
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 19, no. 1, pp. 549–565 (2015)
DOI: 10.7155/jgaa.00377

Connected (s, t)-Vertex Separator Parameterized
by Chordality

N. S. Narayanaswamy 1 N. Sadagopan 2

1Department of Computer Science and Engineering, Indian Institute of
Technology Madras, India

2Indian Institute of Information Technology, Design and Manufacturing,
Kancheepuram, India.

Abstract

We investigate the complexity of finding a minimum connected (s, t)-
vertex separator ((s, t)-CVS) and present an interesting chordality di-
chotomy: we show that (s, t)-CVS is NP-complete on graphs of chordal-
ity at least 5 and present a polynomial-time algorithm for (s, t)-CVS on
chordality 4 graphs. Further, we show that (s, t)-CVS is unlikely to have
δlog2−εn-approximation algorithm, for any ε > 0 and for some δ > 0, un-
less NP has quasi-polynomial Las Vegas algorithms. On the positive-side
of approximation, we present a d c

2
e-approximation algorithm for (s, t)-

CVS on graphs with chordality c ≥ 3. Finally, in the parameterized
setting, we show that (s, t)-CVS parameterized above the (s, t)-vertex
connectivity is W [2]-hard.

Submitted:
October 2012

Reviewed:
April 2013

Revised:
March 2014

Reviewed:
October 2014

Revised:
November 2014

Reviewed:
April 2015

Revised:
May 2015

Accepted:
October 2015

Final:
October 2015

Published:
November 2015

Article type:
Regular paper

Communicated by:
M. Fürer

E-mail addresses: swamy@cse.iitm.ac.in (N. S. Narayanaswamy) sadagopan@iiitdm.ac.in (N.

Sadagopan)

http://dx.doi.org/10.7155/jgaa.00377
mailto:swamy@cse.iitm.ac.in
mailto:sadagopan@iiitdm.ac.in

550 Narayanaswamy and Sadagopan Connected (s, t)-Vertex Separator

1 Introduction

The vertex or edge connectivity of a graph and the corresponding separators
are of fundamental interest in Computer Science and Graph Theory. For a
connected graph, a vertex separator is a subset of vertices whose removal dis-
connects the graph into two or more connected components and the vertex
connectivity refers to the size of a minimum vertex separator. Many kinds of
vertex separators, stable vertex separators [1], clique vertex separators [18], con-
strained vertex separators [13], and α-balanced separators [13] are of interest to
the research community.
As far as complexity results are concerned, finding a minimum vertex separator
and a clique vertex separator are polynomial-time solvable, whereas, finding a
stable vertex separator and other constrained separators reported in [13] are
NP-hard. This shows that imposing an appropriate constraint on the well-
studied vertex separator problem makes the problem NP-hard. Interestingly,
constrained vertex separators have received much attention in parameterized
complexity as well [13, 12]. In particular, Marx et al. in [13] considered
the parameterized complexity of constrained separators satisfying some hered-
itary properties, for example, clique separators and stable separators. It is
shown in [13] that the above problems have an algorithm whose running time
is f(k) · nO(1), where k is the size of a constrained separator. Algorithms of
this nature are popularly known as fixed-parameter tractable algorithms (FPT)
with parameter as the solution size [15]. Subsequently, in [14], Marx et al.
looked at the computational problem of finding a minimum (s, t)-vertex sepa-
rator ((s, t)-CVS) satisfying some non-hereditary property, like connectedness.
Interestingly, in [14] it is shown that (s, t)-CVS is in FPT.
When a computational problem is known to be NP-complete, it is natural to look
at the complexity of the same in special graph classes such as chordal graphs,
P5-free graphs, planar graphs, etc. Well known problems such as maximum
clique, maximum independent set, and minimum vertex cover have polynomial-
time algorithms restricted to chordal graphs which are NP-complete in general
graphs. Recent breakthrough due to Lokshtanov et al. [10] reveals that maxi-
mum independent set problem in P5-free graphs is polynomial time. Essentially,
classical problems which are known to be NP-complete in general graphs have
nice polynomial-time algorithms when the input is restricted to graphs with
forbidden subgraphs. Moreover, this line of research has received a significant
attention in the past as it helps to identify the gap between the NP-Hardness
and the polynomial-time solvable input instances. Having highlighted the im-
portance of special graph classes, in this paper, we investigate the complexity
of (s, t)-CVS in chordal graphs (graphs with no induced cycle of length at least
3) and its super classes. It is a well-known fact that in chordal graphs every
minimal vertex separator is a clique [7]. It is clear that (s, t)-CVS is trivially
solvable in chordal graphs. It is now natural to study (s, t)-CVS on graphs of
higher chordality. A graph is said to have chordality c (c ≥ 3), if it does not con-
tain any induced cycle of length at least c+ 1. To the best of our knowledge the
complexity of (s, t)-CVS in graphs of higher chordality (henceforth, chordality

JGAA, 19(1) 549–565 (2015) 551

c graphs) is open. With these motivations, in this paper, we focus our attention
on the computational complexity of minimum connected (s, t)-vertex separator
in chordality c graphs.

Remark: The (s, t)-CVS can also be motivated from the theory of graph mi-
nors. We observe that there is an equivalence between the computational prob-
lems of finding a minimum connected (s, t)-vertex separator and a minimum
set of edges whose contraction reduces the (s, t)-vertex connectivity to one. It
is important to note that the analogous computational problem of reducing
the (s, t)-edge connectivity to zero by a minimum number of edge deletions is
polynomial-time solvable, because this is computationally equivalent to finding
a minimum (s, t)-cut and deleting all edges in it.

Our Results: In this paper, we consider connected undirected unweighted non-
complete simple graphs. For a graph G, let (s, t) denote a fixed non-adjacent
pair of vertices in G. Throughout this paper, when we refer to edge contraction,
we do not contract edges incident on s and edges incident on t.

