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Abstract

We present a deterministic algorithm for computing the sensitivity of a
minimum spanning tree (MST) or shortest path tree in O(m logα(m,n))
time, where α is the inverse-Ackermann function. This improves upon a
long standing bound of O(mα(m,n)) established by Tarjan. Our algo-
rithms are based on an efficient split-findmin data structure, which main-
tains a collection of sequences of weighted elements that may be split into
smaller subsequences. As far as we are aware, our split-findmin algorithm
is the first with superlinear but sub-inverse-Ackermann complexity.

We also give a reduction from MST sensitivity to the MST problem it-
self. Together with the randomized linear time MST algorithm of Karger,
Klein, and Tarjan, this gives another randomized linear time MST sensi-
tivity algorithm.

Submitted:
July 2014

Accepted:
August 2015

Final:
August 2015

Published:
August 2015

Article type:
Regular Paper

Communicated by:
S. Albers

This work is supported by NSF grants CCF-1217338 and CNS-1318294, and an Alexander

von Humboldt Postdoctoral Fellowship. An extended abstract appeared in the proceedings of

ISAAC 2005.

E-mail address: pettie@umich.edu (Seth Pettie)

http://dx.doi.org/10.7155/jgaa.00365
mailto:pettie@umich.edu


376 S. Pettie Sensitivity Analysis of Minimum Spanning Trees

1 Introduction

Split-findmin is a little known but key data structure in modern graph optimiza-
tion algorithms. It was originally designed for use in the weighted matching
and undirected all-pairs shortest path algorithms of Gabow and Tarjan [10, 13]
and has since been rediscovered as a critical component of the hierarchy-based
shortest path algorithms of Thorup [35], Hagerup [16], Pettie-Ramachandran
[29], and Pettie [26, 25]. In this paper we apply split-findmin to the problem of
performing sensitivity analysis on minimum spanning trees (MST) and short-
est path trees. The MST sensitivity analysis problem is, given a graph G and
minimum spanning tree T = mst(G), to decide how much each individual edge
weight can be perturbed without invalidating the identity T = mst(G).

A thirty year old result of Tarjan [34] shows that MST sensitivity analysis
can be solved in O(mα(m,n)) time, where m is the number of edges, n the
number of vertices, and α the inverse-Ackermann function. Furthermore, he
showed that single-source shortest path sensitivity analysis can be reduced to
MST sensitivity analysis in linear time. Tarjan’s algorithm has not seen any
unqualified improvements, though Dixon et al. [8] did present two MST sen-
sitivity algorithms, one running in expected linear time and another which is
deterministic and provably optimal, but whose complexity is only known to be
bounded by O(mα(m,n)).

In this paper we present a new MST sensitivity analysis algorithm running
in O(m logα(m,n)) time. Given the notoriously slow growth of the inverse-
Ackermann function, an improvement on the order of α/ logα is unlikely to
have a devastating real-world impact. Although our algorithm is simpler and
may very well be empirically faster than the competition, its real significance has
little to do with practical issues, nor does it have much to do with the sensitivity
problem as such. As one may observe in Figure 1, the MST sensitivity analysis
problem is related, via a tangled web of reductions, to many fundamental algo-
rithmic and data structuring problems. Among those depicted in Figure 1, the
two most important unsolved problems are set maxima and the minimum span-
ning tree problem. MST sensitivity can be expressed as a set maxima problem.
In this paper we show that MST sensitivity is reducible to both the minimum
spanning tree problem itself and the split-findmin data structure. These connec-
tions suggest that it is impossible to make progress on important optimization
problems, such as minimum spanning trees and single-source shortest paths,
without first understanding why a manifestly simpler problem like MST sensi-
tivity still eludes us. In other words, MST sensitivity should function as a test
bed problem for experimenting with new approaches to solving its higher profile
cousins.

