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Abstract
Given two planar graphs that are defined on the same set of vertices,

a RAC simultaneous drawing is a drawing of the two graphs where each
graph is drawn planar, no two edges overlap, and edges of one graph can
cross edges of the other graph only at right angles. In the geometric
version of the problem, vertices are drawn as points and edges as straight-
line segments. It is known, however, that even pairs of very simple classes
of planar graphs (such as wheels and matchings) do not always admit a
geometric RAC simultaneous drawing.

In order to enlarge the class of graphs that admit RAC simultaneous
drawings, we allow edges to have bends. We prove that any pair of planar
graphs admits a RAC simultaneous drawing with at most six bends per
edge. For more restricted classes of planar graphs (e.g., matchings, paths,
cycles, outerplanar graphs, and subhamiltonian graphs), we significantly
reduce the required number of bends per edge. All our drawings use
quadratic area.
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1 Introduction

A simultaneous embedding of two planar graphs embeds each graph in a planar
way—using the same vertex positions for both embeddings. Edges of one graph
are allowed to intersect edges of the other graph. There are two versions of
the problem: In the first version, called Simultaneous Embedding with Fixed
Edges (Sefe), edges that occur in both graphs must be embedded in the same
way in both graphs (and hence, cannot be crossed by any other edge). In the
second version, simply called Simultaneous Embedding, these edges can be drawn
differently for each of the graphs. Both versions of the problem have a geometric
variant where edges must be drawn using straight-line segments.

Simultaneous embedding problems have been investigated extensively over
the last few years, starting with the work of Brass et al. [10] on simultaneous
straight-line drawing problems. Bläsius et al. [9] recently surveyed the area. For
example, it is possible to decide in linear time whether a pair of graphs admits
a Sefe or not, if the common graph is biconnected [1] or if it has a fixed planar
embedding [2]. Furthermore, Sefe can be decided in polynomial time if each
connected component of the common graph is biconnected or subcubic [31], or
if it is outerplanar with cutvertices of degree at most 3 [8].

When actually drawing these simultaneous embeddings, a natural choice is to
use straight-line segments. It is NP-hard to decide whether two planar graphs
admit a geometric simultaneous embedding [18]. This negative results holds
even if one of the input graphs is a matching [12]. In fact, only very few graphs
can be drawn in this way and some existing results require exponential area. For
instance, there exist a tree and a path which cannot be drawn simultaneously
with straight-line segments [3], and the algorithm for simultaneously drawing a
tree and a matching [12] does not provide a polynomial area bound.

A way to overcome the restrictions of straight-line drawings is to allow edges
to bend. The resulting drawings with polygonal edges are called polyline draw-
ings for short. Such drawings have been investigated by Haeupler et al. [22].
They showed that if the common graph is biconnected, then a drawing can be
found in which one input graph has no bends at all and in the other input graph
the number of bends per edge is bounded by the number of common vertices.
Erten and Kobourov [17] showed that three bends per edge and quadratic area
suffice for any pair of planar graphs (without fixed edges), and that one bend
per edge suffices for pairs of trees. Kammer [27] reduced the required number
of bends per edge to two for the general case of planar graphs. Grilli et al. [21]
proved that every Sefe embedding of two planar graphs admits a drawing with
no bends in the common edges and at most nine bends per exclusive edge. For
the case that the common graph is biconnected, they reduced the number of
bends to three per exclusive edge. Very recently, Frati et al. [20] improved upon
these Sefe results. They reduced the bend complexity for pairs of planar graphs
to 6 and for pairs of trees to 1. They also bounded the number of crossings per
edge pair; to 16 and 4, respectively. In that respect, Frati et al. also improve
upon a result of Chan et al. [13] who needed 24 crossings per edge pair. While
Chan et al. used up to 72n bends per exclusive edge, they managed to keep their
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Figure 1. (a) Two planar graphs on the same vertex set. (b) A RacSim drawing of
the two graphs with at most one bend per edge. The edge (v2, v6) is drawn differently
in the two graphs, while the edges (v3, v4) and (v2, v3) are both represented by the
same polyline in the two graphs. (c) A RacSefe drawing of the two graphs with up
to two bends per edge.

drawing on a grid of polynomial size (O(n2)×O(n2)), which is neither the case
for Frati et al. [20] nor for Grilli et al. [21]. In all these results, however, the
crossing angles can be very small. Additionally, the Sefe drawings with O(1)
bends per edge use at least exponential space.

In this paper, we suggest a new approach that overcomes the aforementioned
problems. We insist that crossings occur at right angles, thereby “taming” them.
We do this while drawing all vertices and all bends on an integer grid of size
O(n)×O(n) for any pair of planar n-vertex graphs. In a way, our results give a
measure for the geometric complexity of simultaneous embeddability for various
combinations of graph classes, some of which can be combined more easily (that
is, with fewer bends) and some not as easily (that is, with more bends).

Let G1 = (V,E1) and G2 = (V,E2) be two planar graphs defined on the same
vertex set and let n = |V |. We say that G1 and G2 admit a RAC simultaneous
drawing (or, RacSim drawing for short) if we can place the vertices on the plane
such that:

(i) each edge is drawn as a polyline,

(ii) both graphs are drawn planar,

(iii) non-common edges are either disjoint or cross each other (one or several
times) at right angles, and

(iv) common edges may be represented by the same polyline.

Note that non-common edges may not overlap. G1 and G2 admit a RAC
simultaneous drawing with fixed edges (or, RacSefe drawing for short) if they
admit a RacSim drawing with the adjusted condition (iv):

(iv’) common edges must be represented by the same polyline.

In Figure 1, we give an example of two planar graphs on the same vertex set
that admit a RacSim drawing with at most one bend per edge and a RacSefe
drawing with at most two bends per edge.
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Graph classes Number of bends Ref. Model

planar + planar 6 + 6 Thm. 1 RacSim
subhamiltonian + subhamiltonian 4 + 4 Cor. 1 RacSim
outerplanar + outerplanar 3 + 3 Thm. 2 RacSim

cycle + cycle 1 + 1 Thm. 3 RacSefe
caterpillar + cycle 1 + 1 Thm. 4 RacSefe
four matchings 1 + 1 + 1 + 1 Thm. 5 RacSim
tree + matching 1 + 0 Thm. 6 RacSefe

wheel + matching 2 + 0 Thm. 7 RacSefe
outerpath + matching 2 + 1 Thm. 8 RacSefe

Table 1. A short summary of our results

Argyriou et al. [4] introduced and studied the geometric version of the Rac-
Sim drawing problem. In particular, they proved that any pair of a cycle and a
matching admits a geometric RacSim drawing on an integer grid of quadratic
size, while there exist a wheel and a cycle that do not admit a geometric Rac-
Sim drawing. The problem that we study in this paper was left as an open
problem.

Closely related to the RacSim drawing problem is the problem of simultane-
ously drawing a (primal) embedded graph and its dual, so that the primal-dual
edge crossings form right angles. Brightwell and Scheinermann [11] proved that
this is always possible if the input graph is triconnected planar. Erten and
Kobourov [16] presented an O(n)-time algorithm that computes a simultaneous
drawing of a triconnected planar graph and its dual on an integer grid of size
O(n)×O(n), where n is the total number of vertices in the graph and its dual;
their drawings, however, can have non-right angle crossings.

