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A navigation system for tree space

Sarah Mark 1 Jeanette C. McLeod 1,2 Mike Steel 1

1Department of Mathematics and Statistics, University of Canterbury,
Christchurch, New Zealand
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Abstract

The reconstruction of evolutionary trees from data sets on overlapping
sets of species is a central problem in phylogenetics. Provided that the
tree reconstructed for each subset of species is rooted and that these trees
fit together consistently, the space of all parent trees that ‘display’ these
trees was recently shown to satisfy the following strong property: there
exists a path from any one parent tree to any other parent tree by a
sequence of local rearrangements (nearest neighbour interchanges) so that
each intermediate tree also lies in this same tree space. However, the proof
of this result uses a non-constructive argument. In this paper we describe a
specific, polynomial-time procedure for navigating from any given parent
tree to another while remaining in this tree space. The results are of
particular relevance to the recent study of ‘phylogenetic terraces’.
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1 Introduction

A central goal in systematic biology is to reconstruct and analyze a (phyloge-
netic) tree to describe the evolutionary relationships among present-day species,
based on a comparison of their genetic data [3]. This activity has accelerated
greatly in recent years due to the rapid advances in new genomic sequencing
technology. While biologists in the 1970s might have reconstructed a tree for a
dozen species using a single gene, today, phylogenetic trees are routinely con-
structed for hundreds or thousands of species, often based on large numbers
(hundreds or thousands) of genes. These trees reveal how species today trace
back to a common ancestor by displaying the branching pattern and timing of
separation events. These trees, in turn, provide insights into how particular evo-
lutionary innovations arose that are present in the group of species under study
(e.g. multicellularity, photosynthesis, wings, large brains, etc). Phylogenetic
trees can also shed light on the amount of biodiversity captured by different
subsets of species and how much of this biodiversity may be at risk from extinc-
tion in the near future (a recent example is the analysis in [4] of the estimated
tree for all ∼10, 000 species of birds).

Tree reconstruction methods often attempt to combine the evolutionary sig-
nal across many different genes. One of the problems with such an approach
is that each gene may be present in only a subset of the species. This may be
because the gene simply does not exist in some species or because the gene,
though present, is yet to be sequenced for those species. Moreover, the set of
species that lack a given gene typically varies from gene to gene.

Patchy taxon coverage has a direct combinatorial consequence for tree recon-
struction methods, which often seek to optimize (e.g. minimize) some objective
function based on how well the data ‘fit’ each tree. The result can be large
collections of equally-optimal trees (i.e. a flat landscape of trees), that form a
(phylogenetic) ‘terrace’ [7], which we define more precisely below. To describe
this connection with terraces, we first describe some properties of commonly
used scoring functions. Let X be a set of species and let XG be the subset of X
of species for which gene G is present, and suppose that T is a fully-resolved (bi-
nary) tree with leaf set X. Consider a scoring function s that assigns a positive
real value for each such pair (G,T ). In biological applications, s will generally
satisfy the following equation:

s(G,T ) = s(G,T |XG), (1)

where T |XG refers to the phylogenetic tree with leaf set XG obtained from T by
deleting all species in X for which G is not present. This condition essentially
says that species for which the gene is not present should not affect how well
the data for the gene ‘fits’ the tree under consideration.

Now suppose the data consists of a sequence of genes G = (G1, G2, . . . , Gk).
Given the score s(Gi, T ) for each i, how might we combine them to obtain a
score s(G, T ) for how well this collection of genes ‘fits’ T? A natural option is
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simply to form a linear sum and let

s(G, T ) =

k∑

i=1

s(Gi, T ). (2)

We say that any such scoring scheme is linear. Given the data G, we seek to
find a tree that minimizes s(G, T ). While linearity may seem a strong condition
to impose, it turns out that some standard phylogenetic methods select a tree
that minimizes a linear scoring scheme. One such method is minimum evolution
(also called ‘maximum parsimony’) and another is (partitioned) maximum like-
lihood (in which parameters such as the branch lengths of a tree are optimized
independently from gene to gene), for which s(Gi, T ) is equal to minus the log-
likelihood of T for Gi; for further details see [7, 6]. Both of these methods also
satisfy Eqn.(1), as do several others that fail linearity (e.g. maximum likelihood
with branch length parameters linked across genes).