Organization. In Section 1.1 we define all the MST related problems and data
structures mentioned in Figure 1. In Section 2 we define the split-findmin data
structure and give new algorithms for MST sensitivity analysis and single-source
shortest path sensitivity analysis. Section 2.2 gives a complexity-preserving
reduction from MST sensitivity analysis to the MST problem. In Section 3 we
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Figure 1: The incestuous family of minimum spanning tree related problems.
Here A −→ B informally means that problem A can be reduced to problem B.
The dashed arrows into split-findmin are not reductions; they are only meant to
illustrate other applications of the data structure. Some arrows are labeled with
properties of the reduction. For instance, the reduction [19] from the minimum
spanning tree problem to MST verification of non-tree edges is randomized and
the equivalence between MST sensitivity analysis for tree and non-tree edges
only holds for straight-line programs. The reduction from Online MST Verifi-
cation to Online Interval-Max incurs an O(n log n) term. The new reductions
are indicated by bold and blue arrows.

present a faster split-findmin data structure.

1.1 The Problems

Minimum Spanning Tree. Given a connected undirected graphG = (V,E,w),
find the spanning tree T ⊆ E minimizing w(T ) =

∑
e∈T w(e). (For sim-

plicity, assume throughout that edge weights are distinct.) In finding and
verifying MSTs there are two useful properties to keep in mind. The Cut
Property: the lightest edge crossing the cut (V ′, V \V ′) is in mst(G), for
any V ′ ⊂ V . The Cycle Property: the heaviest edge on any cycle is not in
mst(G). The best bound on the deterministic complexity of this problem
is O(mα(m,n)), due to Chazelle [5]. Karger et al. [19] presented a ran-
domized MST algorithm running in expected linear time (see also [30])
and Pettie and Ramachandran [28] gave a deterministic MST algorithm
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whose running time is optimal and equal to the decision tree complexity
of the MST problem, i.e., somewhere between Ω(m) and O(mα(m,n)).
See Graham and Hell [15] for a survey on the early history of the MST
problem and Mares [24] for a more recent survey.

MST Verification. We are given a graph G = (V,E,w) and a (not necessarily
minimum) spanning tree T ⊂ E. For e 6∈ T let C(e) ∪ {e} be the unique
cycle in T ∪ {e} and for e ∈ T let C−1(e) = {f 6∈ T : e ∈ C(f)}. That is,
C(e) is the path in T connecting the endpoints of e and C−1(e) is the set
of non-tree edges crossing the cut defined by T\{e}. In the non-tree-edge
half of the problem we decide for each e 6∈ T whether e ∈ mst(T ∪ {e}),
which, by the cycle property, is tantamount to deciding whether w(e) <
maxf∈C(e){w(f)}. The tree-edge version of the problem is dual: for each
e ∈ T we decide whether w(T\{e} ∪ {f}) < w(T ) for some f ∈ C−1(e).

MST/SSSP Sensitivity Analysis. We are given a weighted graph G and
tree T = mst(G). The sensitivity analysis problem is to decide how
much each individual edge weight can be altered without invalidating the
identity T = mst(G). By the cut and cycle properties it follows that we
must compute for each edge e:

sens(e) =

 maxf∈C(e){w(f)} for e 6∈ T

minf∈C−1(e){w(f)} for e ∈ T

where min ∅ = ∞. One can see that a non-tree edge e can be increased
in weight arbitrarily or reduced by less than w(e) − sens(e). Similarly,
if e is a tree-edge it can be reduced arbitrarily or increased by less than
sens(e)− w(e).

Komlós [22] demonstrated that verification and sensitivity analysis of non-
tree edges requires a linear number of comparisons. Linear time implemen-
tations of Komlós’s algorithm were provided by Dixon et al. [8], King [21],
Buchsbaum et al. [3], and Hagerup [17]. In earlier work Tarjan [32] gave
a verification/sensitivity analysis algorithm for non-tree edges that runs
in time O(mα(m,n)) and showed, furthermore, that it could be trans-
formed [34] into a verification/sensitivity analysis algorithm for tree edges
with identical complexity. (This transformation works only with straight-
line/oblivious algorithms and cannot be applied to Komlós’s algorithm.)
Tarjan [34] also gave a linear time reduction from single-source shortest
path sensitivity analysis to MST sensitivity analysis.

