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Abstract

Small-world graphs have characteristically low average distance and
thus cause force-directed methods to generate drawings that look like
hairballs. This is by design as the inherent objective of these methods is a
globally uniform edge length or, more generally, accurate distance repre-
sentation. The problem arises, for instance, with graphs of high density or
high conductance, or in the presence of high-degree vertices, all of which
tend to pull vertices together and thus result in clutter overspreading
variation in local density.

We here propose a method specifically for a class of small-world graphs
that are typical for online social networks. The method is based on a span-
ning subgraph that is sparse but connected and consists of strong ties
holding together communities. To identify these ties we propose a novel
criterion for structural embeddedness. It is based on a weighted accumula-
tion of triangles in quadrangles and can be determined efficiently. An eval-
uation on empirical and generated networks indicates that our approach
improves upon previous methods using other edge indices. Although pri-
marily designed to achieve more informative drawings, our spanning sub-
graph may also serve as a sparsifier that trims a small-world graph prior
to the application of a clustering algorithm.
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1 Introduction

Online social networks such as Facebook friendship graphs are an amalgamation
of a variety of social relations. The presence of a friendship tie might be due
to shared interests, spatial proximity, kinship, or professional relations to name
but a few. When such a multitude of relations is conflated in the same network,
any two nodes are likely to be connected via at most a few links – thus leading
to a small-world effect [35]. Visualizations of these graphs using standard layout
methods such as force-directed placement produce drawings in which variation
in local structure is hidden in a densely-looking, overlap-ridden hairball.

Hairball drawings, as for example shown in Fig. 1(a), however, are not only
the result of small-world graphs, but of any graph which exhibits a low variation
in pairwise shortest path distances. In the following we refer to graphs with this
characteristic as hairball graphs.

Various approaches to reduce the clutter in drawings of small worlds and
other hairball graphs have been proposed [21], most notably edge bundling [17,
30], edge lensing [20], modified layout algorithms [3] or representations [1, 11,
27, 43], and graph simplification [2, 29, 32, 34, 37, 42, 44]. The idea of graph
simplification is to identify a subset of edges such that only the resulting graph,
the so-called backbone, needs to be laid out. We adopt this approach and
propose a new method to trim hairball graphs.

Problem formulations in graph simplification include the preservation of
properties such as cuts [2], spectra [37, 38], connectivity [44], collapsing sub-
structures into supernodes [32], and emphasizing certain connections [29, 34].
As graph invariants such as cuts are more easily affected by noise in empirical
networks, we opt for locally defined graph simplification criteria. As a simplifica-
tion criterion we use the concept of structural embeddedness in social networks.
While the strength of a social tie is an inherent characteristic of an individual
relationship [14], embeddedness refers to the density of the graph around that
edge [8, 15].

In line with sociological ideas of Simmel [36], Satuliri et al. [34] determine the
embeddedness of an edge as the fraction of common neighbors. The Simmelian
backbone of Nick et al. [29] introduces an additional local adaptation step that
starts from an initial weight – a strength or embeddedness criterion such as
the number of triangles an edge is contained in – and then reweights each edge
by comparing the ranked neighborhoods of its two vertices. In both methods,
the backbone is obtained by finally removing all edges with weights below a
specified nodal or network-wide threshold.

These filtering techniques are related to graph partitioning techniques based
on edge weights [28]. Since we want to use them for graph drawing, a major
difference is that we actually want to maintain connectedness. Otherwise, the
layout algorithm is oblivious to edges of the original graph connecting vertices
in different components of the backbone as, for example, in Fig. 1(b). When
connected components happen to be placed far apart, these edges will run across
the drawing and produce even worse clutter.
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(a) hairball drawing, original network (b) triadic Simmelian backbone [29]

(c) triadic Simmelian backbone
with UMST

(d) quadrilateral Simmelian backbone
with UMST (our approach)

(e) Jaccard [34] with UMST
(f) Density [1] with UMST

Figure 1: Facebook friendships at California Institute of Technology (Cal-
tech36). Vertex color corresponds to dormitory (gray for missing values), but
has not been utilized by the layout algorithm. The layout in (a) is based on the
entire graph, whereas (b)-(f) use edge embeddedness, which spreads the graph
while keeping cohesive groups together. Embeddedness mapped to edge color;
backbone edges dark gray.
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We present an efficient preprocessing technique that allows to draw a certain
class of small-world social networks with standard layout algorithms that would
produce hairball layouts otherwise. Our main contributions are:

• a novel method to identify deeply embedded ties,

• the use of the union of all maximum spanning trees as a sparsifier that
maintains connectedness and avoids subtree-ordering ambivalence, and

• an evaluation on observed and generated networks.