1. As mentioned in the introduction, on chordal graphs every minimal vertex
separator is a clique and therefore the (s, t)-CVS is immediately guar-
anteed in chordal graphs. Further, finding a minimum (s, t)-CVS in
chordal graphs is equivalent to finding a minimum vertex separator which
is polynomial-time solvable [7]. We show that deciding (s, t)-CVS is NP-
complete on graphs of chordality 5 and on chordality 4 graphs (s, t)-CVS
is polynomial-time solvable. This result is due to a very interesting struc-
tural property of minimal vertex separators in chordality 4 graphs and it
says that every minimal vertex separator S is either connected or there
exist two vertices u and v such that both u and v have a neighbour to
each connected component of S in G.

2. As far as approximation algorithms are concerned, we present two re-
sults. We first present a d c2e-approximation algorithm for (s, t)-CVS on
graphs with chordality c ≥ 3. We then establish an approximation pre-
serving polynomial-time reduction from the Group Steiner Tree [9, 6] to
(s, t)-CVS. Consequently, it follows that there is no polynomial-time ap-
proximation algorithm with approximation factor δlog2−εn for some δ > 0
and for any ε > 0, unless NP has quasi-polynomial Las Vegas algorithms.

3. Our final result is from parameterized complexity theory. As mentioned
before Marx et al. [14] have shown that (s, t)-CVS is in FPT with pa-
rameter as the size of the connected vertex separator. Since an important
lower bound for (s, t)-CVS is the (s, t)-vertex connectivity itself. It is now
natural to consider the following parameterization: the size of a (s, t)-
CVS minus the (s, t)-vertex connectivity. This type of parameterization

552 Narayanaswamy and Sadagopan Connected (s, t)-Vertex Separator

is known as the above guarantee parameterization [11, 8]. We show that
(s, t)-CVS parameterized above the (s, t)-vertex connectivity is unlikely to
be fixed-parameter tractable under the standard parameterized complex-
ity assumption, and in the terminology of parameterized hardness theory,
it is hard for the complexity class W [2] in the W -hierarchy.

Graph Preliminaries: Notation and definitions are as per [7, 16]. Let G =
(V,E) be a connected undirected unweighted simple graph where V (G) is the
set of vertices and E(G) is the set of edges. For S ⊂ V (G), G[S] denote the
graph induced on the set S and G \ S is the induced graph on the vertex
set V (G) \ S. A vertex separator S ⊂ V (G) is called a (s, t)-vertex sepa-
rator if in G \ S, s and t are in two different connected components and S
is minimal if no proper subset of it is a (s, t)-vertex separator. A minimum
(s, t)-vertex separator is a minimal (s, t)-vertex separator of least size. The
(s, t)-vertex connectivity denote the size of a minimum (s, t)-vertex separator.
A connected (s, t)-vertex separator S is a (s, t)-vertex separator such that G[S]
is connected and such a set S of least size is a minimum connected (s, t)-vertex
separator. For a minimal (s, t)-vertex separator S, let Cs and Ct denote the
connected components of G \ S such that s is in Cs and t is in Ct. We let
G · e denote the graph obtained by contracting the edge e = {u, v} in G such
that V (G · e) = V (G) \ {u, v} ∪ {zuv} and E(G · e) = {{zuv, x} | {u, x} or
{v, x} ∈ E(G)} ∪ {{x, y} | {x, y} ∈ E(G) and x 6= u, y 6= v}. A graph is said to
have chordality c, if it contains no induced cycle of length at least c + 1. i.e.,
every cycle C of length at least c + 1 in G has a chord (an edge joining a pair
of non-consecutive vertices in C).

Roadmap: In Section 2, we analyze the complexity of (s, t)-CVS on chordality
c graphs and present our dichotomy result. We then present an approximation
algorithm with approximation ratio as a function of chordality of the graph. In
Section 3, we present a classical and an approximation hardness for (s, t)-CVS.
We conclude Section 3 by presenting a parameterized hardness for the above
guarantee (s, t)-CVS.

2 Complexity of (s, t)-CVS on Chordality c graphs

The objective of this section is to look at the complexity of (s, t)-CVS with
chordality as the parameter. Towards this end, we show that (s, t)-CVS is NP-
complete on chordality 5 graphs and we present a polynomial-time algorithm
for (s, t)-CVS on chordality 4 graphs. We conclude this section with a d c2e-
approximation algorithm for (s, t)-CVS on graphs of chordality c ≥ 3. In our
reduction, we choose Steiner tree problem as the candidate problem and it is
defined as follows;

JGAA, 19(1) 549–565 (2015) 553

Steiner tree problem:
Instance: A graph G, a terminal set R ⊆ V (G), and an integer r
Question: Is there a subtree in G that contains all of R with at most r
edges.

Theorem 1 (s, t)-CVS is NP-complete on chordality 5 graphs.

Proof: (s, t)-CVS is in NP: Given an input instance (G, s, t, q) of (s, t)-
CVS, the certificate on Yes instances is a set S ⊆ V (G) which is a connected
(s, t)-vertex separator of cardinality at most q. Clearly, S can be verified in
polynomial time by standard reachability algorithms [2].
(s, t)-CVS is NP-hard: It is known from [17] that Steiner tree problem on
split graphs is NP-complete and this can be reduced in polynomial time to
(s, t)-CVS in chordality 5 graphs using the following construction. Note that
any split graph G can be seen as a graph with V (G) = V1 ∪ V2 such that
G[V1] is a clique and G[V2] is an independent set. Also, split graphs are
a subclass of chordal graphs and hence have chordality 3. We map an in-
stance (G,R, r) of Steiner tree problem on split graphs to the corresponding
instance (G′, s, t, q = r+ 1) of (s, t)-CVS as follows: V (G′) = V (G)∪ {s, t} and
E(G′) = E(G) ∪ {{s, v} | v ∈ R} ∪ {{t, v} | v ∈ R}. An example is illustrated
in Figure 1. We now show that instances created by this transformation have
chordality 5. i.e., in G′, any cycle C of length at least 6 has a chord. Clearly,
C must contain either s or t but not both. Let {s, u1, . . . , up}, p ≥ 5 denote the
ordering of vertices in C.