Our contribution. Our main result is that any pair of planar graphs admits
a RacSim drawing with at most six bends per edge. For pairs of subhamiltonian
graphs and pairs of outerplanar graphs, we can reduce the required number of
bends per edge to four and three, respectively; see Section 2. (Recall that a
subhamiltonian graph is a subgraph of a planar Hamiltonian graph.) Then,
we turn our attention to pairs of more restricted graph classes where we can
guarantee RacSim and RacSefe drawings with one bend per edge or two
bends per edge; see Sections 3 and 4, respectively. Table 1 summarizes our
results. Note that all our algorithms run in linear time, with the exception of
the algorithm for an outerpath and a matching (see Theorem 8), which runs
in O(n log n) time. The produced drawings fit on integer grids of quadratic
size. The main approach of all our algorithms is to find linear orders on the
vertices of the two graphs and then to compute the exact coordinates of the
vertices of both graphs based on these orders. These drawings may contain
non-rectilinear segments (referred to as slanted segments, for short), but all
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crossings in our drawings appear between horizontal and vertical edge segments
and are therefore at right angle.

2 RacSim Drawings of General Graphs

In this section, we study general planar graphs and show how to efficiently
construct RacSim drawings in quadratic area, with few bends per edge. We
prove that two planar graphs on a common set of vertices admit a RacSim
drawing with six bends per edge (Theorem 1). We lower the required number of
bends per edge to 4 for pairs of subhamiltonian graphs (Corollary 1), and to 3 for
pairs of outerplanar graphs (Theorem 2). Note that the class of subhamiltonian
graphs is equal to the class of 2-page book-embeddable graphs, and the class of
outerplanar graphs is equal to the class of 1-page book-embeddable graphs [7].
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Figure 2. Drawings of two planar graphs by Kaufmann and Wiese [28].

Central to our approach is an algorithm by Kaufmann and Wiese [28] that
embeds any planar graph such that vertices are mapped to points on a horizontal
line (the so-called spine) and each edge crosses the spine at most once; see
Figure 2. If one replaces each spine crossing with a dummy vertex, then a linear
order of the vertices (both original and dummy) is obtained with the property
that every edge is either completely above or completely below the spine. In
order to determine the exact locations of the vertices of the two given graphs
in our problem, we use the linear order induced by the first graph to compute
the x-coordinates and the linear order induced by the second graph to compute
the corresponding y-coordinates. (Note that this approach has been used for
simultaneous drawing problems before [17].) Then, we draw the edges of both
graphs, so that all edges-crossings

(i) are restricted between vertical and horizontal edge-segments, that is, slanted
edge-segments are crossing-free, and

(ii) appear in the interior of the smallest axis-aligned rectangle containing all
vertices.

Theorem 1 Two planar graphs on a common set of n vertices admit a RacSim
drawing on an integer grid of size (14n − 26) × (14n − 26) with six bends per
edge. The drawing can be computed in O(n) time.
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Figure 3. Reserving additional columns between vi and vi+1.

Proof: Let G1 = (V,E1) and G2 = (V,E2) be planar graphs. For m ∈ {1, 2},
let ξm be an embedding of Gm according to the algorithm of Kaufmann and
Wiese [28]; see Figure 2. As explained before, we subdivide all edges of Gm
that cross the spine in ξm by introducing a dummy vertex at the point where
it crosses the spine. Let G′m = (V ′m, E

′
m) = (V ∪ Vm, Am ∪Bm) be the resulting

graph, where Vm is the set of dummy vertices in G′m, Am is the set of edges
that are drawn completely above the spine and Bm is the set of edges that are
drawn completely below the spine. Let ξ′m be the embedding of G′m.

Now we show how to determine the x-coordinates of the vertices in V ′1 by
assigning the vertices to the columns of a grid; the y-coordinates of the vertices
in V ′2 are determined analogously. Let n′1 be the number of vertices in V ′1 and
let v1 → v2 → · · · → vn′1 be the linear order of the vertices of V ′1 along the spine
in ξ′1. We start by placing v1. Between any two consecutive vertices vi and vi+1,
we reserve several columns for the bends of the edges incident to vi and vi+1; see
Figure 3. The columns are used (in the given order) for the following purposes:

(i) for the first bend on all edges in A2 leaving vi,

(ii) for the first vertical segment of each edge (vi, vj) ∈ E′1 with j > i,

(iii) for the last vertical segment of each edge (vk, vi+1) ∈ E′1 with k ≤ i, and

(iv) for the last bend on all edges in B2 entering vi+1.

Note that we can save some columns reserved for (ii) and (iii) because an edge
in A1 and an edge in B1 can use the same column for their bend.

With this procedure we fully specify the x-coordinates of the vertices in V ′1 ;
the y-coordinates of the vertices in V ′2 are determined analogously. Let R be the
smallest axis-aligned rectangle that contains all vertices of the common vertex
set of G′1 and G′2 (the gray rectangle in Figure 4a). Note that the y-coordinates
of the dummy vertices of V ′1 and the x-coordinates of the dummy vertices of V ′2
have not been determined by the algorithm so far. They can be set arbitrarily,
as long as the corresponding vertices are inside R.

We proceed to describe how to draw the edges of graph G′1 with at most four
bends per edge such that all edge segments of G′1 in R are either vertical or of
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Figure 4. RacSim drawings of the graphs G1 and G2 (see Figure 2) with at most six
bends per edge, generated by our algorithm. The edges that cross the spine are drawn
dashed; the dummy vertices on these edges are drawn as squares.

y-length exactly 1; see Figure 4b. The edges of graph G2 are drawn analogously
(rotated by 90◦). First, we draw the edges (vi, vj) ∈ A1 with i < j in a nested
order: When we draw the edge (vi, vj), there is no edge (vk, vl) ∈ A1 with k ≤ i
and l ≥ j that has not already been drawn. Recall that the first column to
the right and the first column to the left of every vertex is reserved for the
edges in E2, hence we assume that they are already used. We draw (vi, vj)
with at most four bends as follows. We start with a slanted segment incident
to vi that has its other endpoint in the row above vi and in the first unused
column that does not lie to the left of vi. We follow with an upward vertical
segment that leaves R. We add a horizontal segment above R; the row of this
segment is determined by the nesting in the book embedding of G′1. In the last
unused column that does not lie to the right of vj , we add a vertical segment
that ends one row above vj . We finish the edge with a slanted segment that has
its endpoint in vj . We draw the edges in B1 symmetrically, with the horizontal
segment below R.

Note that this algorithm always uses the top and the bottom port of a
vertex v if there is at least one edge incident to v in A1 and B1 respectively.
The edges incident to a dummy vertex use precisely the top and the bottom
port: Dummy vertices have exactly one incident edge in A1 and one in B1. We
create a drawing of G1 and G2 with at most 6 bends per edge by bypassing (that
is, smoothing out) the dummy vertices. This does not change the drawing.