We outline our overall method for drawing hairball graphs in the next section
and describe our edge embeddedness metric in Sect. 3. Different metrics are
evaluated in Sect. 4 and we conclude in Sect. 5.

2 Drawing Algorithm

The main challenges in drawing hairball graphs are their high density, low di-
ameter and noisy group structure. Therefore, our goal is to find a backbone of
the graph that retains deeply embedded edges and thus can be used to draw
the original graph, e.g., by a force-directed method [22] to reveal the actual
variation in cohesiveness.

Since most drawing methods cannot put vertices of different graph compo-
nents into a meaningful spatial relation, cf. Fig. 1(b), we need to maintain the
graph connectivity to retain the global context.

This leads to the following requirements on our backbone:

(i) Edges should be favored based on their structural embeddedness only.

(ii) Connectedness has to be maintained.

Two common approaches to simplify a graph G = (V,E,w) with vertex
set V , edge set E, and edge weight w : E → R≥0, are sampling [2, 37] and
thresholding [1, 29, 34]. Note that we assume that w reflects the embeddedness
of an edge and a higher value corresponds to stronger embeddedness. Although
sampling can be used for sparsification purposes, the random selection of edges
violates both of our requirements. In contrast, thresholding guarantees that
edges are favored by their weights and consequently their structural properties,
as it retains only the top k percent of edges with respect to w. Nevertheless,
neither nodal nor network wide thresholding can ensure that the backbone stays
connected.

Sparse connected subgraphs of edges not likely to be between cohesive groups
have been proposed, e.g., by van Ham and Wattenberg [42] (planar graphs)
and Tumminello et al. [41] (graph of bounded genus). A minimally connected
subgraph of edges with high weights is a maximum spanning tree (MST), and
Mantegna [24] proposed these as a backbone. Trees, however, have severe draw-
backs: firstly, they do not maintain any local variation in density and, secondly,
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Algorithm 1: Hairball Drawing Algorithm

Input: Undirected Graph G = (V,E) and sparsification ratio s ∈ [0, 1].
Output: Vertex positions P ∈ R|V |×2

1 w ← embeddedness weights of edges
2 sort edges by non-increasing weight
3 Eunion ← UMST with respect to w
4 Ethreshold ← {e ∈ E : w(e) ≥ w(ed(1−s)|E|e)}
5 P ← layout determined from spanning subgraph (V,Eunion ∪ Ethreshold)

Algorithm 2: UMST: Union of all Maximum Spanning Trees

Input: Undirected Graph G = (V,E) and edge weights w : E → R≥0.
Data: Union-Find datastructure
Output: Edges belonging to any MST

1 Eunion ← ∅
2 partition edges by weight into buckets B1, . . . , Bk

3 sort buckets by decreasing weight
4 for i← 1 to k do
5 M ← ∅
6 foreach e = (u, v) ∈ Bi do
7 if find(u) 6= find(v) then M ←M ∪ {e}
8 foreach e = (u, v) ∈M do union(u, v)
9 Eunion ← Eunion ∪M

they introduce a subtree ordering ambiguity. While the first also means that ar-
bitrary choices must be made when edges have equal embeddedness, the second
creates a degree of freedom that is almost as bad as disconnected components.

We combine thresholding (to maintain local variation) with the union of all
maximum spanning trees (UMST; to maintain connectedness). The UMST does
not only solve the problem of tie breaks but also reduces the ordering problem
by resulting in higher connectivity (Fig. 1(b)-(d)).

The complete algorithm to compute the layout of a small-world graph is
presented in Alg. 1. Note that the UMST only contributes the (heaviest) edges
necessary to connect the components that result from the thresholding process.

Kruskal’s algorithm [9] for minimum spanning trees is easily adapted to de-
termine the union of all maximum spanning trees. Since every edge of maximum
weight that has not been processed yet could be chosen next, we batch-process
them before components are merged; cf. Algorithm 2. Given that the edges are
sorted by their weights, the runtime of Alg. 2 is in O(mτ(m,n)) with τ being
the functional inverse of the Ackermann function [9], which is practically a small
constant.