1

2

3

4

5

6

7

8

t

1

2

3

4

5

6

7

8

(G,R={2,5,6},r)
s

(G’,s,t,r+1)

Figure 1: Reduction: Steiner tree in Split Graphs to (s, t)-CVS in Chordality 5
graphs

Case 1: {u1, up} ⊆ V2. Since G is a split graph, {u2, up−1} ⊂ V1, and therefore,
{u2, up−1} ∈ E(G) which is a chord in C.
Case 2: u1 ∈ V2 and up ∈ V1. Clearly, u2 ∈ V1 and {u2, up} ∈ E(G), a chord
in C.
Therefore, we conclude that chordality of G′ is at most 5. We now show that
(G,R, r) has a Steiner tree with at most r edges if and only if (G′, s, t, q = r+1)

554 Narayanaswamy and Sadagopan Connected (s, t)-Vertex Separator

has a (s, t)-CVS of size at most r + 1. For only if claim, G has a Steiner tree
T containing all vertices of R and at most r edges. By our construction of G′,
to disconnect s and t, we must remove the set NG′(s) which is R, as there is an
edge from each element of NG′(s) to t. Since G has a Steiner tree T with at most
r edges, implies that T has at most r + 1 vertices. Clearly, in G′, T guarantees
a (s, t)-CVS of size at most r + 1. For if claim, G′ has a (s, t)-CVS S with at
most r+1 vertices. Note that any spanning tree on at most r+1 vertices has at
most r edges. From our construction of G′, it follows that NG′(s) ⊆ S and the
(s, t)-vertex connectivity is |NG′(s)|. This implies that G has a Steiner tree with
at most r edges containing R = NG′(s) as the terminal set. Hence the claim.
|V (G′)| = |V (G)|+2 and |E(G′)| ≤ |E(G)|+2|V (G)| and the construction of G′

takes O(|E(G)|). Hence, this is a polynomial-time reduction. As a consequence,
it follows that (s, t)-CVS in chordality 5 graphs is NP-hard. Thus, we conclude
(s, t)-CVS in chordality 5 graphs is NP-complete. �

2.1 (s, t)-CVS in Chordality 4 Graphs is Polynomial time

In this section, we present the other half of our dichotomy result which says that
(s, t)-CVS in chordality 4 graphs is polynomial-time solvable. We now present a
sequence of combinatorial results on the structure of minimal vertex separators
in chordality 4 graphs, using which we show that (s, t)-CVS in chordality 4
graphs is polynomial-time solvable.

Theorem 2 Every minimal (s, t)-vertex separator S in a chordality 4 graph G
satisfies one of the following properties:

(1) G[S] is connected.

(2) Let {X1, . . . , Xr}, r ≥ 2 denote the set of connected components in G[S]
and V (Xi) denotes the vertex set of the component Xi. In G \ S, there
exists u in Cs and there exists v in Ct such that for all 1 ≤ i ≤ r,NG(u)∩
V (Xi) 6= ∅ and NG(v)∩V (Xi) 6= ∅, where Cs and Ct denote the connected
components in G \ S containing s and t, respectively.

Proof: Our proof is by induction on n = |V (G)|. Base: |V (G)| = 3. The only
non-complete chordality 4 graph on 3 vertices is a path on 3 vertices. Clearly,
the lemma is true for the base case. Let us now assume all chordality 4 graphs
on less than n, n ≥ 4 vertices satisfy our claim. Consider a chordality 4 graph
G on n ≥ 4 vertices. Let S be a minimal (s, t)-vertex separator in G. If |S| = 1,
then S is a cut vertex w and our claim is true. Since w is a cut-vertex, w has a
neighbour u in C1 and v in C2, where Ci, i ∈ {1, 2} is a connected component
in G \ {w}. For |S| ≥ 2, we consider two cases to complete the induction. For
clarity purpose, the case analysis is considered to complete the induction.
Case 1: G[S] is not an independent set. Let e = {x, y} be an edge contained
in a connected component X of G[S]. Consider the graph G · e obtained from
G by contracting e. Clearly, |V (G · e)| = n − 1. Let S′ = (S \ {x, y}) ∪ {zxy}.
Edges incident on x or y are now incident on zxy. Observe that S′ is a minimal

JGAA, 19(1) 549–565 (2015) 555

(s, t)-vertex separator in G · e. If G[S′] is connected in G · e then it implies that
G[S] is connected in G as well. Otherwise, by the induction hypothesis, in G · e,
there exists u and v with the desired property. In particular, V (X ′) ∩NG·e(u)
and V (X ′) ∩NG·e(v) are non empty where X ′ = (X \ {x, y}) ∪ {zxy} and X is
the connected component in S containing x and y. Since X ′ is obtained from
X and {x, y} ∈ E(G), it follows that u and v are adjacent to X in G. Thus,
both u and v have the desired property in G too. A snapshot is illustrated in
Figure 2.