Now suppose that T ∗ is a fully-resolved tree that has some particular score
(e.g. the optimal score) for G under a scoring function s that satisfies Eqn. (1)
and is linear (Eqn. (2)), and let Xi = XGi , for i = 1, . . . , k. Suppose that T is
any other tree for which T |Xi = T ∗|Xi for all i. The tree T then has the same
score as T ∗ for G. To see this, simply observe that

s(G, T ) =

k∑

i=1

s(Gi, T ) =

k∑

i=1

s(Gi, T |Xi) =

k∑

i=1

s(Gi, T
∗|Xi) =

k∑

i=1

s(Gi, T
∗) = s(G, T ∗).

The set of phylogenetic X–trees T for which T |Xi = T ∗|Xi for all i is refereed to
as the terrace containing T ∗, and all trees on this terrace have the same s–score
(when Eqns. (1) and (2) hold). In real applications, a terrace can be very large,
for example, 61 million equally-optimal (maximum likelihood) trees for a data
set consisting of 298 species of grasses on three genes [7]. The existence of large
flat landscapes of trees can make the search for optimal trees by hill-climbing
approaches more problematic, and ways in which search times on terraces can
be improved are still being sought [2].

In this paper, we explore a further combinatorial consequence of patchy
taxon coverage: namely, for any terrace of trees (which thus have the same
s-score), it is possible to move from any one tree on the terrace to any other
tree on the terrace by making a series of local elementary re-arrangments (called
‘nearest neighbour interchange’ (NNI) operations, defined below), while always
remaining on that terrace (i.e. not altering the s-score). This result follows
from a theorem, first stated and proved in the PhD thesis of Magnus Bordewich
[1], based on an inductive argument. The motivation for the current paper is to
provide an explicit algorithm for constructing a sequence of NNI operations to
move from any one tree T on the terrace to any other tree T ′ on the terrace. In
our approach, the details of the scoring function s play no real role since a terrace
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is the set of binary trees displaying the set of rooted trees {T |X1, . . . , T |Xk},
where T is some tree on that terrace. Thus we deal simply with sets of rooted
trees on overlapping leaf sets as our input.

It is important to note that, although the trees comprising a terrace have
the same s–score (when Eqns. (1) and (2) hold), there may be other trees with
the same s–score that are not on this terrace. We can see this even in the
simple case where Xi = X for all i (i.e. we have complete taxon coverage).
Then for any fully-resolved tree T , the terrace containing T is just T itself, yet
for certain data there may be many maximum parsimony trees. Moreover, in
this setting of complete taxon coverage it has been known since the early 1990s
that for particular data there may be two or more optimal trees with optimal
parsimony scores that cannot be connected by a sequence of NNI operations
passing only through optimal trees (this leads to ‘islands of trees’ as studied
in [5]). The result described in the previous paragraph concerns connectivity
under NNI within a single terrace (not between terraces) and so its relevance is
particular to the setting of partial taxon coverage. In general, the set of trees
having a given s–score will be a union of one or more terraces.

The structure of our paper is as follows. We first define some terms and
operations on trees in Section 2, and in Section 2.3, we summarize a result
from [1]. In Section 3, we state the main result of this paper, then present and
prove some preliminary results before we provide a proof of the main result at
the end of this section. This is followed, in Section 4, by an algorithm and
an analysis of its complexity. We end with some brief concluding comments in
Section 5.

2 Preliminaries

Our terminology follows that of Semple and Steel [8]. A rooted phylogenetic tree
T is a semi-labeled rooted tree in which the leaves of T are labeled and the root
has outdegree at least two. Let RP (X) be the set of all such trees with leaf label
set X. A rooted binary phylogenetic tree is a rooted phylogenetic tree for which
all interior vertices have outdegree two. Let RB(X) denote the set of all such
trees with leaf label set X. Note that RB(X) ⊆ RP (X). A tree T ∈ RP (X) is
a star if it has only one interior vertex (which is the root).