The final layout emphasizes variation in local density by considering only
deeply embedded edges as expressed by the weights introduced in the next
section.
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3 Edge Embeddedness by Accumulating Triadic
Effects

Real world networks are often aggregates of different relations, which can ham-
per the detection of subgroups or clusters. Our goal is to determine deeply
embedded edges, which are likely to be inside of cohesive groups, so that we can
use them to emphasize the inherent structure. The assumption here is that an
edge linking a vertex to another vertex in the same subgroup of a network is
more embedded than an edge to a vertex outside of that group.

Satuliri et al. [34] propose to capture the embeddedness of an edge e = (u, v)
by the Jaccard coefficient over u’s and v’s neighborhood. Nick et al. [29] suggest
a more general framework, consisting of the following main steps:

1. For each edge, determine its weight. (weighting)

2. For each vertex, rank all its neighbors acc. to the edge weight. (sorting)

3. For each edge, adapt its weight based on the ranking. (reweighting)

The approach of Satuliri et al. can be seen as using a uniform edge weight for
step one and the Jaccard coefficient for the reweighting in step three. Contrary
to this, Nick et al. use the number of triangles an edge is embedded in (its
Simmelianness [10]) for step one and the maximum prefix Jaccard coefficient
for step three. The latter chooses k such that the Jaccard coefficient of the first
top k ranked neighbors of u and v is maximized. The effect of this ranking
measure is that the highly ranked neighbors have more importance attached,
since fewer common vertices are needed to get a high coefficient.

A more intuitive interpretation of this framework is that for an edge e = (u, v)
the edge weight allows us to determine the most important neighbors of u and
v. If these most important neighbors are the same, e is deeply embedded; oth-
erwise e is connecting two vertices, which are likely to be in different groups.

vu

t

s

e

Figure 2: Triangles at edge e
[29, 34] do not capture medi-
ator edges (bold), while quad-
rangles do.

We follow the main idea, but propose a different
edge weight than the number of triangles.

Consider the setting in Fig. 2. Clearly, edge
e is strongly embedded. Compared to all other
edges it closes many triangles resulting in an
increase of the group performance [6] by in-
troducing mediator effects. Similar to this, an
edge (s, t) connecting two triangles at e intro-
duces additional mediator effects on the trian-
gles, which in turn increases the importance of
e. We call these edges mediator edges on e.

Counting the number of triangles at e does
not capture the importance of mediator edges.
But since each mediator edge creates two quad-
rangles at e, cf. dashed-contour in Fig. 2, we can use the number of quadrangles
containing e to capture this mediator effect. While there can be additional
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quadrangles at e, they will be counted only once from e’s perspective, which
makes their influence rather low. Furthermore, counting the two different types
of quadrangles at e would be too time consuming and therefore we will not
distinguish between them.

edge type inter-cluster intra-cluster

auc: 0.54

0 10 20 30
# triangles per edge (absolute)
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0 2e-04 4e-04
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auc: 0.8

500 1000
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Figure 3: Density distribution for the number of triangles and quadrangles per
edge for a network from a planted partition model (500 nodes and 9 clusters).
Gray area under the curve (auc) corresponds to the error made by distinguishing
between intra-/inter-cluster edges using the corresponding feature. While nor-
malization reduces this error in general, the normalized number of quadrangles
discriminates better between the two edge types.

Using the absolute number of quadrangles poses difficulties, when the net-
work contains subgroups of different densities. Hence, we normalize this absolute
value by putting it into relation to all edges at vertex u and v.

Figure 3 shows the distribution of the number of triangles and quadrangles
per edge for a synthetic network with 500 vertices and 9 denser subgroups, gen-
erated using the planted partition model (Sect. 4). While the triangle feature
discriminates better between intra-/inter-cluster edges using the absolute value,
the quadrangle feature clearly dominates when normalized, which becomes ob-
vious by comparing the gray area under the curve.

Let q(u, v) be the number of quadrangles containing edge (u, v) ∈ E. We
define the quadrilateral edge embeddedness as

Q(u, v) =
q(u, v)√
q(u) · q(v)

,

where q(v) =
∑

w∈N(v) q(v, w), for v ∈ V , and N(v) the neighborhood of v. We
use the geometric mean over the arithmetic mean, since it takes the dependency
of two variables into stronger consideration [16].