S

u

x

y

S

u

Zxy

Configuration of S in G Configuration of S’ in G.e

v v

Figure 2: A snapshot illustrating Case 1 of Theorem 2

Case 2: G[S] is an independent set. Now consider x, y ∈ S. Consider the
graph G ·xy obtained by contracting the non-adjacent pair {x, y}. Let S′ = (S \
{x, y})∪{zxy} and edges incident on x or y are now incident on zxy. Observe that
S′ is a minimal (s, t)-vertex separator in G ·xy. Clearly, |V (G ·xy)| = |V (G)|−1
and hence, by the induction hypothesis, in G·xy, there exists u in C ′s and v in C ′t
satisfying our claim where C ′s and C ′t are connected components in (G · xy) \S′
containing s and t, respectively. Let S = {x, y, u1, . . . , up}, p ≥ 0. We now prove
in G the existence of vertex u in Cs satisfying our claim. If {u, x}, {u, y} ∈ E(G),
then clearly u ∈ Cs is the desired vertex in G. Otherwise, without loss of
generality assume that x /∈ NG(u). Thus, S \ {x} ⊂ NG(u). Let P sxu denote a
shortest path between x and u such that the internal vertices are in Cs. Consider
the vertex w in P sxu such that {x,w} ∈ E(G). Such a w exists as S is a minimal
(s, t)-vertex separator in G. If for all z ∈ S, {w, z} ∈ E(G), then w is a desired
vertex in Cs. Otherwise, there exists z ∈ S such that {w, z} /∈ E(G). Let
P swu denote the subpath of P sxu on the vertex set {w = w1, . . . , wq = u}, q ≥ 2.
Let i, 2 ≤ i ≤ q be the smallest integer such that, {z, wi} ∈ E(G). In this
case, P sxwi

{wi, z}P txz form an induced cycle of length at least 5 in G where P sxwi

denote the subpath of P sxu on the vertex set {x,w = w1, . . . , wi}, 2 ≤ i ≤ q.
Note that {x, z} /∈ E(G) as S is an independent set. However, this contradicts
the fact that G is a graph of chordality 4. Therefore, there exists a vertex
û ∈ {u,w} in Cs with the desired property. i.e., either u or w is adjacent to
each element (connected component) in S. The proof for the existence of vertex
v in Ct is symmetric. A snapshot is illustrated in Figure 3. �

556 Narayanaswamy and Sadagopan Connected (s, t)-Vertex Separator

S

x

y

w is adjacent to all of S

u

w

u

u
v

S

x

y

w is non-adjacent to Z

w =u

w = w

u

u =z
v

1

p

1

q

1

p

S

x

y

w (smallest integer)

that is adjacent to z

w =u

w =w

u

u =z

v

1

q

1

p

wi

i

Figure 3: A snapshot illustrating Case 2 of Theorem 2

Lemma 1 Let G be a chordality 4 graph with the (s, t)-vertex connectivity k.
The size of any minimum (s, t)-CVS in G is either k or k + 1.

Proof: Note that any minimum (s, t)-CVS is of size at least k as the (s, t)-
vertex connectivity is k. If a minimum (s, t)-vertex separator itself is connected
then we get a minimum (s, t)-CVS of size k. Otherwise, every minimum (s, t)-
vertex separator S is such that G[S] is a collection of connected components.
In this case, we know from Theorem 2, there exists a vertex v in one of the
components of G \ S such that v has a neighbour in each connected component
of S. Therefore, S ∪ {v} is a minimum (s, t)-CVS of size k + 1. Hence, the
lemma is true. �

Remark: For a chordality 4 graph G with the (s, t)-vertex connectivity k, ask-
ing for a minimum (s, t)-CVS of size k is equivalent to checking whether G con-
tains a connected minimum (s, t)-vertex separator, i.e. a minimum (s, t)-vertex
separator which itself is connected. The Lemma 2 shows that this equivalence
checking is indeed polynomial-time solvable.

We now present two more combinatorial observations using which we can find
a minimum (s, t)-CVS in chordality 4 graphs in polynomial time. We make
use of the notion of contractible edges. Given a connected graph G with the
(s, t)-vertex connectivity k, an edge e ∈ E(G) is said to be contractible if
the (s, t)-vertex connectivity in G · e is at least k. Otherwise e is called non-
contractible. For a connected graph G with the (s, t)-vertex connectivity k ≥ 2,
let F = {{u, v} | {u, v} ∈ E(G) and {u, v} is contained in a minimum (s, t)-
vertex separator }. i.e., the set F is the set of all non-contractible edges in G.
We use F to denote the set of non-contractible edges in G. By G · F , we mean
the graph obtained from G by contracting all edges in F .
Computing the set F : The set F can be computed in polynomial time. Given
a graph G with the (s, t)-vertex connectivity k, for each edge e in G, compute
G · e and check whether the (s, t)-vertex connectivity is k− 1. If so, then e ∈ F .

JGAA, 19(1) 549–565 (2015) 557

Checking the vertex connectivity of a graph can be done in polynomial time
using standard Max-flow Min-cut algorithm [2].

Lemma 2 G · F contains a cut-vertex if and only if there exists a minimum
(s, t)-vertex separator S such that G[S] is connected.

Proof: If: Suppose, G ·F does not contain a cut-vertex. This implies that after
contracting edges in F , in G · F , every minimum vertex separator S induces
at least two connected components. Moreover, this is true even in G as well,
contradicting the fact that there exists a connected minimum (s, t)-vertex sep-
arator in G. Only if: Suppose every minimum (s, t)-vertex separator S is such
that G[S] has at least two connected components. Since any edge contraction
can not disconnect a graph which is already connected, any sequence of edge
contractions of edges in F results in a graph with the vertex connectivity at
least two, contradicting the fact that G · F contains a cut-vertex. Hence, the
claim follows. �

Corollary 1 For a connected graph G, deciding whether G contains a connected
minimum (s, t)-vertex separator is polynomial-time solvable.

Proof: From Lemma 2, it is clear that checking for a connected minimum
(s, t)-vertex separator in G is equivalent to checking whether G · F contains
a cut-vertex or not. This testing can be done using Depth First Search tree
computed on G · F and hence, the claim. �

Lemma 3 For a chordality 4 graph G with the (s, t)-vertex connectivity k, de-
ciding whether (s, t)-CVS is of size k or k + 1 is polynomial-time solvable.