Online MST Verification. Given a weighted tree T we must preprocess it
in some way so as to answer online queries of the form: for e 6∈ T , is
e ∈ mst(T ∪ {e})? The query edges e are not known in advance. Pet-
tie [27] proved that any data structure answering m queries must take
Ω(mα(m,n)) time, where n is the size of the tree. This bound is tight
[4, 1].
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Soft Heap Verification. Pettie and Ramachandran [30] consider a generic
soft heap (in contrast to Chazelle’s concrete data structure [6]) to be any
data structure that supports the priority queue operations insert, meld,
delete, and findmin, without the obligation that findmin queries be an-
swered correctly. Any element that bears witness to the fact that a findmin
query was answered incorrectly is by definition corrupted. The soft heap
verification problem is, given a transcript of priority queue operations, in-
cluding their arguments and outputs, to identify the corrupted elements.
It was observed in [30] that there are mutual reductions between soft heap
verification and MST verification (non-tree edges), and consequently, that
soft heap verification can be solved in linear time.

Online Interval-Max. The problem is to preprocess a sequence (e1, . . . , en)
of elements from a total order such that for any two indices ` < r,
max`≤i≤r{ei} can be reported quickly. It is known [11, 22, 2] that an-
swering interval-max or -min queries is exactly the problem of answering
least common ancestor (LCA) queries and that with linear preprocessing
both types of queries can be handled in constant time. Katriel et al. [20]
also proved that with an additional O(n log n) time preprocessing, the
Online MST Verification problem can be reduced to Online Interval-Max.
This reduction was used in their minimum spanning tree algorithm.

Set Maxima. The input is a set system (or hypergraph) (χ,S) where χ is a
set of n weighted elements and S = {S1, . . . , Sm} is a collection of m
subsets of χ. The problem is to compute {maxS1, . . . ,maxSm} by com-
paring elements of χ. Goddard et al. [14] gave a randomized algorithm for
set maxima that performs O(min{n log(2 dm/ne), n log n}) comparisons,
which is optimal. Although the dependence on randomness can be reduced
[30], no one has yet to produce a non-trivial deterministic algorithm. The
current bound of min{n log n, n logm,

∑m
i=1 |Si|, n+m2m} comes from ap-

plying one of four trivial algorithms. A natural special case of set maxima
is local sorting, where (χ,S) is a graph, that is, |Si| = 2 for all i. All
instances of MST verification and sensitivity analysis are reducible to set
maxima. In the non-tree-edge version of these problems n and m refer
to the number of vertices and edges, respectively, and in their tree-edge
versions the roles of n and m are reversed.

Split-Findmin. The problem is to maintain a set of disjoint sequences of
weighted elements such that the minimum weight element in each sequence
is known at all times. (A precise definition appears in Section 2.) The
data structure can be updated in two ways: we can decrease the weight of
any element and can split any sequence into two contiguous subsequences.
Split-findmin could be regarded as a weighted version of split-find [23],
which is itself a time-reversed version of union-find [31]. On a pointer
machine union-find, split-find, and split-findmin all have Ω(n+mα(m,n))
lower bounds [33, 23], where m is the number of operations and n the
size of the structure. The same lower bound applies to union-find [9] in
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the cell-probe and RAM models. Split-find, on the other hand, admits a
trivial linear time algorithm in the RAM model; see Gabow and Tarjan for
the technique [12]. The results of this paper establish that the comparison
complexity of split-findmin is O(n + m logα(m,n)) and that on a RAM
there is a data structure with the same running time.

Decision Tree vs. Semigroup Complexity. Many of the problems we dis-
cussed can be described in terms of range searching over the semigroups (R,max)
and (R,min), where the ranges correspond to paths. In interval-max and split-
findmin the underlying space is 1-dimensional and in the non-tree-edge versions
of MST Verification/Sensitivity analysis it is a tree. Under the assumption of an
arbitrary associative semigroup the complexities of all these problems changes
slightly. Chazelle and Rosenberg [7] proved that for some instances of offline
interval-sum, with n elements and m queries, any algorithm must apply the
semigroup’s sum operator Ω(mα(m,n)) times. The same lower bound obviously
applies to sums over tree paths. Gabow’s split-findmin [10] structure actually
solves the problem for any commutative group in O((n+m)α(m,n)) time.