By construction, all edge segments of E1 inside R are either vertical segments
or slanted segments of y-length 1. Symmetrically, all segments of E2 inside R are
either horizontal segments or slanted segments of x-length 1. Thus, the slanted
segments cannot intersect. All crossings inside R occur between a horizontal
and a vertical segment, and thus form right angles. Also, there are no segments
in E1 that lie to the left or to the right of R, and there are no segments in E2 that
lie above or below R. Hence, there are no crossings outside R, which guarantees
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that the constructed drawing of G1 and G2 is a RacSim drawing.
We now count the columns used by the drawing. For the leftmost and the

rightmost vertex, we reserve one additional column for its incident edges in E2;
for the remaining vertices, we reserve two such columns. For each edge in E1,
we use up to three columns: one for each endpoint of the slanted segment at
each vertex and one for the vertical segment that crosses the spine, if it exists.
Recall that at least one edge per vertex does not need a slanted segment. For
each edge in E2, we need at most one column for the vertical segment to the
side of R. Since there are at most 3n− 6 edges, we need at most

3n− 2 + 3 · (3n− 6)− n+ 3n− 6 = 14n− 26

columns. By symmetry we need the same number of rows.
The algorithm of Kaufmann and Wiese computes a drawing with at most 3

bends per edge in O(n) time. We can compute the nested order of the edges
in linear time from the embedding, as the circular order of the edges around a
vertex gives a hierarchical order on the edges that describes the nested order of
the edges. Thus, our algorithm also runs in O(n) total time. �

We can improve the result of Theorem 1 for subhamiltonian graphs, which
admit 2-page book embeddings in which no edges cross the spine [7]. Since those
edges are the only ones that need six bends, the number of bends per edge is
reduced to four. The number of columns and rows are also reduced by one per
edge. This is summarized in the following corollary. Note, however, that it is
NP-hard to decide whether a given planar graph is subhamiltonian, even for
maximal planar graphs [32]. A 2-page book embedding can be found in linear
time, if the ordering of the vertices along the spine is given [23]. Several classes
of graphs are known to be (sub)hamiltonian, for example 4-connected planar
graphs [30], planar graphs without separating triangles [26], Halin graphs [14],
planar graphs with maximum degree 3 or 4 [5, 25].

Corollary 1 Two subhamiltonian graphs on a common set of n vertices admit
a RacSim drawing on an integer grid of size (11n− 32)× (11n− 32) with four
bends per edge. The algorithm runs in O(n) time if the subhamiltonian cycles
of both graphs are given.

We use even fewer bends for a RacSim drawing of two outerplanar graphs.
This is based on a decomposition of each of the graphs into two forests. The
following lemma shows that we can do this in linear time.

Lemma 1 Every outerplanar graph can be decomposed into two forests. This
decomposition can be computed in linear time.

Proof: It follows by Nash-Williams’ formula [29] that every outerplanar graph
has arboricity 2, that is, it can be decomposed into two forests. To prove the
linear running time, we first assume biconnectivity and augment the input graph
to a maximal outerplanar graph. Now, if we add a new vertex that is incident
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to all vertices of the graph, the result is a maximal planar graph which can be
decomposed into three trees [19], so that one of them is a star incident to the
newly added vertex. Hence, the removal of this vertex yields a decomposition
into two trees. The desired decomposition into two forests follows from the re-
moval of the edges added to augment the graph to maximal outerplanar. For
an outerplanar graph that is not biconnected, we have to compute the afore-
mentioned decomposition for each of its biconnected components individually.
Since the biconnected components of a graph form a tree (the so-called BC-
tree), the structure of the overall decomposition is not affected; it still consists
of two forests. The overall decomposition can be computed in linear time since
both the decomposition of a maximal planar graph into three trees and the
computation of the biconnected components of the outerplanar input graph can
be found in linear time. �

With this lemma, we can further improve the required number of bends per
edge to three for outerplanar graphs. (Recall that all outerplanar graphs are
1-page book embeddable.) We will use the order of the vertices on the spine of
a 1-page book embedding to compute a 2-page book embedding in which every
edge uses a rectilinear port at one of its endpoints, enabling us to omit one of
its bends.

Theorem 2 Two outerplanar graphs on a common set of n vertices admit a
RacSim drawing on an integer grid of size (7n−10)×(7n−10) with three bends
per edge. The drawing can be computed in O(n) time.

Proof: Let O1 = (V,E1) and O2 = (V,E2) be the given outerplanar graphs.
We will embed O1 and O2 on two pages with one forest per page.

To do so, we first create 1-page book embeddings for O1 and for O2 using the
linear time algorithm of Heath [24]. This gives the orders of the vertices of both
graphs along the spine. It follows by Corollary 1 that, by using the algorithm
described in the proof of Theorem 1, we can create a RacSim drawing of O1

and O2 with at most four bends per edge. We will now show how to adjust the
algorithm to reduce the number of bends by one.

We decompose O1 into two forests A1 and B1 according to Lemma 1. We
will draw the edges of A1 above the spine and the edges B1 below the spine.
By rooting the trees in A1 in arbitrary vertices, we can direct each edge such
that every vertex has exactly one incoming edge. Recall that, in the drawing
produced in Theorem 1, one edge per vertex can use its top port. We adjust
the algorithm such that every directed edge (v, w) enters vertex w from its top
port. To do so, we draw the edge as follows. We start with a slanted segment of
y-length 1. We follow with a vertical segment to the top, a horizontal segment
that ends directly above w, and finish the edge with a vertical segment that
enters w in the top port. We use the same approach for the edges in B1, using
the bottom port and treat the second outerplanar graph O2 analogously.

Since every port of a vertex is only used once, the drawing has no overlaps.
We now analyze the number of columns used. For every vertex except for
the leftmost and rightmost, two additional columns are reserved for the edges
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in E2; for the remaining two vertices, we reserve a single additional column.
The edges in E1 now only need one column for the bend of the single slanted
segment. For every edge in E2, we need up to one column for the vertical
segment to the side of R. Since there are at most 2n − 4 edges, our drawing
needs 3n−2+2n−4+2n−4 = 7n−10 columns. Analogously, we can show that
the algorithm needs 7n − 10 rows. Since the decomposition can be computed
in O(n) time, our algorithm also requires O(n) time. �

3 RacSim and RacSefe Drawings with One Bend
per Edge

In this section, we study simple classes of planar graphs and show how to effi-
ciently construct RacSim and/or RacSefe drawings with one bend per edge in
quadratic area. In particular, we prove that two cycles (four matchings, resp.)
on a common set of n vertices admit a RacSefe (RacSim, resp.) drawing on
an integer grid of size 2n× 2n; see Theorem 3 (Theorem 5, resp.). If the input
to our problem is a caterpillar and a cycle, then we can compute a RacSefe
drawing with one bend per edge on an integer grid of size (2n − 1) × 2n; see
Theorem 4. For a tree and a cycle, we can construct a RacSefe drawing with
one bend per tree edge and no bends in the matching edges on an integer grid
of size n× (n− 1); see Theorem 6.