Note that edge-metrics using quadrangles have already been proposed by
Auber et al. [1] and Radicchi et al. [33], but are different from our method as
they focus on density. For a comparison of different edge metrics we refer the
reader to Melançon and Sallaberry [26].
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Figure 4: Practical runtimes of quadrilateral Simmelian backbone (with its sub-
routines) for all Facebook100 networks show scalability of backbone extraction.
Edge reweighting is clearly the bottleneck. Using a suitable PDF viewer, a click
on the data points reveals network information.

Computation and Time Complexity

We divide the overall backbone extraction into three main steps: edge weighting,
edge reweighting, and UMST; For the practical runtime analysis, the sorting is
considered as a part of the reweighting step. The respective runtimes for the
Facebook100 networks are shown in Fig. 4.

The quadrangles of a graph G can be counted in O(mα(G)) [7], where m is
the number of edges and α(G), the arboricity of G, is the minimum number of
edge-disjoint forests necessary to cover all edges of G. While the arboricity can
be as large as

√
m, it is bounded from above by the h-index of a graph which

in turn is found to be very small in social networks [12]. An even stronger
bound for the arboricity is given by the degeneracy, which is the smallest k such
that every subgraph has a vertex of degree at most k. Figure 5 shows that the
arboricity is very small, even for large networks of the Facebook100 dataset.

Together with the normalization, the computation of the edge weights takes
O(mα(G)) time. Since the counting algorithm of Chiba and Nishizeki [7] for
quadrangles and triangles is essentially the same, we refer the reader to [31] for
an experimental evaluation on triangle listing algorithms.

Neighbors can be ranked in O(m log4(G)) time and reweighting can be
done in O(m4(G)), where 4(G) is the maximum vertex degree, resulting in an
overall runtime of O(m4(G)) for the edge reweighting step.

The overall backbone computation (with UMST) took 0.14s on a network



JGAA, 19(2) 595–618 (2015) 603

with 762 vertices and 16k edges (Caltech36) and 1.23s on a network with 4087
vertices and 180k edges (Rice31) with our Java 7 implementation and an Intel
Core i7-2600K CPU@3.40GHz. Unsurprisingely, the edge reweighting step is
also practically the bottleneck, as Fig. 4 reveals. This is due to its ∆(G) depen-
dency, which, as indicated by Fig. 6 for the Facebook100 networks, cannot be
expected to be a small constant.

Nevertheless, the approach scales to large networks and we turn to the eval-
uation of its effectiveness in the next section.
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Figure 5: Degeneracy for all Facebook100 networks gives an upper bound for
the arboricity α(G) and thus for the asymptotic runtime O(mα(G)) of the
quadrangle listing algorithm.
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Figure 6: Maximum degree ∆(G) for all Facebook100 networks. ∆(G) cannot
be expected to be a small constant.
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4 Evaluating Methods for Edge Embeddedness

In this section we introduce the datasets and graph models, from which we
generate artificial small-world graphs. Then we explain our output quality indi-
cators and the different edge embeddedness methods. For each graph and edge
embeddedness method, we iteratively increase the sparsification ratio by 10%
and compute the corresponding backbone. Layouts are computed using stress
majorization [13] initialized by PivotMDS [4] as suggested in [5]. Note that for
larger graphs, we recommend the usage of more scalable force-directed layout
methods [18, 19].

4.1 Dataset and Models

As real world samples, we use the Facebook100 dataset [40], which contains
social relations of 100 higher educational institutes in the US. The network size
varies from 762 to 41K vertices and from 16K to 1.6M edges. The dataset
is directly from Facebook, not sampled, and thus very complete in terms of
capturing the social relations according to a widely used service at that time.
Additional attributes obtained from the Facebook profiles are gender, expected
year of graduation, dormitory, etc. Due to incomplete profiles, a number of
attribute values are missing. We will use the dormitory attribute for our eval-
uation, because it has been argued to be important for the creation of social
relations in many of the networks [40].

In spite of a strong empirical association with homophilous attribute values,
no ground-truth group structure is available for Facebook networks. Therefore,
we generated artificial networks that represents the idealized version of multi-
core networks, considered in this application, using the planted partition model
[25].

Additionally, we consider single-centered core-periphery networks; a different
type of small-world graphs. The low variation in local density, compared to the
multi-core networks, and rather consistent increase of density towards the center
usually does not allow for identification of other sub groups than the core or
periphery. We used artificial core-periphery networks based on threshold graphs
[23], as well as the world trade network [39] as a real world example.