2 Sensitivity Analysis & Split-Findmin

The Split-Findmin structure maintains a set of sequences of weighted elements.
It supports the following operations:

init(e1, e2, . . . , en) : Initialize the sequence set S ← {(e1, e2, . . . , en)} with
κ(ei)←∞ for all i. S(ei) denotes the unique sequence in S containing ei.

split(ei) : Let S(ei) = (ej , . . . , ei−1, ei, . . . , ek).
Set S ← S \S(ei) ∪ {(ej , . . . , ei−1), (ei, . . . , ek)}.

findmin(e) : Return minf∈S(e){κ(f)}.

decreasekey(e, w) : Set κ(e)← min{κ(e), w}.

In Section 3 we give a data structure that maintains the minimum element
in each sequence at all times. Decreasekeys are executed in O(logα(m,n))
worst-case time and splits take O(m/n) amortized time.

2.1 Sensitivity Analysis in Sub-Inverse-Ackermann Time

Komlós’s algorithm [22] and its efficient implementations [8, 21, 3] compute
the sensitivity of non-tree edges in linear time. In this subsection we calculate
the sensitivity of tree edges. We create a split-findmin structure where the
initial sequence consists of a list of the vertices in some preorder, with respect
to an arbitrary root vertex. In general the sequences will correspond to single
vertices or subtrees of the MST. We maintain the invariant (through appropriate
decreasekey operations) that κ(v) corresponds to the minimum weight edge
incident to v crossing the cut (S(v), V \S(v)). If r is the root of the subtree
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corresponding to S(v) then the sensitivity of the edge (r, parent(r)) can be
calculated directly from the minimum among S(r).

Step 1. Root the spanning tree at an arbitrary vertex; the ancestor relation
is with respect to this orientation. For each non-tree edge (u, v), unless
v is an ancestor of u or the reverse, replace (u, v) with (u, lca(u, v)) and
(v, lca(u, v)), where the new edges inherit the weight of the old. If we have
introduced multiple edges between the same endpoints we discard all but
the lightest.

Step 2. init(u1, . . . , un), where ui is the vertex with pre-order number i.1 Note
that for any subtree, the pre-order numbers of vertices in that subtree form
an unbroken interval.

Step 3.

3.1 For i from 1 to n
3.2 If i > 1, sens(ui,parent(ui))← findmin(ui)
3.3 Let uc1 , . . . , uc` be the children of ui
3.4 For j from 1 to `,
3.5 split(ucj )
3.6 For all non-tree edges (uk, ui) where k > i
3.7 decreasekey(uk, w(uk, ui))

The following lemma is used to prove that correct sens-values are assigned
in Step 3.2.

Lemma 1 Let (uj , . . . , ui, . . .) be the sequence in the split-findmin structure
containing ui, after an arbitrary number of iterations of Steps 3.1–3.7. Then
this sequence contains exactly those vertices in the subtree rooted at uj and:

κ(ui) = min{w(ui, uk) : k < j and (ui, uk) ∈ E}

where min ∅ =∞. Furthermore, just before the ith iteration i = j.

Proof: By induction on the ancestry of the tree. The lemma clearly holds for
i = 1, where u1 is the root of the tree. For i > 1 the sequence containing i is, by
the induction hypothesis, (ui, uc1 , . . . , uc2 , . . . , uc` , . . .). We only need to show
that the combination of the splits in Step 3.5 and the decreasekeys in Step 3.7
ensure that the induction hypothesis holds for iterations uc1 , uc2 , uc3 , . . . , uc`
as well. After performing split(uc1), . . . , split(uc`) the sequences containing
uc1 , uc2 , . . . , uc` clearly correspond to their respective subtrees. Let ucj be any
child of ui and uk be any vertex in the subtree of ucj . Before Step 3.7 we know,
by the induction hypothesis, that:

κ(uk) = min{w(uk, uν) : ν < i and (uk, uν) ∈ E}
1Recall that the pre-order is the order in which vertices are first visited in some depth-first

search of the tree.
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To finish the induction we must show that after Step 3.7, κ(uk) is correct with
respect to its new sequence beginning with ucj . That is, we must consider all
edges (uk, uν) with ν < cj rather than ν < i. Since the graph is simple and all
edges connect nodes to their ancestors there can be only one edge that might
affect κ(uk), namely (uk, ui). After performing decreasekey(uk, w(uk, ui)) we
have restored the invariant with respect to uk. Since the ith iteration of Step
3.1 only performs splits and decreasekeys on elements in the subtree of ui, all
iterations in the interval i + 1, . . . , cj − 1 do not have any influence on ucj ’s
sequence. �

Theorem 1 The sensitivity of a minimum spanning tree or single-source short-
est path tree can be computed in O(m logα(m,n)) time, where m is the number
of edges, n the number of vertices, and α the inverse-Ackermann function.