In the next proof and in a few more places throughout this paper, we use
the following common notation. For any real x, let the sign of x, sgn(x), be 0
if x = 0, 1 if x > 0, and −1 if x < 0.

Lemma 2 Two paths on a common set of n vertices admit a RacSefe drawing
on an integer grid of size 2n× 2n with one bend per edge. The drawing can be
computed in O(n) time.

Proof: Let P1 = (V,E1) and P2 = (V,E2) be the given paths. To keep the
description simple, we first assume that P1 and P2 do not share edges. Following
standard practices from the literature (see for example Brass et al. [10]), we
draw P1 x-monotone and P2 y-monotone. This ensures that the drawing of
the paths will individually be planar. We will now describe how to compute
the exact coordinates of the vertices and how to draw the edges of P1 and P2,
such that all crossings are at right angles and, more importantly, that no edge
segments overlap.

For m ∈ {1, 2} and any vertex v ∈ V , let πm(v) be the position of v in Pm.
Then, v is drawn at the point p(v) = (2π1(v) − 1, 2π2(v) − 1); see Figure 5. It
remains to determine, for each edge e = (v, v′), where to place its bend. First,
assume that e ∈ E1 and that e is directed from its left endpoint, say v, to its
right endpoint, say v′. Then we place the bend to the left of v′, and one row
above or below it depending on which direction the edge is coming from. To be
exact, we place it at p(v′)− (2, sgn(y(v′)− y(v))). Second, assume that e ∈ E2

and e is directed from its bottom endpoint, say v, to its top endpoint, say v′.
Then, we place the bend at p(v′)− (sgn(x(v′)− x(v)), 2).
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Figure 5. RacSefe drawings with one bend per edge: two paths P1 (thin solid)
and P2 (bold dashed) and two cycles C1 = P1 + (v1, v6) and C2 = P2 + (v1, v3)

The area required by the drawing is (2n−1)×(2n−1). An edge of P1 leaves
its left endpoint vertically and enters its right endpoint with a slanted segment
of x-length 1 and y-length 2. Similarly, an edge of P2 leaves its bottom endpoint
horizontally and enters its top endpoint with a slanted segment of x-length 2
and y-length 1. Hence, the slanted segments cannot be involved in crossings or
overlaps. Since P1 and P2 are x- and y-monotone, respectively, it follows that
all crossings must involve a vertical edge segment of P1 and a horizontal edge
segment of P2, which is at right angle. The runtime is clearly linear.

Finally, we show that our algorithm supports the Sefe model. Assume that
P1 = (V,E1) and P2 = (V,E2) share edges, and let e = (v, v′) be an edge that
belongs to both input paths. Our algorithm automatically places v and v′ at
consecutive x- and y-coordinates and draws e as a diagonal of x- and y-length 2
in both graphs, which cannot be involved in a crossing. �

We say that an edge uses the bottom/left/right/top port of a vertex if it
enters the vertex from the bottom/left/right/top.

Theorem 3 Two cycles on a common set of n vertices admit a RacSefe draw-
ing on an integer grid of size 2n × 2n with at most one bend per edge. The
drawing can be computed in O(n) time.

Proof: Let C1 = (V,E1) and C2 = (V,E2) be the given cycles and assume first
that C1 and C2 do not share edges. Let v ∈ V be an arbitrary vertex. We
temporarily delete one edge (v, w1) ∈ E1 from C1 and one edge (v, w2) ∈ E2

from C2 (refer to the edges (v1, v3) and (v1, v6) in Figure 5). This results into
two paths P1 = 〈v, . . . , w1〉 and P2 = 〈v, . . . , w2〉. We use the algorithm of
Lemma 2 to construct a RacSim drawing of P1 and P2 on an integer grid of
size (2n− 1)× (2n− 1). Since v is the first vertex in both paths, it is placed at
the bottom-left corner of the bounding box containing the drawing. Since w1

and w2 are the last vertices in P1 and P2, respectively, w1 is placed on the right
side, and w2 on the top of the bounding box. By construction, the bottom
port of w1 and the left port of w2 are both unoccupied. Hence, the edges
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(v, w1) and (v, w2) that form C1 and C2 can be drawn with a single bend at
points (2n − 1, 0) and (0, 2n − 1) respectively; see Figure 5. Since both edges
are completely outside of the bounding box containing the drawing, neither is
involved in crossings. The total area of the drawing gets larger by a single unit
in each dimension. The runtime bound is unaffected.

It remains to consider the case that C1 and C2 share edges. Since P1 and P2

already support the Sefe model, it suffices to consider the case that a closing
edge (v, w1) or (v, w2) is also contained in the other graph. Since the closing
edges are drawn planar, we can simply use their drawing in both graphs and
remove the corresponding edge from the path. Thus, the drawing supports the
Sefe model. �

Theorem 4 A caterpillar and a cycle on a common set of n vertices admit a
RacSefe drawing on an integer grid of size (2n − 1) × 2n with one bend per
edge. The drawing can be computed in O(n) time.

Proof: Let A = (V,EA) be the given caterpillar and C = (V,EC) the given
cycle. Similar to the previous proofs, we will first prove that A and C admit
a RacSim drawing, assuming that they do not share edges. We postpone the
case where A and C share edges for later. A caterpillar can be decomposed into
a path, called its spine, and a set of leaves connected to the path, called its
legs. Let v1, v2, . . . , vn be the vertex set of A ordered as follows (see Figure 6):
Starting from an endpoint of the spine of A, we traverse the caterpillar such that
we visit all legs incident to a spine vertex before moving on to the next spine
vertex. This order defines the x-order of the vertices in the output drawing.

As in the proof of Theorem 3, we temporarily delete an edge of C incident
to v1 (see the thin dashed edge in Figure 6) and obtain a path which we denote
by P = (V,EP). For any vertex vi ∈ V , let π(vi) be the position of vi in P.
The map π determines the y-order of the vertices in our drawing. For i ∈
{1, 2, . . . , n}, we draw vertex vi at point p(vi) = (2i− 1, 2π(vi)− 1). It remains
to determine, for each edge e = (v, v′), where to place its bend. First, assume
that e ∈ EP and that e is directed from its bottom endpoint, say v, to its top
endpoint, say v′ (see the bold dashed edges in Figure 6). Then, we place the
bend at p(v) + (sgn(x(v′) − x(v)), 2). Second, assume that e ∈ EA and e is
directed from its left endpoint, say v, to its right endpoint, say v′ (see the solid
edges in Figure 6). Then, we place the bend at (x(v′), y(v) + sgn(y(v′)− y(v)).

The approach described above ensures that P is drawn y-monotone, hence
planar. The spine of A is drawn x-monotone. The legs of a spine vertex of A
are drawn to the right of their parent spine vertex and to the left of the next
vertex along the spine. Hence, A is drawn planar as well. The slanted segments
of A have y-length 1, while the slanted segments of P have x-length 1. Thus,
they cannot be involved in crossings, which implies that all crossings form right
angles.