Proof: The claim follows from Lemmas 1, 2 and Corollary 1. The decision
algorithm DECIDE-(s,t)-CVS(G,k) performs the following two tasks, namely,
contract all non-contractible edges in G and check the (s, t)-vertex connectivity
in the resulting graph G′. If κ(G′) ≥ 2, then the algorithm returns ’NO’ which
means that every minimum (s, t)-CVS is of size k + 1. Otherwise, it returns
’YES’ which means that there exists a minimum (s, t)-CVS of size k. Since the
above tasks can be done using the standard depth first search algorithm, the
decision algorithm runs in polynomial time. �

2.1.1 Finding a minimum (s, t)-CVS in Chordality 4 graphs

Using DECIDE-(s,t)-CVS(), we now show that finding a minimum (s, t)-CVS
in chordality 4 graphs is also polynomial-time solvable. The approach is to
contract all non-contractible edges (edges in the set F) and check whether the
resulting graph contains a cut-vertex or not. If there is no cut-vertex, then
any minimum (s, t)-vertex separator in G together with the vertex v in one of
the components in G \ S (due to Theorem 2) yields a (s, t)-CVS of size k + 1
in G. Otherwise, the given chordality 4 graph contains a (s, t)-CVS of size k.
In such a case, we outline a procedure using which we can find a (s, t)-CVS S
of size k. Our procedure (Algorithm 1) makes polynomial number of calls to
DECIDE-(s,t)-CVS() to output the desired set.

558 Narayanaswamy and Sadagopan Connected (s, t)-Vertex Separator

Lemma 4 Let G be a chordality 4 graph with the (s, t)-vertex connectivity k ≥
2. G has a (s, t)-CVS of size k if and only if there exists a non-contractible edge
e in G such that G · e has a (s, t)-CVS of size k − 1.

Proof: If: Let S be a (s, t)-CVS of size k in G. Since G[S] is connected, there
exists u, v ∈ S such that {u, v} ∈ E(G). Since the cardinality of S is same as
the (s, t)-vertex connectivity, the edge e = {u, v} is non-contractible. Moreover,
contracting e leaves a graph G · e in which S′ = (S \ {u, v}) ∪ {zuv} is a vertex
separator, where zuv is a new vertex created due to the contraction of {u, v}.
SinceG[S] is connected and any edge contraction does not disconnect a subgraph
which is already connected, G[S′] is a (s, t)-CVS of size k − 1. Therefore, the
necessity follows. Only if: Let S be a (s, t)-CVS of size k − 1 in G · e. Clearly,
zuv ∈ S, the vertex corresponding to the contraction of the edge {u, v}. In G,
S′ = (S \ {zuv}) ∪ {u, v} is a (s, t)-CVS of size k. Therefore, the sufficiency
follows. �

The above combinatorial observation together with DECIDE-(s,t)-CVS(), we
obtain a polynomial-time algorithm to find a minimum (s, t)-CVS of size k and
is presented in Algorithm 1.

Lemma 5 Let G be a chordality 4 graph having a (s, t)-CVS of size k. Algo-
rithm 2 outputs a k-sized (s, t)-CVS in polynomial time.

Proof: The proof of this lemma follows from the fact that Algorithm 2 is an
implementation of Lemma 4. The main purpose of Lemma 4 is to ensure that
there is no backtracking on an edge e whose contraction reduces the (s, t)-vertex
connectivity by 1. �

Algorithm 1 A Polynomial-time Algorithm to find a minimum (s, t)-CVS in
Chordality 4 graphs

1: Input: Chordality 4 graph G with the (s, t)-vertex connectivity k
2: If k = 1 then simply output any cut-vertex in G
3: if DECIDE-(s,t)-CVS(G,k) returns ’NO’ then
4: Find a minimum (s, t)-vertex separator S in G using classical vertex con-

nectivity algorithm
5: Output the set S ∪{v} where v is in one of the components of G \S such

that S ⊆ NG(v), is a minimum (s, t)-CVS
6: else
7: /*--- there exists a k-size (s, t)-CVS. To obtain one such

separator, perform the following; ---*/

8: Find-(s, t)-CVS(G,k)
9: end if

Theorem 3 Algorithm 1 outputs a minimum (s, t)-CVS in polynomial time.

JGAA, 19(1) 549–565 (2015) 559

Algorithm 2 Finding k-size (s, t)-CVS in Chordality 4 graphs Find-(s, t)-
CVS(G,k)

1: /* Return value is ’fail’ or a connected vertex separator */

2: If (DECIDE-(s,t)-CVS(G,k) returns ’NO’) return ’fail’
3: for each non-contractible edge e in G do
4: x = Find-(s, t)-CVS(G · e, k − 1)
5: if (x == ’fail’) continue
6: /* continue goes to the beginning of the for-loop */

7: return x
8: end for

Proof: From Lemma 1, we know that a minimum (s, t)-CVS is of size k or k+1.
To decide between k and k+1, it is sufficient to check for a cut-vertex in G ·F as
per Lemma 2. This step can be implemented in polynomial time, by identifying
the edges which are elements of F . Every edge whose contraction reduces the
connectivity by 1 is in F . Then G ·F is checked for the presence of a cut-vertex,
and this can be done by a DFS. If the size of the minimum (s, t)-CVS is k + 1,
then steps 4 and 5 of Algorithm 1 outputs a (s, t)-CVS of size k+1 in polynomial
time, by finding a minimum (s, t)-vertex separator. If the minimum (s, t)-CVS
is of size k, then Algorithm 2 returns a minimum connected (s, t)-CVS. Overall,
a minimum (s, t)-CVS can be obtained in polynomial time. �

2.2 (d c
2
e)-Approximation for (s, t)-CVS on Graphs with

Chordality c

Lemma 6 Let G be a graph of chordality c ≥ 3. For each minimal vertex
separator S, for each u, v ∈ S such that {u, v} /∈ E(G), there exists a path of
length at most d c2e whose internal vertices are in Cs or Ct, where Cs and Ct
are components in G \ S containing s and t, respectively.