Proof: Correctness. Clearly Step 1 at most doubles the number of edges and
does not affect the sensitivity of any MST edge. In iteration i, sens(ui,parent(ui))
is set to findmin(ui), which is, according to Lemma 1:

min
v desc. of ui

κ(v) = min
v desc. of ui

{w(v, uk) : k < i and (v, uk) ∈ E}

which is precisely the minimum weight of any edge whose fundamental cycle
includes (ui,parent(ui)).
Running time. Step 1 requires that we compute the least common ancestor for
every pair (u, v) ∈ E. This takes linear time [18, 2, 3]. Step 2 computes a
pre-order numbering in O(n) time. After Step 1 the number of non-tree edges
is at most 2(m− n+ 1). In Step 3 each non-tree edge induces one decreasekey
and each tree vertex induces one findmin and one split. By Theorem 2 the total
cost of all split-findmin operations is O(m logα(m,n)). �

2.2 Sensitivity Analysis via Minimum Spanning Trees

In this section we give a reduction from MST sensitivity analysis to the MST
problem itself. By plugging in the Pettie-Ramachandran algorithm [28] this
implies that the algorithmic & decision-tree complexities of MST sensitivity are
no more than their counterparts for the MST problem. By plugging in the
randomized MST algorithm of Karger et al. [19] we obtain an alternative to the
randomized MST sensitivity algorithm of Dixon et al. [8].

Our reduction proceeds from a simple observation. Let e ∈ T = mst(G)
be some MST edge and V0 and V1 be the connected vertex sets in T\{e}. By
definition sens(e) is the weight of the minimum weight edge crossing the cut
(V0, V1), which, by the cut property of MSTs, must be included in mst(G\T ).
To compute the sensitivity of edges in T we alternate between sparsifying and
condensing steps.

Sparsifying. To sparsify we simply compute mst(G\T ) and solve the MST
sensitivity analysis problem recursively on T ∪ mst(G\T ). This yields an in-
stance with n vertices and at most 2n− 2 edges.
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Condensing. In the condensing step we reduce the number of vertices, and
thereby increase the effective density of the graph. Let P = (v1, v2, . . . , vk−1, vk)
be a path in T satisfying the following criteria.

(i) v2, . . . , vk−1 have degree 2 in T ,

(ii) v1 has degree one (it is a leaf) or degree at least three in T .

(iii) vk has degree at least three in T (unless T is itself a single path, in which
case P = T and vk is the other leaf.)

The condensing step considers all such paths simultaneously. We focus on one
such P .

Call the vertices with degree one or two in P interior, that is, {v2, . . . , vk−1}
are interior and v1 is as well if it is a leaf. All non-tree edges can be classified
as internal, if both endpoints are in P , straddling, if one endpoint is interior
to P and the other outside of P , and external, if one endpoint is not in P and
the other is not interior to P . We eliminate each straddling edge (u, vi) by
replacing it with two edges. Without loss of generality suppose u is closer to vk
than v1. Replace (u, vi) with {(u, vk), (vk, vi)}, where the new edges have the
same weight as (u, vi). This transformation clearly does not affect the sensitivity
of tree edges. Note that if v1 is a leaf, it is only incident to internal non-tree
edges.

We compute the sensitivity of each edge in P by solving two subproblems,
one for internal edges and the other on external edges. Calculating the sensi-
tivities with respect to internal edges can be done in linear time. This is an
easy exercise. We form an instance of MST sensitivity analysis that consists of
all external edges and a contracted tree T ′, obtained as follows. If v1 is a leaf
we discard v1, . . . , vk−1. If v1 and vk both have degree at least three in T then
we replace P with a single edge (v1, vk) and discard {v2, . . . , vk−1}. The only
vertices that remain had degree at least three in T , hence |T ′| < n/2. After
both subproblems are solved sens(vi, vi+1) is the minimum of sens(vi, vi+1) in
the internal subproblem and sens(v1, vk) in the external subproblem, assuming
(v1, vk) exists in T ′.

