ciding whether (s,t)-CVS is of size k or k + 1 is polynomial-time solvable.

Proof: The claim follows from Lemmas and Corollary [ The decision
algorithm DECIDE-(s,t)-CVS(G,k) performs the following two tasks, namely,
contract all non-contractible edges in G and check the (s,t)-vertex connectivity
in the resulting graph G'. If k(G’) > 2, then the algorithm returns 'NO’ which
means that every minimum (s,¢)-CVS is of size k + 1. Otherwise, it returns
"YES’ which means that there exists a minimum (s,t)-CVS of size k. Since the
above tasks can be done using the standard depth first search algorithm, the
decision algorithm runs in polynomial time. (]

2.1.1 Finding a minimum (s,¢)-CVS in Chordality 4 graphs

Using DECIDE-(s,t)-CVS(), we now show that finding a minimum (s, )-CVS
in chordality 4 graphs is also polynomial-time solvable. The approach is to
contract all non-contractible edges (edges in the set F') and check whether the
resulting graph contains a cut-vertex or not. If there is no cut-vertex, then
any minimum (s, t)-vertex separator in G together with the vertex v in one of
the components in G \ S (due to Theorem [2) yields a (s,t)-CVS of size k + 1
in G. Otherwise, the given chordality 4 graph contains a (s,t)-CVS of size k.
In such a case, we outline a procedure using which we can find a (s,t)-CVS S
of size k. Our procedure (Algorithm [I) makes polynomial number of calls to
DECIDE-(s,t)-CVS() to output the desired set.
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Lemma 4 Let G be a chordality 4 graph with the (s,t)-vertex connectivity k >
2. G has a (s,t)-CVS of size k if and only if there exists a non-contractible edge
e in G such that G - e has a (s,t)-CVS of size k — 1.

Proof: If: Let S be a (s,t)-CVS of size k in G. Since G[S] is connected, there
exists u,v € S such that {u,v} € E(G). Since the cardinality of S is same as
the (s, t)-vertex connectivity, the edge e = {u, v} is non-contractible. Moreover,
contracting e leaves a graph G - e in which S" = (S'\ {u,v}) U {2y} is a vertex
separator, where z,, is a new vertex created due to the contraction of {u,v}.
Since G[S] is connected and any edge contraction does not disconnect a subgraph
which is already connected, G[S’] is a (s,t)-CVS of size k — 1. Therefore, the
necessity follows. Only if: Let S be a (s,t)-CVS of size k — 1 in G - e. Clearly,
zZuy € S, the vertex corresponding to the contraction of the edge {u,v}. In G,
S = (S\ {zw}) U{u,v} is a (s,t)-CVS of size k. Therefore, the sufficiency
follows. O

The above combinatorial observation together with DECIDE-(s,t)-CVS(), we
obtain a polynomial-time algorithm to find a minimum (s, ¢)-CVS of size k and
is presented in Algorithm

Lemma 5 Let G be a chordality 4 graph having a (s,t)-CVS of size k. Algo-
m’thm@ outputs a k-sized (s,t)-CVS in polynomial time.

Proof: The proof of this lemma follows from the fact that Algorithm [2]is an
implementation of Lemma [4 The main purpose of Lemma {4| is to ensure that
there is no backtracking on an edge e whose contraction reduces the (s, t)-vertex
connectivity by 1. O

Algorithm 1 A Polynomial-time Algorithm to find a minimum (s,t)-CVS in
Chordality 4 graphs
: Input: Chordality 4 graph G with the (s, t)-vertex connectivity k
. If K =1 then simply output any cut-vertex in G
if DECIDE-(s,t)-CVS(G,k) returns 'NO’ then
Find a minimum (s, t)-vertex separator S in G using classical vertex con-
nectivity algorithm
Output the set SU{v} where v is in one of the components of G'\ S such
that S C Ng(v), is a minimum (s,$)-CVS
else
/*--- there exists a k-size (s,t)-CVS. To obtain one such
separator, perform the following; ---%/
Find-(s,t)-CVS(G,k)
9: end if

@

o

Theorem 3 Algom'thm outputs a minimum (s,t)-CVS in polynomial time.
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Algorithm 2 Finding k-size (s,t)-CVS in Chordality 4 graphs Find-(s,t)-
CVS(G,k)

1: /* Return value is ’fail’ or a connected vertex separator */
2: If (DECIDE-(s,t)-CVS(G,k) returns 'NO’) return ’fail’