Consider P = {T1, . . . , Tk}, where Ti ∈ RP (Xi) for each 1 ≤ i ≤ k. Then

L(P) =

k⋃

i=1

Xi

denotes the leaf set of P. For a single tree Ti, for ease of notation, we write
L({Ti}) = L(Ti) = Xi.

Consider T ∈ RP (X). A rooted phylogenetic subtree tv of T is a subtree of
T whose vertex set consists of a vertex v of T and all descendants of v in T .
The vertex v is the root of the subtree tv. If v is not the root of T , then tv is
a proper rooted phylogenetic subtree of T . If v is a child of the root of T , then
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tv is a maximal proper rooted phylogenetic subtree of T . Throughout the rest of
this paper, ‘subtree’ will refer to a rooted phylogenetic subtree unless otherwise
specified.

A cluster of T is a subset of X consisting of all leaves that are descendants
of a given vertex v in T , that is, the set {x ∈ X : x is a descendant of v}. The
collection of all clusters of T , denoted C(T ), determines T . A maximal proper
cluster of T is the leaf set of a maximal proper subtree of T .

We define two trees T, T ′ ∈ RB(X) to be equivalent if there is a
map φ : V (T ) → V (T ′) such that φ(l) = l for all l ∈ X and a map
ψ : E(T ) → E(T ′) such that adjacency is preserved. If T has subtree t and
T ′ has subtree t′, where t is equivalent to t′, then, to aid exposition, we say that
T ′ has subtree t. The distance between two vertices u and v in T , distT (u, v),
is the length of the shortest path between u and v in T . The distance between
two arcs e = (u1, u2) and e′ = (v1, v2) in T is min{distT (ui, vj) : i, j ∈ {1, 2}}.

2.1 Operations on trees

Consider a tree T = (V,E) ∈ RP (X), and an arc e = (v, u) of T . The graph
T \ e = (V,E \ {e}) is said to be obtained from T by deleting e. The graph
obtained from T by deleting e and replacing its endpoints u and v with a new
vertex (so that all arcs incident to u or v are now incident to this new vertex) is
denoted T/e and is said to be obtained from T by contracting e. Consider vertex
x of T and suppose that all but one of its outgoing arcs has been deleted, giving
a tree in which x has outdegree one. The method used to suppress x depends
on whether or not x is the root of T . If x is not the root of T , let e1 = (w, x)
and e2 = (x, y) be arcs of T . The tree T ′ obtained from T by deleting vertex x
and arcs e1 and e2 from T and inserting arc (w, y) is said to be obtained from
T by suppressing x. Note that a tree equivalent to T ′ can also be obtained as
T/e1 or T/e2. If x is the root of T (and x has outdegree one, as before), then x
is suppressed by deleting x and its incident arc, making the child of x the root
of the resulting tree.

Let v be a vertex of T and let e1, . . . , ek be the arcs of T incident to v.
The graph T \ v = (V \ {v}, E \ {e1, . . . , ek}) is said to be obtained from T by
deleting v. Let e = (v, u) be an arc of T and let tu be the subtree of T with
root u. We define T \ tu to be the tree obtained from T by deleting tu and the
arc e.

Suppose T ∈ RB(X) and let e = (v, u) be an arc of T . The tree T ′ given
by introducing a new vertex w (so that V (T ′) = V (T ) ∪ {w}), deleting arc e,
and inserting arcs (v, w) and (w, u) into T is said to be obtained from T by
subdividing e with w.

The following two operations allow us to “prune” a subtree and “regraft” it
elsewhere on the tree. The second operation is simply a special case of the first
operation.

rSPR (rooted subtree prune and regraft) operation: Let T ∈ RB(X) and let
e = (v, u) be an arc of T . We say that T ′ ∈ RB(X) is an rSPR-neighbour of T
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if T ′ can be obtained from T by the following procedure. Let tu be the subtree
of T rooted at u. Delete arc e, pruning the subtree tu. To regraft tu, either:

(i) Choose an arc f of T \ tu and subdivide f with a vertex w, then insert
the arc (w, u), regrafting the subtree tu, or

(ii) Introduce a vertex r′, insert the arc (r′, rT ) where rT is the root of T , and
then insert the arc (r′, u), regrafting the subtree tu. Note that r′ is the
root of the resulting tree.