Define T (m,n) to be the running time of this recursive MST sensitivity
analysis algorithm, where m is the number of non-tree edges and n the number of
vertices. Define mst?(m,n) to be decision-tree complexity of the MST problem
on arbitrary m-edge n-vertex graphs, which is the running time of the Pettie-
Ramachandran algorithm [28]. The sparsifying step reduces the number of
non-tree edges to n− 1 in O(mst?(m,n)) time and the condensing step reduces
the number of vertices by half, in O(m+ n) time. We have shown that

T (m,n) = O(mst?(m,n)) +O(m+ n) + T (n− 1, (n− 1)/2).

The mst?(m,n) function is unknown, of course, but it is simple to prove
T (m,n) = O(mst?(m,n)) given the inequalities mst?(m,n) = Ω(m) and
mst?(m′, n′) < mst?(m,n)/2 for m′ < m/2 and n′ < n/2. See Pettie and
Ramachandran [28] for proofs of these and other properties of mst?(m,n).
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3 A Faster Split-Findmin Structure

In this section we present a relatively simple split-findmin data structure that
runs in O(n + m logα(m,n)) time, where n is the length of the initial se-
quence and m the number of operations. Our structure borrows many ideas
from Gabow’s [10] original split-findmin data structure, whose execution time
is O((n+m)α(m,n)) time.

The analysis makes use of Ackermann’s function and its row and column
inverses:

A(1, j) = 2j for j ≥ 1
A(i, 1) = 2 for i > 1

A(i+ 1, j + 1) = A(i+ 1, j) ·A(i, A(i+ 1, j)) for i, j ≥ 1

λi(n) = min{j : A(i, j) > n} and α(m,n) = min{i : A(i,
⌈
2n+m
n

⌉
) > n}

The definition of split-findmin from Section 2 says that all κ-values are ini-
tially set to ∞. Here we consider a different version where κ-values are given.
The asymptotic complexity of these two versions is the same, of course. However
in this section we pay particular attention to the constant factors involved.

Lemma 2 There is a split-findmin structure such that decreasekeys require O(1)
time and 3 comparisons and other operations require O(n log n) time in total and
less than 3n log n− 2n comparisons.

Proof: The Algorithm. Each sequence is divided into a set of contiguous blocks
of elements. All block sizes are powers of two and in any given sequence the
blocks are arranged in bitonic order. From left to right the block sizes are strictly
increasing then strictly decreasing, where the two largest blocks may have the
same size. We maintain that each block keeps a pointer to its minimum weight
constituent element. Similarly, each sequence keeps a pointer to its minimum
weight element. Executing a findmin is trivial. Each decreasekey operation
updates the key of the given element, the min-pointer of its block, and the min-
pointer of its sequence. Suppose we need to execute a split before element ei,
which lies in block b. Unless ei is the first element of b (an easy case) we destroy b
and replace it with a set of smaller blocks. Let b = (ej , . . . , ei−1, ei, . . . , ek). We
scan (ej , . . . , ei−1) from left to right, dividing it into at most log(k − j) blocks
of decreasing size. Similarly, we scan (ei, . . . , ek) from right to left, dividing
it into smaller blocks. One can easily see that this procedure preserves the
bitonic order of blocks in each sequence. To finish we update the min-pointers
in each new block and new sequence. Since one of the new sequences inherits
the minimum element from the old sequence we need only examine the other.

Analysis. It is clear that findmin and decreasekey require zero compar-
isons and at most three comparisons, respectively, and that both require O(1)
time. Over the life of the data structure each element belongs to at most
dlog(n+ 1)e different blocks. Initializing all blocks takes O(n log n) time and
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∑blognc
i=0

⌊
n
2i

⌋
(2i−1) ≤ n blog nc−n+1 comparisons. It follows from the bitonic

order of the blocks that each sequence is made up of at most 2 blog nc blocks;
thus, updating the min-pointers of sequences takes at most 2n blog nc − n com-
parisons in total. �

Note that the algorithm proposed in Lemma 2 is already optimal when the
number of decreasekeys is Ω(n log n). Lemma 3 shows that any split-findmin
solver can be systematically transformed into another with substantially cheaper
splits and incrementally more expensive decreasekeys. This is the same type of
recursion used in [10].