3: for each non-contractible edge e in G do

4:  x = Find-(s,t)-CVS(G - e,k —1)

5. if (z == ’fail’) continue

6: /* continue goes to the beginning of the for-loop */

7 return x

8: end for

Proof: From Lemmal[l] we know that a minimum (s, t)-CVS is of size k or k+1.
To decide between k and k+1, it is sufficient to check for a cut-vertex in G- F' as
per Lemma[2] This step can be implemented in polynomial time, by identifying
the edges which are elements of F'. Every edge whose contraction reduces the
connectivity by 1is in F'. Then G- F is checked for the presence of a cut-vertex,
and this can be done by a DFS. If the size of the minimum (s,¢)-CVS is k + 1,
then steps 4 and 5 of Algorithmoutputs a (s,t)-CVS of size k41 in polynomial
time, by finding a minimum (s, t)-vertex separator. If the minimum (s, ?)-CVS
is of size k, then Algorithm [2]returns a minimum connected (s, ¢)-CVS. Overall,
a minimum (s,¢)-CVS can be obtained in polynomial time. O

2.2 ([5])-Approximation for (s,£)-CVS on Graphs with
Chordality c

Lemma 6 Let G be a graph of chordality ¢ > 3. For each minimal vertex
separator S, for each u,v € S such that {u,v} ¢ E(G), there exists a path of
length at most [ 5| whose internal vertices are in Cy or Cy, where Cs and Cy
are components in G\ S containing s and t, respectively.

Proof: Suppose for some non-adjacent pair {u,v} C S, both P! and P2, are of
length more than [%], where P! and P2, are shortest paths from u to v whose
internal vertices are in Cs and CY, respectively. Now, there is an induced cycle

l

C containing u and v such that [C| > [£] + [4] = I. However, this contradicts

the fact that G is of chordality . O

Let OPT denote the size of any minimum (s,t)-CVS on chordality ¢ graphs.
Clearly, OPT > k, where k is the (s,t)-vertex connectivity. The description of
approximation algorithm ALG is as follows:

Theorem 4 Algom'thm@ outputs (s,t)-CVS in polynomial time with approzi-

mation ratio [5].

Proof: Observe that S’ is a (s,¢)-CVS in G. The upper bound on the size of S’
output by ALG is: |S'| < k+(k—1)([§]—1). Therefore, approximation ratio 3 is
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Algorithm 3 Approximation Algorithm for (s,¢)-CVS on Chordality ¢ Graphs

1: Compute a minimum (s, t)-vertex separator S in G. S = {vy,...,vx} be an
arbitrary ordering of vertices in S
: for each non-adjacent pair {v;,v;41} € S,1<i<k—1,do
3:  find a path P,,,,,, of length at most [§] whose internal vertices are in
Cs or Cy. Such a path exists as per Lemma [6]
4 8= |J V(Puu,)US
1<i<k—1
5: end for

)

BB 1 - H5 - ) <1+ (51 -1 =T5]

Step 1 of the Algorithm incurs O(n?) time to output a minimum (s, t)-vertex
separator in G. To implement step 3, we can make use of the standard reacha-
bility algorithm like Breadth First Search (BFS) to output P,,,,, and this call
is made for at most O(n?) time. Therefore, the overall time-complexity of the
Algorithm [3|is (mn?), where O(m) is the time incurred for BFS subroutine. 0

3 Complexity of (s,1)-CVS: Hardness Results

The purpose of this section is two fold. Although in [I4] it is shown that (s, t)-
CVS is FPT, no explicit reduction is shown to establish NP-hardness result. In
this section, we first establish a classical hardness of (s,¢)-CVS by presenting a
polynomial-time reduction from the Group Steiner tree to (s, ¢)-CVS. Moreover,
the same reduction establishes an hardness of approximation for (s,t)-CVS. We
conclude this section by showing that (s,t)-CVS parameterizing above the (s, t)-
vertex connectivity is W[2]-hard.

3.1 Classical Hardness: A Reduction from Group Steiner
tree to (s,t)-CVS

The decision version of (s,t)-CVS is given below

Instance: A graph G, a non-adjacent pair (s,t), and q € Z™
Question: Is there a (s,t)-vertex separator S C V(G), |S| < ¢ and G[S5] is
connected?