It remains to draw the edge e in EC \ EP . Recall that e is incident to v1,
which lies at the bottom-left corner of the bounding box containing our drawing.
Let vj be the other endpoint of e. Since π(vj) = n, vertex vj lies at the top
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Figure 6. A RacSefe drawing of a caterpillar (solid; its spine is drawn bold) and a
cycle (dashed)

of the bounding box. As the top port of v1 is not used, we can draw the first
segment of e vertical, bending at (1, 2n); see the thin dashed edge in Figure 6.

To complete the proof of this theorem, it remains to show that our algorithm
supports the Sefe model. Suppose that there is an edge e = (v, v′) that belongs
to both A and C. Our algorithm places v and v′ at consecutive y-coordinates.
Thus, the drawing of e in A consists of a slanted and a vertical segment of
y-length 1 each. This drawing of e in A is not crossed by any edge of EC , so e
can be drawn in the same way for both graphs.

Clearly, the area of the drawing is (2n− 1)× 2n, and the runtime is linear.
�

Theorem 5 Four matchings on a common set of n vertices admit a RacSim
drawing on an integer grid of size 2n× 2n with at most one bend per edge. The
drawing can be computed in O(n) time.

Proof: Let M1 = (V,E1), M2 = (V,E2), M3 = (V,E3) and M4 = (V,E4) be
the given matchings. Without loss of generality, we assume that all matchings
are perfect; otherwise, we augment them to perfect matchings. Let M1,2 =
(V,E1 ∪ E2) and M3,4 = (V,E3 ∪ E4). Since M1 and M2 are defined on the
same vertex set, M1,2 is a 2-regular graph. Thus, each connected component
of M1,2 corresponds to a cycle of even length which alternates between edges
ofM1 andM2; see Figure 7. The same holds forM3,4. We will determine the
x-coordinates of the vertices from M1,2, and the y-coordinates from M3,4.

We start by choosing an arbitrary vertex v ∈ V . Let C be the cycle ofM1,2

containing vertex v. We determine the x-coordinates of the vertices of C by
traversing it in some direction, starting from vertex v. For each vertex u in C,
let π1(u) be the discovery time of u according to this traversal, with π1(v) = 0.
We set x(u) = 2π1(u) + 1. After doing this, we determine the y-coordinates of
all vertices that lie on cycles inM3,4 that contain at least one vertex of C (that
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Figure 7. A RacSim drawing of four matchings: M1 (solid-plain), M2 (solid-bold),
M3 (dashed-plain), and M4 (dashed-bold)

is, cycles in M3,4 that contain a vertex for which the x-coordinate has been
determined). Call these cycles C1, . . . , Ck, ordered as follows. For i ∈ {1, . . . , k},
let ai be the anchor of Ci, that is, the vertex with the smallest determined
x-coordinate of all vertices in Ci. Then, x(a1) < . . . < x(ak). In what follows,
we start with the first cycle C1 of the computed order and determine the y-
coordinates of its vertices. To do so, we traverse C1 in some direction, starting
from its anchor vertex a1. For each vertex u in C1, let π2(u) be the discovery
time of u according to this traversal, with π2(a1) = 0. Then, we set y(u) =
2π2(u) + 1. We proceed analogously with the remaining cycles Ci, i = 2, . . . , k,
setting π2(ai) = maxu∈Ci−1

π2(u) + 1.

After this step, there are no vertices for which only the x-coordinate has been
determined. However, there might exist vertices where only the y-coordinate
has been determined. If this is the case, we repeat the aforementioned procedure
to determine the x-coordinates of the vertices of all cycles ofM1,2 \C that have
at least one vertex with a determined y-coordinate, but without determined
x-coordinates. If there are no vertices with only one determined coordinate left,
either all coordinates are determined, or we restart this procedure with another
arbitrary vertex that has no determined coordinates. Thus, our algorithm guar-
antees that the x- and y-coordinate of all vertices are eventually determined.

Note that for each cycle in M1,2 there is exactly one edge e = (v, v′)
with π1(v′) > π1(v)+1. We call this the closing edge. Analogously, for each cycle
in M3,4, there is exactly one closing edge e = (u, u′) with π2(u′) > π2(u) + 1.

Finally we determine, for each edge e = (v, v′), where to place its bend.
First, assume that e ∈ E1 ∪ E2 and that e is directed from its left endpoint,
say v, to its right endpoint, say v′. If e is not a closing edge, we place the
bend at (x(v′) − 2, y(v′) − sgn(y(v′) − y(v)). Otherwise, we place the bend
at (x(v′), y(v)− 1). Second, assume that e ∈ E3 ∪E4 and e is directed from its
bottom endpoint, say v, to its top endpoint, say v′. If e is not a closing edge,
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Figure 8. A RacSefe drawing of a tree (solid; rooted in r) and a matching (dashed).
For each of the three subtrees hanging off vertex s we used a different color; the subtrees
occupy disjoint x-intervals (marked below the drawing).

we place the bend at (x(v′)− sgn(x(v′)− x(v)), x(v′)− 2). Otherwise, we place
the bend at (x(v)− 1, y(v′)); see Figure 7.

Our choice of coordinates guarantees that the x-coordinates of the cycles
of M1,2 and the y-coordinates of the cycles of M3,4 form disjoint intervals.
Thus, the area below a cycle ofM1,2 and the area to the left of a cycle ofM3,4

are free from vertices. Hence, the slanted segments of the closing edges cannot
have a crossing that violates the RAC restriction. The total area required by
the drawings is 2n× 2n. The running time is linear. �

We now detail how to compute a RacSefe drawing of a rooted tree and a
matching with one bend per tree edge and no bends on matching edges. Figure 8
shows an example output of our algorithm. Our layout algorithm is inspired by
an algorithm for drawing a geometric simultaneous embedding of a tree and a
matching by Cabello et al. [12], which in turn goes back to an algorithm of Di
Giacomo et al. [15]. Cabello et al. draw edges straight (that is, no bends), but
their crossing angles are not necessarily right. We recall some of their notation
that we will then use for our purposes.

Cabello et al. draw the edges of the matching horizontally. They partition
the matching into a top group and a bottom group. Within the top group, they
place the edges from top to bottom; vice versa within the bottom group. Once
a matching edge is assigned to one of the two groups, the edge and its endpoints
are called placed.

The assignment of the edges to the groups is iterative. In each step, the
placed vertices induce an edge partition of the tree into connected components
(subtrees); each component up to and including the placed vertices is called a
rope. If a rope with three placed vertices exists, the vertex that lies on all three
paths between these placed vertices is called a splitter ; see Figure 9a. Cabello
et al. showed that placing a vertex creates at most one splitter and that placing
a splitter does not create a new one.
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(b) Vertex w has been placed at the top in the previous
step, creating a splitter v that will now be placed at the
bottom.

Figure 9. Definition and placement of a splitter

Now, we are ready to present our algorithm in detail.

Theorem 6 A tree and a matching on a common set of n vertices admit a
RacSefe drawing on an integer grid of size n× (n− 1) with one bend per tree
edge and no bends on matching edges. The drawing can be computed in O(n)
time.