Lemma 3 If there is a split-findmin structure that requires O(i) time and 2i+1
comparisons per decreasekey, and O(inλi(n)) time and 3inλi(n) comparisons for
all other operations, then there is also a split-findmin structure with parameters
O(i+ 1), 2i+ 3, O((i+ 1)nλi+1(n)), and 3(i+ 1)nλi+1(n).

Proof: Let SFi and SFi+1 be the assumed and derived data structures. At any
moment in its execution SFi+1 treats each sequence of length n′ as the concate-
nation of at most 2(λi+1(n′) − 1) plateaus and at most 2 singleton elements,
where a level j plateau is partitioned into less than A(i+ 1, j + 1)/A(i+ 1, j) =
A(i, A(i+ 1, j)) blocks of size exactly A(i+ 1, j). In each sequence the plateaus
are arranged in a bitonic order, with at most two plateaus per level. See Figure 2
for a depiction with 6 plateaus.

Figure 2: A sequence divided into six plateaus and one singleton. The number of
blocks in a level j plateau is less than A(i+1, j+1)/A(i+1, j) = A(i, A(i+1, j)).

At initialization SFi+1 scans the whole sequence, partitioning it into at most
λi+1(n) − 1 plateaus and at most one singleton. Each plateau is managed by
SFi as a separate instance of split-findmin, where elements of SFi correspond to
plateau blocks and the key of an element is the minimum among the keys of its
corresponding block. We associate with each plateau a pointer to the sequence
that contains it.

Every block and sequence keeps a pointer to its minimum element.
Answering findmin queries clearly requires no comparisons. To execute a
decreasekey(e, w) we spend one comparison updating κ(e)← min{κ(e), w} and
another updating the sequence minimum. If e is not a singleton then it is
contained in some block b. We finish by calling decreasekey(b, w), where the
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decreasekey function is supplied by SFi. If SFi makes 2i + 1 comparisons then
SFi+1 makes 2i+ 3, as promised.

Consider a split operation that divides a level j block b in plateau p. (The
splits that occur on the boundaries between blocks and plateaus are much sim-
pler.) Using the split operation given by SFi, we split p just before and after
the element corresponding to b. Let b0 and b1 be the constituent elements of b
to the left and right of the splitting point. We partition b0 and b1 into blocks
and plateaus (necessarily of levels less than j) just as in the initialization pro-
cedure. Notice that to retain the bitonic order of plateaus we scan b0 from
left to right and b1 from right to left. One of the two new sequences inherits
the minimum element from the original sequeunce. We find the minimum of
the other sequence by taking the minimum over each of its plateaus—this uses
SFi’s findmin operation—and the at most two singleton elements.

The comparisons performed in split operations can be divided into (a) those
used to find block minima, (b) those used to find sequence minima, and (c) those
performed by SFi. During the execution of the data structure each element
appears in at most λi+1(n) − 1 blocks. Thus, the number of comparisons in

(a) is
∑λi+1(n)−1
j≥1 (n − n/A(i + 1, j)), which is less than n(λi+1(n) − 1.5) since

A(i + 1, 1) = 2 for all i. For (b) the number is n(2λi+1(n) − 1) since in any
sequence there are at most 2(λi+1(n) − 1) plateaus and 2 singletons. For (c),
notice that every element corresponding to a block of size A(i+ 1, j) appears in
an instance of SFi with less than A(i + 1, j + 1)/A(i + 1, j) = A(i, A(i + 1, j))
elements. Thus the number contributed by (c) is:∑

1≤j<λi+1(n)

3inλi(A(i, A(i+ 1, j))− 1)

A(i+ 1, j)
= 3in(λi+1(n)− 1)

Summing up (a)–(c), the number of comparisons performed outside of
decreasekeys is less than 3(i+ 1)nλi+1(n). �

Theorem 2 There is a split-findmin structure that performs O(m logα(m,n))
comparisons. On a pointer machine it runs in O((m+ n)α(m,n)) time and on
a random access machine it runs in O(n + m logα(m,n)) time, where n is the
length of the original sequence and m the number of decreasekeys.