Proof: Suppose for some non-adjacent pair {u, v} ⊆ S, both P 1
uv and P 2

uv are of
length more than d l2e, where P 1

uv and P 2
uv are shortest paths from u to v whose

internal vertices are in Cs and Ct, respectively. Now, there is an induced cycle
C containing u and v such that |C| > d l2e + d l2e = l. However, this contradicts
the fact that G is of chordality l. �

Let OPT denote the size of any minimum (s, t)-CVS on chordality c graphs.
Clearly, OPT ≥ k, where k is the (s, t)-vertex connectivity. The description of
approximation algorithm ALG is as follows:

Theorem 4 Algorithm 3 outputs (s, t)-CVS in polynomial time with approxi-
mation ratio d c2e.

Proof: Observe that S′ is a (s, t)-CVS in G. The upper bound on the size of S′

output by ALG is: |S′| ≤ k+(k−1)(d c2e−1). Therefore, approximation ratio β is

560 Narayanaswamy and Sadagopan Connected (s, t)-Vertex Separator

Algorithm 3 Approximation Algorithm for (s, t)-CVS on Chordality c Graphs

1: Compute a minimum (s, t)-vertex separator S in G. S = {v1, . . . , vk} be an
arbitrary ordering of vertices in S

2: for each non-adjacent pair {vi, vi+1} ⊆ S, 1 ≤ i ≤ k − 1, do
3: find a path Pvivi+1

of length at most d c2e whose internal vertices are in
Cs or Ct. Such a path exists as per Lemma 6

4: S′ =
⋃

1≤i≤k−1

V (Pvivi+1) ∪ S

5: end for

β ≤ k+(k−1)(d c2 e−1)
k = 1 + (1− 1

k)(d c2e − 1) < 1 + (d c2e − 1) = d c2e

Step 1 of the Algorithm 3 incurs O(n3) time to output a minimum (s, t)-vertex
separator in G. To implement step 3, we can make use of the standard reacha-
bility algorithm like Breadth First Search (BFS) to output Pvivi+1

and this call
is made for at most O(n2) time. Therefore, the overall time-complexity of the
Algorithm 3 is (mn2), where O(m) is the time incurred for BFS subroutine. �

3 Complexity of (s, t)-CVS: Hardness Results

The purpose of this section is two fold. Although in [14] it is shown that (s, t)-
CVS is FPT, no explicit reduction is shown to establish NP-hardness result. In
this section, we first establish a classical hardness of (s, t)-CVS by presenting a
polynomial-time reduction from the Group Steiner tree to (s, t)-CVS. Moreover,
the same reduction establishes an hardness of approximation for (s, t)-CVS. We
conclude this section by showing that (s, t)-CVS parameterizing above the (s, t)-
vertex connectivity is W [2]-hard.

3.1 Classical Hardness: A Reduction from Group Steiner
tree to (s, t)-CVS

The decision version of (s, t)-CVS is given below

Instance: A graph G, a non-adjacent pair (s, t), and q ∈ Z+

Question: Is there a (s, t)-vertex separator S ⊂ V (G), |S| ≤ q and G[S] is
connected?

The Group Steiner tree problem can be stated as follows: given a connected
undirected unweighted graph G, an integer r, and a collection of sets, which we
call groups g1, g2, . . . , gl ⊆ V (G), the objective is to find a subtree T of G with
at most r edges that contains at least one vertex from each group gi. We assume
that the groups are disjoint. The Group Steiner tree problem is a generalization
of the Steiner tree problem [5] and therefore, it is NP-complete.
We transform an instance I = (G, g1, g2, . . . , gl ⊆ V (G), r) of the Group Steiner
tree to the corresponding instance I ′ = (G′, s, t, l+r+1) of (s, t)-CVS as follows:

JGAA, 19(1) 549–565 (2015) 561

V (G′) = V (G) ∪ {s, t} ∪ {xi | 1 ≤ i ≤ l}. E(G′) = E(G) ∪ {{s, xi} | 1 ≤ i ≤
l} ∪ {{t, xi} | 1 ≤ i ≤ l} ∪ {{xi, y} | y ∈ gi and 1 ≤ i ≤ l}. An example is
illustrated in Figure 4.

Figure 4: An instance of Group Steiner tree reduces to an instance of (s, t)-CVS

Theorem 5 (s, t)-CVS is NP-complete. Further, (s, t)-CVS is unlikely to have
δ log2−ε n-approximation algorithm, for any ε > 0 and for some δ > 0, unless
NP has quasi-polynomial Las Vegas algorithms.

Proof: To establish NP-hardness result, we prove the following claim. For I
and I ′ as defined above, G has a Group Steiner tree with at most r edges if
and only if G′ has a (s, t)-CVS of size at most r + 1 + l. We first prove the
necessity. Given that G has a Group Steiner tree T with at most r edges that
contains at least one vertex from each group gi. By the construction of G′, it
is clear that the (s, t)-vertex connectivity is l. Therefore, any (s, t)-CVS in G′

has at least l vertices. Clearly, these l new vertices together with at most r+ 1
vertices in T form a (s, t)-CVS of size at most r+1+ l in G′. Conversely, by the
construction of G′, any (s, t)-CVS S of size at most r + 1 + l must contain all
xi’s. i.e. NG′(s) ⊂ S. This is true because NG′(s) is a (s, t)-vertex separator.
Since S is connected and NG′(s) is an independent set, it follows that by the
construction S \ NG′(s) is connected. Moreover, S must contain at least one
element of NG′(xi) for each xi. Since |S \ NG′(s)| ≤ r + 1, any spanning tree
on S \NG′(s) is a Group Steiner tree with at most r edges. As a consequence
of the above claim, it follows that (s, t)-CVS is NP-hard and it is easy to verify
that (s, t)-CVS is in NP as certificate testing can be done in polynomial time
using standard graph traversals [2]. Therefore, (s, t)-CVS is NP-complete. �

562 Narayanaswamy and Sadagopan Connected (s, t)-Vertex Separator

We now show that our reduction establishes a stronger result: (s, t)-CVS is un-
likely to have δ log2−ε n-approximation algorithm, for any ε > 0 and for some
δ > 0, unless NP has quasi-polynomial Las Vegas algorithms.