The Group Steiner tree problem can be stated as follows: given a connected
undirected unweighted graph G, an integer r, and a collection of sets, which we
call groups g1, 92,-..,9 € V(G), the objective is to find a subtree T' of G with
at most r edges that contains at least one vertex from each group g;. We assume
that the groups are disjoint. The Group Steiner tree problem is a generalization
of the Steiner tree problem [5] and therefore, it is NP-complete.

We transform an instance I = (G, g1, 92, --.,91 C V(G),r) of the Group Steiner
tree to the corresponding instance I’ = (G’ s, t,l+r+1) of (s,1)-CVS as follows:
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V(G)=V(G)U{s,t}U{x; |1 <i<li}. E(G)=EG)U{{s,z;}|1<:i<
Du{{t,z;} |1 <i<lFU{{z,y} |y € giandl < i <[} An example is
illustrated in Figure [

} %y T
[ -
. [
I
5
12 3 4 5 1 2 3 12 \
6 7 8 9 10 6 7 8 9 10 \
. . . . '.
X3 !
. I ‘
80 - N . T2
19 2 14 15 / 13 T 13 ~ 15 .
|
1 17 1 20 1 17 1 20 '
- \
./: - . [U— S S
21 2: 23 24 25 N 21 "-22 231 -24-7 25 7

An Instance of Group Steiner S ) - ;‘; el T -
(6,g1={1,3, 4}, g2={12,13,14}, g3={21,23,24,25},1) Equivalent Instance of connected

s-t vertex separator (G’,s,t,r+1+l)

Figure 4: An instance of Group Steiner tree reduces to an instance of (s,¢)-CVS

Theorem 5 (s,t)-CVS is NP-complete. Further, (s,t)-CVS is unlikely to have
8 log? ™€ n-approzimation algorithm, for any € > 0 and for some § > 0, unless
NP has quasi-polynomial Las Vegas algorithms.

Proof: To establish NP-hardness result, we prove the following claim. For I
and I’ as defined above, G has a Group Steiner tree with at most r edges if
and only if G’ has a (s,t)-CVS of size at most r + 1 + [. We first prove the
necessity. Given that G has a Group Steiner tree T' with at most r edges that
contains at least one vertex from each group g;. By the construction of G’, it
is clear that the (s,t)-vertex connectivity is I. Therefore, any (s,t)-CVS in G’
has at least [ vertices. Clearly, these | new vertices together with at most r + 1
vertices in T form a (s,t)-CVS of size at most r+1+1 in G’. Conversely, by the
construction of G’, any (s,¢)-CVS S of size at most r + 1 + [ must contain all
x;’s. i.e. Ngr(s) C S. This is true because Ng-(s) is a (s,t)-vertex separator.
Since S is connected and Ng:(s) is an independent set, it follows that by the
construction S\ Ng/(s) is connected. Moreover, S must contain at least one
element of Ng/(z;) for each z;. Since |S \ Ng/(s)] < r + 1, any spanning tree
on S\ Ng/(s) is a Group Steiner tree with at most r edges. As a consequence
of the above claim, it follows that (s,t)-CVS is NP-hard and it is easy to verify
that (s,t)-CVS is in NP as certificate testing can be done in polynomial time
using standard graph traversals [2]. Therefore, (s,t)-CVS is NP-complete. [
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We now show that our reduction establishes a stronger result: (s,t)-CVS is un-
likely to have §log® ¢ n-approximation algorithm, for any ¢ > 0 and for some
6 > 0, unless NP has quasi-polynomial Las Vegas algorithms.

Hardness of Approximation of (s,¢)-CVS: The Group Steiner tree prob-
lem with [ groups is at least as hard as the Set Cover problem, thus can
not be approximated to a factor o(logl), unless P = NP [4. On the hard-
ness of approximation due to [9], the following result is known: there is no
polynomial-time approximation algorithm for Group Steiner tree with approx-
imation factor 6log? “n for some & > 0 and for any ¢ > 0, unless NP has
quasi-polynomial Las Vegas algorithms. We now show that the above reduction
is an approximation-ratio preserving reduction. Let OPT, and OPT. denote
the size of any optimum solution of the Group Steiner tree problem and the
(s,t)-CVS problem, respectively. Note that OPT, = OPT, + 1 and OPT, > .
Suppose there is an (1 + a)-approximation algorithm for (s,t)-CVS, where
o < §log® “n, for some 8, ¢ > 0. Then the size of the output of the algorithm is
(1+ ) OPT. = (1+a)(OPTy+1) < (14 a)(OPT,+ OPT,) = 2(1 + o)OPT,.
This implies 2(1 4 «)-approximation algorithm for the Group Steiner tree prob-
lem, which is unlikely, unless NP has quasi-polynomial Las Vegas algorithms
[A. O

3.2 (s,t)-CVS Parameterized above the (s,t)-vertex con-
nectivity is W|[2]-hard

We consider the following parameterization which is the size of (s,t)-CVS minus
the (s,t)-vertex connectivity. Since the size of every (s,t)-CVS is at least the
(s,t)-vertex connectivity, it is natural to parameterize above the (s,t)-vertex
connectivity and its parameterized version is defined below.