Planted Partition Model: A simple model generating random graphs with
cohesive groups that are connected into a small world is the planted partition
model (PPM) [25]. Let C = {C1, . . . , Ck} be a partition of V for a graph
G = (V,E). Then C is called a clustering of G with class c(v) ∈ C for a vertex
v ∈ V . The probability of an edge (u, v) is pin if c(u) = c(v) and pout if
c(u) 6= c(v).

We generated 50 graphs from a PPM with 500 vertices, k = 9, pin = 0.3, and
pout = 0.01. On top of that, we ran a random noise model with pin = pout = 0.1
to obfuscate the underlying group structure. The resulting graphs are very
dense, have a low diameter, and are real hairballs without any visible structure
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when laid out using force-directed methods. The presented results of our model
are averaged over these 50 samples.

Threshold Graphs: A threshold graph G = (V,E) can be defined by assign-
ing non-negative real weights xi to each vertex i ∈ V and forming an edge for
any pair of vertices (i, j) for which xi + xj > θ holds for some threshold θ.

We generated threshold graphs by assigning an uniformly distributed binary
value at random bi ∈ {0, 1} to each vertex vi ∈ V and construct G by repeatedly
adding an isolated vertex vi and connecting it with all previously added vertices
if bi = 1. The vertex set can be split into a core (bi = 1) and a periphery set
(bi = 0). We set b|V | = 1 to ensure that the resulting graph is connected and

define the core size to be 4
10 |V | =

∑
i∈V bi, see Fig. 12(c) for an example with

500 vertices. Since we do not want to have a perfect threshold graph, we only
keep each edge with a probability of 80%.

4.2 Edge Embeddedness Methods

We compare different methods which assign a weight w : E → R≥0 to each edge
e = (u, v) ∈ E depicting its embeddedness. All these methods are then extended
using our UMST approach to guarantee the connectivity, such that a layout can
be computed from the resulting graph. We use the following approaches to
assign a weight to the edges.
Random: Assigns uniform random weights, as base line.

Jaccard: Jaccard coefficient, |N(u)∩N(v)|
|N(u)∪N(v)| , as proposed by Satuliri et al. [34].

Simmelian: Triadic Simmelian backbone, as proposed by Nick et al. [29].
Quadrilateral: Our quadrilateral Simmelian backbone, which accumulates tri-
adic effects at an edge with quadrangles (Sect. 3).
Density: Metric by Auber et al. [1] accumulating densities of different sub-
groups in the local neighborhood.
Ground Truth: Knowledge of class membership in the synthetic network is
used to assign directly a low value to inter-cluster edges and a high value to
intra-cluster edges.

4.3 Quality Metrics

In contrast to the synthetic networks there is no ground truth available for the
Facebook networks. This makes it hard to evaluate outcomes of the different
methods. Nevertheless, it was found that for many of the Facebook networks,
the housing structure (dormitory attribute) is highly relevant for the underlying
formation of social relations [29, 40]. We, therefore, use the dormitory attribute
as a reference for evaluation.

Assume that we know the ground truth, meaning the class membership
c(v) of each vertex. A perfect algorithm, for example, would first remove all
inter-cluster edges before starting to remove intra-cluster edges while obeying
the required sparsification ratio. Since inter-cluster edges are removed priorly,
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this increases the ratio between intra-cluster or homophily edges and the total
number of edges.

If the edge embeddedness methods perform similar to this, the ratio of ho-
mophily edges

homophily(G) =
#homophily edges

#homophily edges + #heterophily edges

should monotonically increase, while gradually removing edges from the network
according to their weight. Edges for which the class membership (attribute) of
at least one vertex is missing are neglected.

Additionally, we would like to see how well this class membership is reflected
in the layouts. Vertex pairs of the same class should have a small Euclidean
distance, while pairs of different classes should have a large Euclidean distance.
Looking at the curve of the Euclidean distance distribution of the intra-cluster
and inter-cluster vertex pairs in Fig. 7(a), we define the layout error as the
intersection area of these two curves. The layout error can also be interpreted
as the percentage of vertex pairs, where the distinction whether they are in the
same cluster or not cannot clearly be made based on the Euclidean distance.
Since the computation of this quality metric is very time intensive, it was not
feasible to analyze all Facebook100 networks with it.
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Figure 7: Layout error of different edge embedding methods combined with
UMST for (b) a real world network and (c) synthetic networks. (a) shows the
layout error for a single point of the line chart in (b).