Proof: We first consider the case where the input graphs do not share edges.
We root the given tree in an arbitrary leaf r, which yields a directed tree T .
We will obtain the x-coordinates of the vertices from a particular post-order
traversal of this directed tree. As a consequence, all children of a vertex are
placed to its left, and disjoint subtrees are placed in disjoint x-intervals. By
adding dummy edges, we augment the given matching to a perfect matching
if n is even, or to a near-perfect matching if n is odd. LetM be the augmented
matching. After the algorithm terminates, these dummy edges can be safely
removed. In order to compute a RacSefe drawing of T and M, we follow
an approach that is based on the one of Cabello et al. The difference is that
(a) rather than placing ropes in disjoint parallelograms, we place subtrees into
disjoint axis-parallel rectangles, and (b) the assignment of matching edges to
the two groups is much simpler.

First, we show how to compute the y-coordinates of the vertices. Each edge
of M is drawn horizontally at a unique odd y-coordinate between 1 and n− 1.
The coordinates are determined as follows. We start by putting the matching
edge containing the root of T into the top group. Within the top group, the
edges are assigned to odd rows, from top to bottom, starting from row n−2 if n
is odd, or n− 1 otherwise. In the bottom group, the edges are also assigned to
odd rows, but from bottom to top, starting from row 1. In this way, a matching
edge is always assigned to an odd row between 1 and n− 1. Thus, our drawing
needs at most n− 1 rows. In the following we show how to determine the group
into which a matching edge goes. There are two cases.

If there is no splitter, the algorithm finds an unplaced vertex that has a tree
edge to a placed vertex, and adds its matching edge to the top group. This
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creates at most one splitter since one of the placed vertices is adjacent to a
vertex that has already been placed. Hence, whenever a new matching edge is
placed, there will be at most one splitter in the graph.

Now, assume that a splitter exists. Call it v. For any subtree, we call the
unique vertex with no incoming edge its local root. Since we start by draw-
ing the root of T , every vertex lies in a rope that has its local root placed.
Let T1(v), . . . , Tk(v) be the subtrees of T hanging off v; see the left drawing
of Figure 9b. Then, v is a splitter if and only if there are two subtrees Ti(v)
and Tj(v) with at least one placed vertex, one of which has been placed in the
last step. Without loss of generality, let w ∈ Ti(v) be this vertex. If w was
added to the top group, we add v to the bottom group; otherwise, we add v to
the top group. Thus, the vertices of the subtrees Tl(v) with l 6= j will be placed
either all above or all below v; see Figure 9b.

Next, we describe how to determine the x-coordinates of the vertices. We
proceed inductively. For each non-leaf vertex, we compute an order of the
subtrees that hang off this vertex. This order determines the disjoint x-intervals
into which we place the subtrees. Let v be a vertex that is placed in an induction
step. We traverse the path from v to the root of the rope it lies on. For every
vertex u on this path, we determine the order of the subtrees of its children as
follows. Let T1(u), . . . , T`(u) be the subtrees hanging off u, assuming v ∈ T1(u).
If v is the only placed successor of vertex u, then we assign the order x(T1(u)) <
. . . < x(T`(u)) to the x-intervals of the subtrees; otherwise, an order has already
been determined. When the algorithm is done, we know the order of the subtrees
for every vertex on this path. In particular, we know the x-interval of the subtree
rooted in v. We assign the largest x-coordinate of this interval to v.

Now, we show how to draw the edges. Let (u, v) be a directed edge of T .
We draw (u, v) with a slanted segment of y-length 1 at vertex u and a vertical
segment at vertex v. The bend of edge lies at (x(v), y(v) + sgn(y(u) − y(v))).
(Note that, if (u, v) ∈M, then the bend lies at v, that is, the edge is drawn hor-
izontally.) Since we draw the edges of the matching horizontally without bends
and since the slanted segments are drawn between two consecutive horizontal
grid lines, there can only be crossings between vertical segments of the tree and
horizontal segments of the matching. Thus, all crossings between the tree and
the matching are at right angles.

It remains to show that the drawing of the tree itself is planar. Since the
edges of the tree are drawn with a slanted segment and a vertical segment, each
crossing must involve a slanted segment. Let v be a vertex of the tree. We will
show that the slanted segments of the edges leaving v do not induce a crossing.
Since the subtree rooted in v is assigned an x-interval that contains only vertices
of the subtree, crossings can only occur with edges of this subtree. Recall that v
lies on the right border of this x-interval, so all edges leaving v are directed to
the left. Consider the step of the algorithm in which v is placed.

First, assume that v is not a splitter. If no successors of v have been placed so
far, they will be placed all above or all below v. Therefore, the slanted segments
of the edges leaving v won’t induce any crossing. Otherwise, let T1(v), . . . , Tk(v)
be the subtrees hanging off v. By construction, all placed successors of v are
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located in the same subtree T1(v), and T1(v) is placed to the left of the other
subtrees hanging off v. Thus, no edge leaving v is drawn inside the x-interval
assigned to T1(v). The vertices in the other subtrees will be placed all above or
all below v. Therefore, the slanted segments of the edges leaving v again won’t
induce any crossing.

Second, assume that v is a splitter. Then, there is a vertex w that was placed
in the previous step and lies in the same rope as v; see Figure 9b. Further, all
placed successors of v except w are located in the same subtree T1(v), and T1(v)
is placed to the left of the other subtrees hanging off v. Hence, no edge leaving v
is drawn inside the x-interval assigned to T1(v). Recall that v is placed in the
group opposite of w. Thus, w and all unplaced successors of v (including all
vertices in T2(v), . . . , Tk(v)), lie all above or all below v. Therefore, the slanted
segments of the edges leaving v do not induce any crossing. This concludes the
proof of planarity.

Note that our algorithm supports the Sefe model. Edges that lie both inM
and T are drawn the same way; see the edge incident to vertex s in Figure 8.

Finally, we prove the area and running time bounds. Recall that each edge
of M is drawn horizontally at a unique odd y-coordinate between 1 and n− 1.
In every column, we place exactly one vertex, so the drawing needs n columns.
As for the running time, the algorithm to place the vertices clearly requires only
constant time per vertex, except when we traverse the tree upwards to determine
the x-coordinate of a new vertex. As soon as we hit a vertex whose x-coordinate
has already been determined, we are done, assuming that we have precomputed
the sizes of all subtrees (which can be done in linear total time). During the
traversal, we fix the x-coordinates of all vertices that we meet. Hence, in order
to determine the x-coordinates of all vertices, we traverse every edge of T at
most once. Thus, the running time of the algorithm is linear. �

4 RacSefe Drawings with Two Bends per Edge

In this section, we study slightly more complex classes of planar graphs, and
show how to efficiently construct RacSefe drawings with two bends per edge,
in quadratic area. In particular, we prove that a wheel and a matching on a
common set of n vertices admit a RacSefe drawing on an integer grid of size
(1.5n− 1)× (n+ 2) with two bends per wheel edge and no bends on matching
edges; see Theorem 7. An outerpath (that is, an outerplanar graph whose weak
dual is a path) and a matching admit a RacSefe drawing with two bends per
outerpath edge and one bend per matching edge. They also need a slightly
larger grid, namely one of size (3n− 2)× (3n− 2); see Theorem 8.