Hardness of Approximation of (s, t)-CVS: The Group Steiner tree prob-
lem with l groups is at least as hard as the Set Cover problem, thus can
not be approximated to a factor o(log l), unless P = NP [4]. On the hard-
ness of approximation due to [9], the following result is known: there is no
polynomial-time approximation algorithm for Group Steiner tree with approx-
imation factor δ log2−ε n for some δ > 0 and for any ε > 0, unless NP has
quasi-polynomial Las Vegas algorithms. We now show that the above reduction
is an approximation-ratio preserving reduction. Let OPTg and OPTc denote
the size of any optimum solution of the Group Steiner tree problem and the
(s, t)-CVS problem, respectively. Note that OPTc = OPTg + l and OPTg ≥ l.
Suppose there is an (1 + α)-approximation algorithm for (s, t)-CVS, where
α ≤ δ log2−ε n, for some δ, ε > 0. Then the size of the output of the algorithm is
(1 + α)OPTc = (1 + α)(OPTg + l) ≤ (1 + α)(OPTg +OPTg) = 2(1 + α)OPTg.
This implies 2(1 +α)-approximation algorithm for the Group Steiner tree prob-
lem, which is unlikely, unless NP has quasi-polynomial Las Vegas algorithms
[9]. �

3.2 (s, t)-CVS Parameterized above the (s, t)-vertex con-
nectivity is W [2]-hard

We consider the following parameterization which is the size of (s, t)-CVS minus
the (s, t)-vertex connectivity. Since the size of every (s, t)-CVS is at least the
(s, t)-vertex connectivity, it is natural to parameterize above the (s, t)-vertex
connectivity and its parameterized version is defined below.

(s, t)-CVS parameterized above the (s, t)-vertex connectivity:
Instance: A graph G, a non-adjacent pair (s, t) with the (s, t)-vertex con-
nectivity k and r ∈ Z+

Parameter: r
Question: Is there a (s, t)-vertex separator S ⊂ V (G), |S| ≤ k+ r such that
G[S] is connected?

We now show that there is no fixed-parameter tractable algorithm for (s, t)-
CVS parameterized above the (s, t)-vertex connectivity. In order to charac-
terize those problems that do not seem to admit a fixed-parameter tractable
algorithms, Downey and Fellows defined a parameterized reduction and a hi-
erarchy of intractable parameterized problem classes above FPT, the popular
classes are W [1] and W [2]. We refer [15] for details about parameterized reduc-
tions. We now present a parameterized reduction from parameterized Steiner
tree problem to (s, t)-CVS parameterized above the (s, t)-vertex connectivity.
This parameterized version of Steiner tree problem is shown to be W [2]-hard
in [3].

JGAA, 19(1) 549–565 (2015) 563

Parameterized Steiner tree problem:
Instance: A graph G, a terminal set R ⊆ V (G), and an integer r
Parameter: r
Question: Is there a set of vertices T ⊆ V (G) \ R such that |T | ≤ r and
G[R ∪ T] is connected? T is called Steiner set (Steiner vertices).

Theorem 6 (s, t)-CVS Parameterized above the (s, t)-vertex connectivity is
W [2]-hard.

Proof: Given an instance (G,R, r) of Steiner tree problem, we construct the
corresponding instance (G′, s, t, k, r) of (s, t)-CVS with the (s, t)-vertex connec-
tivity k = |R| as follows: V (G′) = V (G)∪{s, t} and E(G′) = E(G)∪{{s, v} | v ∈
R} ∪ {{t, v} | v ∈ R}. We now show that (G,R, r) has a Steiner tree with at
most r Steiner vertices if and only if (G′, (s, t), k, r) has a (s, t)-CVS of size at
most k+ r. For only if claim, G has a Steiner tree T containing all vertices of R
and at most r Steiner vertices. By our construction of G′, to disconnect s and t,
we must remove the set NG′(s) which is R, as there is an edge from each element
of NG′(s) to t. Since G has a Steiner tree with at most r Steiner vertices, implies
that in G′, it guarantees a (s, t)-CVS of size at most k+ r. For if claim, G′ has
a (s, t)-CVS S with at most k + r vertices. Since the (s, t)-vertex connectivity
is k and S is a (s, t)-vertex separator, from our construction of G′ it follows
that NG′(s) ⊆ S and k = |NG′(s)|. This implies that G has a Steiner tree with
R = NG′(s) as the terminal set and S \NG′(s) as the Steiner vertices of size at
most r. Hence the claim. |V (G′)| = |V (G)|+ 2 and |E(G′)| ≤ |E(G)|+ 2|V (G)|
and the construction of G′ takes O(|E(G)|). Clearly, the reduction is a param-
eter preserving parameterized reduction. Therefore, we conclude that deciding
whether a graph has a (s, t)-CVS is W [2]-hard with parameter r. �

Concluding Remarks and Further Research: In this paper, we have in-
vestigated the complexity of minimum connected (s, t)-vertex separator ((s, t)-
CVS) on graphs of higher chordality as finding a minimum (s, t)-CVS in
chordal graphs is polynomial-time solvable. We have presented a chordality
dichotomy which says that (s, t)-CVS is NP-complete on chordality 5 graphs
and polynomial-time solvable on chordality 4 graphs. Further, we have pre-
sented a d c2e-approximation algorithm on graphs with chordality c ≥ 3. We
also reported a non-approximiability result and in the parameterized-setting,
we have established that parameterizing above the (s, t)-vertex connectivity is
W [2]-hard. An interesting problem for further research is to parameterize (s, t)-
CVS by the (s, t)-vertex connectivity.