4.4 Results and Discussion

An interesting observation from Fig. 8 is that Jaccard and Simmelian perform
very similar for most Facebook networks. Our method (Quadrilateral) clearly
manages to distinguish between the different types of edges better than the
other methods, especially in earlier phases of the sparsification.

For all 100 Facebook networks, the difference in homophily between Sim-
melian and Quadrilateral is shown by the length of a vertical segment in Fig. 9.
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Figure 8: (b) Top 20 Facebook networks with high homophily structure in
original network. Homophily (y-axis) is plotted against the number of remaining
edges (x-axis). Overall Quadrilateral performs better than the others.
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Figure 9: Dormitory-homophily of different backbones, with sparsification ratio
70%, (y-axis) compared to the homophily in the original network (x-axis) for all
Facebook100 networks. Points above/below the dashed line indicate homophily
increase/decrease respective the original network. Simmelian and Quadrilateral
homophily values for corresponding networks have been connected by colored
segments comparing their performance.

While both approaches increase the percentage of homophily edges (all seg-
ments above the diagonal dashed line), Quadrilateral clearly performs better,
especially for networks with a higher percentage of homophily edges.

Although the homophily of Jaccard and Quadrilateral is nearly the same for
the last but one step of the Caltech36 network (Fig. 8(b)), the Quadrilateral
embedding creates the superior layout, as can be seen by the lower layout error
in Fig. 7(b) or the drawings in Fig. 1(e) and 1(d). Furthermore, for the synthetic
networks (PPM), Quadrilateral comes very close to the ground truth (Fig. 7(c)).

Figure 10 shows the layout error for four Facebook networks and the three
best performing edge metrics (according to homophily). The layout clearly
improves for the Rice and Smith network, but not much for the other two. One
possible explanation for this could be that the dormitory attribute is not the
explanatory variable for the formation of social relations in these two networks.
Other attributes, as the expected year of graduation, can also explain parts of
the revealed group structue, as can be seen in Fig. 11 for the Pepperdine86
network.

One can also observe in the final drawings that Jaccard keeps the clusters
connected to a single center in multiple radial layers, while Quadrilateral ex-
pands the clusters more clearly, see Fig. 14 and Fig. 15.

The effectiveness of our layout quality metric is substantiated by the draw-
ings in Fig. 1(c) and 1(d). In the latter many clusters, as light green and light
blue, are more clearly visible. For the synthetic networks Quadrilateral comes
very close to the ground truth, in terms of layout error (Fig. 7(c)). This finding
is also supported by the drawings (Fig. 13) of a synthetic network.
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Figure 10: Layout error of Facebook networks w.r.t. the dormitory attribute.
While improvement is not clear for Pepperdine86 and Vassar85, the layout is
improved a lot for the networks with high homophily (Rice31 and Smith60).

Figure 11: Drawing of the Pepperdine86 network. The year attribute is mapped
to vertex color using interpolation (blue-white-red). Vertices with missing values
are colored gray.
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Figure 12: Threshold graph with extreme core-periphery structure (yellow-red).
Untangling the hairball stretches the core due to the skewed connectivity of the
periphery. Layout error increases due to skewed elliptic core shape.

For the threshold graph, Jaccard performs slightly better than Quadrilateral
according to homophily, cf. Fig. 12(a), yet the layout error is nearly the same,
see Fig. 12(b). The increase of the layout error for less than 50% remaining
edges can be explained by the skewed elliptic core shape (Fig. 12(e) and 12(f)),
which is a characteristic of the threshold graph structure. The backbone layout
of the world trade network can be seen in Fig. 16. The core, mostly consisting
of the countries with a large GDP, is separated from the periphery, based on
the network structure only.

However, besides separating the core from the periphery our backbone ap-
proach is of limited use for these types of networks, as the low structural varia-
tion within the core does not allow further disassembly.