Theorem 7 A wheel and a matching on a common set of n vertices admit a
RacSefe drawing on an integer grid of size (1.5n− 1)× (n+ 2) with two bends
per wheel edge and no bends on matching edges, respectively. The drawing can
be computed in O(n) time.
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Figure 10. A RacSefe drawing of a wheel (solid; its rim is drawn in bold) and a
matching (dashed)

Proof: Let W = (V,EW) be the given wheel and M = (V,EM) the given
matching. A wheel can be decomposed into a cycle, called its rim, a center
vertex, called its hub, and a set of edges that connect the hub to the rim,
called its spikes. First, we consider the simpler case according to which W
and M do not share edges (clearly, in this case the hub of the wheel cannot
be incident to a matching edge). Let V = {v1, v2, . . . , vn}, such that v1 is the
hub of W and C = 〈v2, v3, . . . , vn, v2〉 is the rim of W in this order. Thus,
EW = {(vi, vi+1) | i = 1, . . . , n − 1} ∪ {(vn, v2)} ∪ {(v1, vi) | i = 2, . . . , n}.
Let M′ = (V,EM′) be the matching M without the edge incident to v1.

We first compute the x-coordinates of the vertices. We do this such that
C − {(vn, v2)} is x-monotone; see Figure 10. More precisely, for i ∈ {2, . . . , n},
we set x(vi) = 2i− 3. The y-coordinates of the vertices are computed based on
the matching M′ as follows. Let EM′ = {e1, . . . , ek} be the matching edges,
indexed such that v2 is incident to e1. For j ∈ {1, . . . , k}, we assign the y-
coordinate 2j−1 to the endpoints of ej . Next, we assign the y-coordinate 2k+1
to the vertices incident to the rim without a matching edge inM′. Finally, the
hub v1 of W is located at point (1, 2k + 3).

It remains to place the bend of each edge e ∈ EW ; the edges inM′ are drawn
without bends. First, let e = (v1, vi), i ∈ {3, . . . , n} be a spike. Then, we place
the bend at (x(vi), 2k+2). Since both v1 and v2 are located in column 1, we can
save the bend of the spike (v1, v2). Second, let e = (vi, vi+1), i ∈ {2, . . . , n− 1}
be an edge of the rim C. We place the bend according to the following case
distinction.

(i) If y(vi+1) > y(vi), we place the bend at (x(vi+1), y(vi) + 1).

(ii) If y(vi−1) > y(vi) > y(vi+1), we place the bend at (x(vi+1), y(vi)− 1).

(iii) If y(vi) > max{y(vi−1), y(vi+1)}, by (i) the bottom port at vi is already
used; see the edge e in Figure 10. Thus, we draw e with two bends;
at (x(vi) + 1, y(vi)− 1) and (x(vi) + 1, y(vi+1) + 1).
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Now, let e = (vn, v2) be the remaining edge of the rim. We place its bend
at (2n− 2, 0).

Our approach ensures that C−{(vn, v2)} is drawn x-monotone, hence planar.
The last edge (vn, v2) of C is the only edge drawn outside of the bounding box
that contains all vertices. Therefore, also the last edge is crossing-free. The
spikes are not involved in crossings with the rim, as they are outside of the
bounding box containing the rim edges. Hence, the drawing ofW is planar. All
edges of M′ are drawn as horizontal, non-overlapping line segments, so M′ is
drawn planar as well. The slanted segments ofW− (vn, v2) are of y-length 1, so
they cannot be crossed by the edges ofM′. As the edge (vn, v2) is not involved
in crossings, it follows that all crossings between W and M′ form right angles.

Finally, we have to insert the matching edge (v1, vi) incident to the hub.
Note that this edge also exists in W as a spike. Since vi is not incident to a
matching edge inM′, it is placed above all matching edges. Therefore, the copy
of (v1, vi) inW does not cross a matching edge, and we can use the same layout
for the copy of (v1, vi) in M.

We now show that our algorithm supports the Sefe model. Suppose that
there is an edge e = (v, v′) that belongs to both the rim C and the matchingM.
If e is the closing edge of the rim, then it is drawn planar in C. Thus, this
drawing can be used for both graphs. Otherwise, our algorithm places v and v′

at consecutive x-coordinates and at the same y-coordinate. Then, we can draw e
as a horizontal edge of length 1 in both graphs, and such an edge cannot be
crossed.

We now prove the area bound of the drawing algorithm. To that end, we
remove all columns that contain neither a vertex, nor a bend. First, we count the
rows used. Since we remove the matching edge incident to v1, the matchingM′
has k ≤ n/2− 1 matching edges. We place the bottommost vertex in row 1 and
the topmost vertex (that is, vertex v1) in row 2k + 3. We add one extra bend
in row 0 for the edge (vn, v2). Thus, our drawing uses 2k + 3 + 1 ≤ n+ 2 rows.
Next, we count the columns used. The vertices v2, . . . , vn are each placed in
their own column. Every spike has exactly one bend in the column of a vertex.
An edge (vi, vi+1) of rim W has exactly one bend in a vertex column, except
for the case that y(vi) > y(vi−1), y(vi+1). In this case it needs an extra bend
between vi and vi+1, i = 1, . . . , n − 1. Clearly, there can be at most n/2 − 1
vertices satisfying this condition. Since the edge (vn, v2) uses an extra column
to the right of vn, our drawing uses (n− 1) + (n/2− 1) + 1 = 1.5n− 1 columns.

�

Theorem 8 An outerpath and a matching on a common set of n vertices admit
a RacSefe drawing on an integer grid of size (3n − 2) × (2n − 1) with two
bends per outerpath edge and one bend per matching edge. The drawing can be
computed in O(n log n) time.

Proof: Let Z = (V,EZ) be the given outerpath and M = (V,EM) the given
matching. Recall that an outerpath is a biconnected outerplanar graph whose
weak dual is a path of length at least two; see Figure 11a. Furthermore, assume
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(b) A RacSefe drawing

Figure 11. Two drawings of the same outerpath and matching. In both figures, the
outerpath is drawn solid, the upper and the lower path are drawn in bold, the spine
of the spanning caterpillar is drawn extra bold and the matching is drawn dashed.

initially that Z and M do not share edges. Let V = {v1, v2, . . . , vn}, indexed
such that 〈v1, v2, . . . , vn, v1〉 is the outer face of Z.

We start by augmenting Z to a maximal outerpath Z ′ = (V,EZ′) by trian-
gulating its bounded faces. As Z ′ is internally-triangulated, it contains exactly
two vertices of degree two, each of which lies on a face that is an endpoint of the
dual path. We assume, without loss of generality, that deg(vn) = deg(vj) = 2
for some j with 1 < j < n; see v10 and v6 in Figure 11a. We call the path
Pu = (Vu, Eu) = 〈v1, v2, . . . , vj−1〉 the upper path of Z ′, and Pl = (Vl, El) =
〈vj , vj+1, . . . , vn〉 the lower path of Z ′. Observe that V = Vu ∪ Vl. If we re-
move Eu ∪El from EZ′ , then the resulting graph is a caterpillar C that spans V
and whose spine alternates between vertices of Vu and Vl.