Acknowledgements

The authors wish to thank all reviewers for their comments and suggestions.

564 Narayanaswamy and Sadagopan Connected (s, t)-Vertex Separator

References

[1] A. Brandstädt, F. F. Dragan, V. B. Le, and T. Szymczak. On stable
cutsets in graphs. Discrete Applied Mathematics, 105(13):39 – 50, 2000.
doi:10.1016/S0166-218X(00)00197-9.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, 2009.

[3] R. G. Downey and M. R. Fellows. Parameterized complexity. Springer,
1999.

[4] U. Feige. A threshold of ln n for approximating set cover. J. ACM,
45(4):634–652, July 1998. doi:10.1145/285055.285059.

[5] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY,
USA, 1979.

[6] N. Garg, G. Konjevod, and R. Ravi. A polylogarithmic approximation al-
gorithm for the group steiner tree problem. Journal of Algorithms, 37(1):66
– 84, 2000. doi:10.1006/jagm.2000.1096.

[7] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs, volume 57
of Annals of Discrete Mathematics. North-Holland Publishing Co., Ams-
terdam, The Netherlands, The Netherlands, 2nd edition edition, 2004.

[8] G. Gutin and A. Yeo. Constraint satisfaction problems parameterized above
or below tight bounds: A survey. In H. L. Bodlaender, R. Downey, F. V.
Fomin, and D. Marx, editors, The Multivariate Algorithmic Revolution and
Beyond, volume 7370 of Lecture Notes in Computer Science, pages 257–286.
Springer Berlin Heidelberg, 2012. doi:10.1007/978-3-642-30891-8_14.

[9] E. Halperin and R. Krauthgamer. Polylogarithmic inapproximability. In
Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Com-
puting, STOC ’03, pages 585–594, New York, NY, USA, 2003. ACM.
doi:10.1145/780542.780628.

[10] D. Lokshantov, M. Vatshelle, and Y. Villanger. Independent set in P5-
free graphs in polynomial time. In Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’14, pages 570–
581. SIAM, 2014. URL: http://dl.acm.org/citation.cfm?id=2634074.
2634117.

[11] M. Mahajan and V. Raman. Parameterizing above guaranteed values:
Maxsat and maxcut. Journal of Algorithms, 31(2):335 – 354, 1999.
doi:10.1006/jagm.1998.0996.

http://dx.doi.org/10.1016/S0166-218X(00)00197-9
http://dx.doi.org/10.1145/285055.285059
http://dx.doi.org/10.1006/jagm.2000.1096
http://dx.doi.org/10.1007/978-3-642-30891-8_14
http://dx.doi.org/10.1145/780542.780628
http://dl.acm.org/citation.cfm?id=2634074.2634117
http://dl.acm.org/citation.cfm?id=2634074.2634117
http://dx.doi.org/10.1006/jagm.1998.0996

JGAA, 19(1) 549–565 (2015) 565

[12] D. Marx. Parameterized graph separation problems. Theoretical Computer
Science, 351(3):394 – 406, 2006. Parameterized and Exact Computation-
First International Workshop on Parameterized and Exact Computation
2004. doi:10.1016/j.tcs.2005.10.007.

[13] D. Marx, B. O’Sullivan, and I. Razgon. Treewidth Reduction for Con-
strained Separation and Bipartization Problems. In J.-Y. Marion and
T. Schwentick, editors, 27th International Symposium on Theoretical As-
pects of Computer Science, volume 5 of LIPIcs, pages 561–572. Schloss
Dagstuhl, 2010. doi:10.4230/LIPIcs.STACS.2010.2485.

[14] D. Marx, B. O’sullivan, and I. Razgon. Finding small separators in linear
time via treewidth reduction. ACM Trans. Algorithms, 9(4):30:1–30:35,
Oct. 2013. doi:10.1145/2500119.

[15] R. Niedermeier. Invitation to fixed parameter algorithms, volume 31 of Ox-
ford Lecture Series in Mathematics and its Applications. Oxford University
Press, 2006.

[16] D. West. Introduction to Graph Theory. Featured Titles for Graph Theory
Series. Prentice Hall, 2001.

[17] K. White, M. Farber, and W. Pulleyblank. Steiner trees, connected
domination and strongly chordal graphs. Networks, 15(1):109–124, 1985.
doi:10.1002/net.3230150109.

[18] S. Whitesides. An algorithm for finding clique cut-sets. Information
Processing Letters, 12(1):31 – 32, 1981. doi:10.1016/0020-0190(81)

90072-7.

http://dx.doi.org/10.1016/j.tcs.2005.10.007
http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2485
http://dx.doi.org/10.1145/2500119
http://dx.doi.org/10.1002/net.3230150109
http://dx.doi.org/10.1016/0020-0190(81)90072-7
http://dx.doi.org/10.1016/0020-0190(81)90072-7

	Introduction
	Complexity of (s,t)-CVS on Chordality c graphs
	(s,t)-CVS in Chordality 4 Graphs is Polynomial time
	Finding a minimum (s,t)-CVS in Chordality 4 graphs

	("4264306 c2"5265307)-Approximation for (s,t)-CVS on Graphs with Chordality c

	Complexity of (s,t)-CVS: Hardness Results
	Classical Hardness: A Reduction from Group Steiner tree to (s,t)-CVS
	(s,t)-CVS Parameterized above the (s,t)-vertex connectivity is W[2]-hard