Proof: In conjunction, Lemmas 2 and 3 prove that SFα runs in O(α(m,n)n ·
λα(m,n)(n) + mα(m,n)) time, which is O((m + n)α(m,n)) since λα(m,n)(n) =
O(1 +m/n). We reduce the number of comparisons in two ways, then improve
the running time. Suppose we are performing a decreasekey on some element e.
In every SFi e is represented in at most one element and sequence. Let Ei and
Si be the element and sequence containing e in SFi, i.e., Ei and Si correspond to
a set of elements that include e. Let E0 be the block containing e in SF1. If we
assume for simplicity that none of Eα, Eα−1, . . . , E1 correspond to singletons,
then one can easily see that

{e} = Eα ⊆ Eα−1 ⊆ · · · ⊆ E1 ⊆ E0 ⊆ S1 ⊆ S2 ⊆ · · · ⊆ Sα−1 ⊆ Sα = S(e)
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and therefore that

Eα ≥ minEα−1 ≥ · · · ≥ minE1 ≥ minE0 ≥ minS1 ≥ · · · ≥ minSα = minS(e).

Thus a decreasekey on e can only affect some prefix of the the min-pointers in
Eα, . . . , E1, E0, S1, . . . , Sα. Using a binary search this prefix can be determined
and updated in O(α) time but with only dlog(2α+ 2)e comparisons. We have
reduced the number of comparisons toO(nα(m,n)+m logα(m,n)). To get rid of
the nα(m,n) term we introduce another structure SF∗i . Upon initialization SF∗i
divides the full sequence into blocks of size i. At any point each sequence consists
of a subsequence of unbroken blocks and possibly two partial blocks, one at each
end. The unbroken blocks are handled by SFi, where each is treated as a single
element. SF∗i maintains the keys of each block in sorted order. Findmins are easy
to handle, as are splits, which, in total, require O(i(n/i)λi(n/i)) = O(nλi(n))
comparisons and O(in+nλi(n)) time. The routine for decreasekeys requires O(i)
time and O(log i) comparisons. If element e lies in block b then decreasekey(e, w)
calls the SFi routine decreasekey(b, w) then updates the sorted order of block b.

The SF∗α data structure runs on a pointer machine inO((n+m)α(m,n)) time.
To speed it up we use the standard RAM technique of precomputation. The
initial sequence is divided into blocks of width log log n. SF2 handles all subse-
quences of unbroken blocks in O(nλ2(n/ log log n)/ log log n+m) = O(m)+o(n)
time, where λ2(n) ≤ log∗ n. Each individual block is handled by a precomputed
version of SF∗α. We represent the state of SF∗α on instances of size log log n with
o((log log n)2) bits, which easily fits into one machine word. (This is an easy
exercise; see [8, 3, 29].) In o(n) time we precompute the behavior of SF∗α in a
transition table. Each entry in the table corresponds to a state and contains
3 log log n precomputed decision trees: one for each operation (split, findmin,
or decreasekey) applied to each of log log n locations. In the case of findmin
the decision tree is trivial; it simply returns the location of the minimum el-
ement in the given sequence. The leaves of the decision trees for split and
decreasekey operations point back to the appropriate entry in the transition
table. Thus, on log log n-sized blocks the running time of SF∗α is asymptotic to
its comparison complexity. The overall running time of the data structure is
O(n+m logα(m,n)). �

The use of word-packing RAM techniques is undesirable but completely
unavoidable. LaPoutre [23] has proved that on a pointer machine, split-find
requires Ω(mα(m,n)) time. One can easily reduce split-find to split-findmin.
Pettie and Ramachandran [29, Appendix B] observed that the precomputation
technique could be taken a step further. Rather than encode the algorithm SF∗α
we could first perform a brute force search for the optimal split-findmin data
structure, still in o(n) time, and encode it instead. The overall running time of
this algorithm is still O(n+m logα(m,n)) but might be asymptotically faster.
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