(s,t)-CVS parameterized above the (s,t)-vertex connectivity:
Instance: A graph G, a non-adjacent pair (s,t) with the (s,t)-vertex con-
nectivity k and r» € ZT

Parameter: r

Question: Is there a (s, t)-vertex separator S C V(G), |S| < k+r such that
G]S] is connected?

We now show that there is no fixed-parameter tractable algorithm for (s,t)-
CVS parameterized above the (s,t)-vertex connectivity. In order to charac-
terize those problems that do not seem to admit a fixed-parameter tractable
algorithms, Downey and Fellows defined a parameterized reduction and a hi-
erarchy of intractable parameterized problem classes above FPT, the popular
classes are W1] and W[2]. We refer [I5] for details about parameterized reduc-
tions. We now present a parameterized reduction from parameterized Steiner
tree problem to (s,t)-CVS parameterized above the (s,t)-vertex connectivity.
This parameterized version of Steiner tree problem is shown to be W/[2]-hard
in [3].



JGAA, 19(1) 549-565 (2015) 563

Parameterized Steiner tree problem:

Instance: A graph G, a terminal set R C V(G), and an integer r
Parameter: r

Question: Is there a set of vertices T' C V(@) \ R such that |T'| < r and
G[RUT] is connected? T is called Steiner set (Steiner vertices).

Theorem 6 (s,t)-CVS Parameterized above the (s,t)-vertex connectivity is
W2]-hard.

Proof: Given an instance (G, R,r) of Steiner tree problem, we construct the
corresponding instance (G, s,t, k, ) of (s,t)-CVS with the (s, t)-vertex connec-
tivity k = |R| as follows: V(G’) = V(G)U{s,t} and E(G’) = E(G)U{{s,v} |v €
R} U {{t,v} | v € R}. We now show that (G, R, r) has a Steiner tree with at
most r Steiner vertices if and only if (G, (s,t),k,r) has a (s,t)-CVS of size at
most k+ 1. For only if claim, G has a Steiner tree T' containing all vertices of R
and at most 7 Steiner vertices. By our construction of G’, to disconnect s and ¢,
we must remove the set N (s) which is R, as there is an edge from each element
of N/ (s) tot. Since G has a Steiner tree with at most r Steiner vertices, implies
that in G, it guarantees a (s,t)-CVS of size at most k + r. For if claim, G’ has
a (s,t)-CVS S with at most k + r vertices. Since the (s, t)-vertex connectivity
is k and S is a (s,t)-vertex separator, from our construction of G’ it follows
that Ng/(s) € S and k = |Ng/(s)|. This implies that G has a Steiner tree with
R = Ng/(s) as the terminal set and S\ N¢v(s) as the Steiner vertices of size at
most . Hence the claim. |[V(G")| = |[V(G)|+2 and |E(G")| < |E(G)|+ 2|V (G)|
and the construction of G’ takes O(|E(G)]). Clearly, the reduction is a param-
eter preserving parameterized reduction. Therefore, we conclude that deciding
whether a graph has a (s,t)-CVS is W[2]-hard with parameter 7. O

Concluding Remarks and Further Research: In this paper, we have in-
vestigated the complexity of minimum connected (s, t)-vertex separator ((s,t)-
CVS) on graphs of higher chordality as finding a minimum (s,t)-CVS in
chordal graphs is polynomial-time solvable. We have presented a chordality
dichotomy which says that (s,t)-CVS is NP-complete on chordality 5 graphs
and polynomial-time solvable on chordality 4 graphs. Further, we have pre-
sented a [§]-approximation algorithm on graphs with chordality ¢ > 3. We
also reported a non-approximiability result and in the parameterized-setting,
we have established that parameterizing above the (s,t)-vertex connectivity is
W2]-hard. An interesting problem for further research is to parameterize (s, t)-
CVS by the (s,t)-vertex connectivity.
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