We first compute the left-to-right order of the vertices of caterpillar C =
(VC , EC) as described by the algorithm supporting Theorem 4. Then, the x-
coordinate of the ith vertex in this order is 3i−2, i = 1, 2, . . . , n; see Figure 11b.

In order to compute the y-coordinates of the vertices, we first partition M
into three matchings Mll = (Vll, Ell), Muu = (Vuu, Euu) and Mul = (Vul, Eul)
as follows. Let (v, v′) ∈ EM. Then,

(i) (v, v′) ∈ Ell if v, v′ ∈ Vl,

(ii) (v, v′) ∈ Euu if v, v′ ∈ Vu,

(iii) (v, v′) ∈ Eul if v ∈ Vu and v′ ∈ Vl.

Since V = Vu ∪ Vl, it holds that EM = Ell ∪Euu ∪Eul. In the resulting layout,
the edges in Ell will be drawn below the edges in Eul, which in turn will be
drawn below the ones of Euu; see Figure 11b. Thus, they will not cross each
other.

Let mll = |Ell| and Ell = {e1, . . . , emll
}. We draw the edges from bottom to

top, starting from row 1. For i = 1, . . . ,mll, let ei = (ui, u
′
i) with x(ui) < x(u′i).
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We set y(ui) = 4i − 1 and y(u′i) = 4i − 3. Edge ei is drawn with a bend
at (x(ui), y(u′i)). Our approach ensures that there are no crossings between
edges of Mll, as they are drawn in different horizontal strips of the drawing.
Similarly, we draw the edges in Euu from top to bottom, starting from row 2n−1.
Let muu = |Euu|. By construction, the topmost vertex of Vll is drawn in the
row 4mll−1 and the bottommost vertex of Vuu is drawn in the row 2n+1−4muu.
The vertices of Vul will be drawn between these rows; see Figure 11b.

In order to draw the edges in Eul, we process the vertices of the set Vul
from left to right and assign y-coordinates to both endpoints of the incident
matching edge. Let mul = |Eul| and Eul = {ê1, . . . , êmul

}. For k ∈ {1, . . . , µ},
let êk = (wk, w

′
k) and assume without loss of generality that x(wk) < x(w′k)

and x(w1) < . . . < x(wµ). We place the vertices in Vl from bottom to top and the
vertices in Vu ∩ Vul from top to bottom. If wk ∈ Vu, we assign the y-coordinate
4mll − 1 + 3k to wk and the y-coordinate 2n + 1 − 4muu to w′k; if wk ∈ Vl,
we switch the y-coordinates. Edge êk is drawn with a bend at (x(wk), y(w′k)).
Further, every edge êl ∈ Eul with l > k has its endpoints to the right of wk and
in the horizontal strip defined by the lines y = y(wk) and y = y(w′k). Hence,
it will not be involved in crossings with (wk, w

′
k). This guarantees that the

drawing of M is planar.
It remains to determine, for each edge e = (v, v′) ∈ Z ′, where to place

its bend. Without loss of generality, let e be directed from its left endpoint,
say v, to its right endpoint, say v′. First, assume that e ∈ Eu ∪ El belongs
to the outercycle. Then, we place its bends at (x(v′) − 2, y(v)) and (x(v′) −
2, y(v′) − sgn(y(v′) − y(v))). Second, assume that e ∈ EC belongs to the inner
caterpillar. Then, we place its bends at (x(v′)− 1, y(v) + sgn(y(v)− y(v′))) and
(x(v′)− 1, y(v′)− sgn(y(v′)− y(v))).

Since Pu and Pl are drawn x-monotone, both are drawn planar. Following
similar arguments as in the proof of Theorem 4, we can show that C is drawn
planar as well. Since C is drawn between Pu and Pl, it follows that Z ′ is
drawn planar, as desired. It now remains to prove that all (potential) crossings
between Z ′ and M only involve rectilinear edge segments of Z ′, as M consists
exclusively of rectilinear segments. As all slanted segments of Z ′ are of y-
length 1, no horizontal segment of M can cross them. The same holds for
vertical segments ofMuu ∪Mll, as they are drawn above and below Pl and Pu,
respectively. The only possible non-rectilinear crossings are between a vertical
segment of a matching edge (u, v) ∈ Eul and a long slanted segment of C incident
to a spine vertex w. This crossing can only occur if w lies to the left of the
vertical segment of (u, v). By construction, w is never drawn between u and v,
with respect to the y-coordinate. Thus, such crossings cannot occur, which
implies all crossings between Z ′ and M form right angles.

We now show that our algorithm supports the Sefe model. Assume thatM
and Z share edges, and let e = (v, v′) be an edge that belongs to both input
graphs. If e ∈ El, then also e ∈ Ell. Our algorithm places v and v′ at consecutive
y-coordinates and determines their x-coordinates such that no other vertex of Vl
lies between them. Thus, edge e is drawn in the matching as a vertical segment
of length 2 and a horizontal segment that has no vertex below it. Hence, the
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drawing of e in the matching is planar and can be used for both graphs. The
case e ∈ Eu is analogous.

If e ∈ EC , then also e ∈ Eul. In this case, we observe that the topological
routing of e is the same in both graphs with an offset of one unit to avoid
overlaps. Thus, every other edge either crosses both or none of the drawings
of e. Since each drawing of e forbids crossings by edges of one of the input
graphs, actually none of the two drawings can have a crossing. Hence, we can
draw e the same way in both graphs.

By the choice of the coordinates, the area requirement of our algorithm is
(3n− 2)× (2n− 1). Since we have to sort the edges in Eul by the x-coordinates
of the incident vertices, our algorithm runs in O(n log n) time. To complete the
proof of this theorem, observe that the extra edges that we introduced when
augmenting Z to Z ′ can be safely removed from the constructed layout, affecting
neither the crossing angles nor the area of the layout. �

5 Conclusions and Open Problems

In this paper, we have studied RacSefe and RacSim drawings with few bends
per edge. We have proven that two planar graphs always admit a RacSim
drawing with at most six bends per edge. For more restricted classes of graphs,
we have reduced the number of bends per edge. Some of these specialized results
also hold for the stronger RacSefe model. All drawings of our algorithms fit
it quadratic area.

Our results raise several questions that remain open. First of all, can we
strengthen any of our results from RacSim to RacSefe (see Table 1); for
example, for a pair of general planar graphs? For the classes of graphs that we
have presented in this paper, can we reduce the number of bends per edge or
can we show lower bounds? Are there other graph classes that admit RacSim
drawings with few bends? Can we reduce the number of bends per edge by
relaxing the strict constraint that edge intersections are at right angles and
instead ask for drawings that have close to optimal crossing resolution? What
about the computational complexity of the general problem, that is, given two
or more planar graphs on the same set of vertices and a non-negative integer k,
can we decide efficiently whether there is a RacSim drawing in which each
graph is drawn with at most k bends per edge and the crossings are all at right
angles? This seems unlikely. Finally, is it possible to achieve sub-quadratic area
for RacSim drawings of subclasses of planar graphs when accepting more bends
per edge?
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