5 Conclusion

We proposed a sparsification approach to draw hairball graphs as encountered
in online social networks. It is based on the idea that pairwise distances (the
“degrees of separation”) need to be increased without disrupting tightly-knit
groups. The deeply embedded edges that such groups are made of are identified
using a modified Simmelian backbone [29], and overall layout organization is
stabilized by maintaining connectedness via the union of all maximum spanning
trees.
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(a) Density [1] (b) original network
(hairball)

(c) Jaccard [34]

(d) triadic
Simmelian backbone [29]

(e) quadrilateral Simmelian backbone
(our approach)

Figure 13: Backbone layouts of the same synthetic network determined by differ-
ent edge embeddedness methods combined with UMST (20% remaining edges).
Colors encode groups – ground truth, but have not been utilized by any of the
methods.

An evaluation with empirical and generated networks showed that our novel
metric manages to reveal relations deeply embedded in latent primary groups.
In the resulting drawings such groups are separated from each other but still
positioned in their global context. On the Facebook100 dataset, average dis-
tances increased from about 3 in the original friendship networks to about 14
in the backbone, thus easing the layout task for force-directed algorithms.

Our novel quadrilateral edge embeddedness metric proved to be more effec-
tive than previous approaches with respect to improving layout quality by way
of amplifying homophily. It is thus likely to be useful as a preprocessing step
for graph clustering algorithms as well.

Although our approach separates the core from the periphery in core-peri-
phery networks, the drawings obtained for single-centered networks are rather
inappropriate. By design, our technique appears to be best suited for small-
world networks with multiple centers. While these are common, especially in
social media, it will be interesting to identify variants for core-periphery and
hierarchically clustered graphs.
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In our illustrations we focused on emphasizing overall variation in density
and how it is determined by backbone edges, yet drawing non-backbone edges
still causes clutter. While this clearly shows the complexity of the original graph,
alternative representations for these edges need to be explored and interactive
filtering techniques might be beneficial for specific tasks.

(a) Jaccard [34] with UMST

(b) our quadrilateral Simmelian backbone with UMST

Figure 14: Drawings of Rice31 from the Facebook100 dataset with 4083 vertices
and 10% of the 184K edges, using different edge embeddedness methods. Color
encodes dormitory attribute, but has not been utilized by the drawing algorithm.
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(a) Jaccard [34] with UMST

(b) our quadrilateral Simmelian backbone with UMST

Figure 15: Drawings of Smith60 from the Facebook100 dataset with 2970 ver-
tices and 10% of the 97K edges, using different edge embeddedness methods.
Color encodes dormitory attribute, but has not been utilized by the drawing
algorithm.
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Figure 16: (a) World trade network [39] with a core-periphery structure. (b) Backbone layout, which separates the core
(right) from the periphery (left) based on graph structure only. The node size and color encode the GDP and the continent,
respectively.
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C. Weaver, and K. Xu. Scalability considerations for multivariate graph
visualization. In Multivariate Network Visualization, volume 8380 of Lec-
ture Notes in Computer Science, pages 207–235. Springer, 2013. doi:

10.1007/978-3-319-06793-3_10.

[22] S. G. Kobourov. Force-directed drawing algorithms. In Handbook of Graph
Drawing and Visualization, pages 383–408. Chapman & Hall/CRC, 2013.

[23] N. V. Mahadev and U. N. Peled. Threshold graphs and related topics,
volume 56. Elsevier, 1995.

[24] R. N. Mantegna. Hierarchical structure in financial markets. The European
Physical Journal B-Condensed Matter and Complex Systems, 11(1):193–
197, 1999. doi:10.1007/s100510050929.

http://dx.doi.org/10.7155/jgaa.00273
http://dx.doi.org/10.1007/978-3-540-31843-9_25
http://dx.doi.org/10.1007/978-3-540-31843-9_25
http://dx.doi.org/10.1002/0471667196.ess0877.pub2
http://dx.doi.org/10.1111/j.1467-8659.2009.01450.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01450.x
http://dx.doi.org/10.1002/wics.1343
http://dx.doi.org/10.1002/wics.1343
http://dx.doi.org/10.1109/TVCG.2011.223
http://dx.doi.org/10.1109/TVCG.2011.223
http://dx.doi.org/10.1007/978-3-319-06793-3_10
http://dx.doi.org/10.1007/978-3-319-06793-3_10
http://dx.doi.org/10.1007/s100510050929


JGAA, 19(2) 595–618 (2015) 617

[25] F. McSherry. Spectral partitioning of random graphs. In Proceedings of the
42nd IEEE Symposium on Foundations of Computer Science, pages 529–
537. IEEE Computer Society, 2001. doi:10.1109/SFCS.2001.959929.
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