Lastly, suppress v. We have now obtained a tree T ′ that is an rSPR-neighbour

of T and we write T
rSPR∼ T ′. Note that T

rSPR∼ T . Also, if T
rSPR∼ T ′, then

T ′
rSPR∼ T . We say that this rSPR operation is performed with respect to tu.

NNI (nearest neighbour interchange) operation on a rooted tree:
Let T ∈ RB(X) and let e = (v, u) be an arc of T . We say that T ′ ∈ RB(X) is
an NNI-neighbour of T if T ′ can be obtained from T by the following procedure.
Let tu be the subtree of T rooted at u. Let w be a vertex of T adjacent to v,
where w 6= u. Delete arc e. Then:
If w is not the root of T \ tu,

(i) Choose an arc f incident to w, and subdivide f with a vertex x.

If w is the root of T \ tu, either do (i) or

(ii) Introduce a vertex x and insert the arc (x,w). Note that x is the root of
the resulting tree.

Now insert the arc (x, u) into T , and, lastly, suppress v. We have now obtained a

tree T ′ which is an NNI-neighbour of T and we write T
NNI∼ T ′. Note that T

NNI∼ T .

Also, if T
NNI∼ T ′, then T ′

NNI∼ T . We say that the NNI operation is performed with
respect to tu.

We define a sequence of NNI-related trees to be a sequence of trees, say

(T1, . . . , Tn), for which Ti
NNI∼ Ti+1 for all 1 ≤ i < n; that is, each tree in the

sequence can be obtained from the previous tree by a single NNI operation (not
necessarily with respect to the subtree tu). We refer to these NNI operations as
a sequence of NNI operations. A sequence of NNI operations from T1 to Tn is
called a minimum sequence of NNI operations if it is the shortest sequence of
NNI operations that starts with the tree T1 and produces the tree Tn. If each
of the NNI operations in a sequence is performed with respect to the subtree
tu, then we refer to this as a sequence of NNI operations with respect to tu. We
define an analogous set of terms for rSPR operations.

When we perform an operation on a tree T , some vertices may be deleted
or inserted to produce the tree T ′. All other vertices retain the same labels in
both T and T ′, although we note that arcs may have been deleted or inserted
and so the connections between these vertices may be different. Figure 1 shows
an example of this for an NNI operation. In this example, the subtree tu rooted
at u is pruned and regrafted. Vertex v is suppressed and vertex x is inserted,
so V (T ′) = (V (T ) \ {v}) ∪ {x}.
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u
v

tu

a1

a2 a3

a4

a5

a6w

a1

a2 a3

a4

a5

a6w

u
tu

x

r r
T T ′

Figure 1: An example of the labeling of vertices before (T ) and after (T ′) an
NNI operation with respect to tu.

2.2 Triples, refinement, display, and compatibility

Let T ∈ RP (X) and let X ′ ⊆ X. Then T |X ′ ∈ RP (X ′), called the restriction
of T to X ′, is the tree for which

C(T |X ′) = {C ∩X ′ : C ∈ C(T ) and C ∩X ′ 6= ∅}.

We can obtain T |X ′ from T by deleting all maximal subtrees containing only
leaves that are not in X ′ and then suppressing all vertices with outdegree one.

Let T ′ ∈ RP (X). We say that T refines T ′ (or is a refinement of T ′) if
C(T ′) ⊆ C(T ).

Let X ′′ ⊆ X, and let T ′′ ∈ RP (X ′′). We say that T displays T ′′ if T |X ′′ is
a refinement of T ′′.

A set P of rooted phylogenetic trees is compatible if there exists a tree
T ∈ RP (X) such that T displays each tree in P. We then say that T dis-
plays P. Let P (respectively P B) denote the set of all rooted phylogenetic
trees (respectively rooted binary phylogenetic trees) that display P. Note that
P B ⊆ P .

A rooted triple is a tree in RB(X) where |X| = 3. A rooted triple with
X = {a, b, c} is denoted ab|c if the path from a to b does not intersect the path
from c to the root of the tree. Let r(T ) denote the set of all rooted triples
displayed by T ∈ RB(X). Figure 2 shows an example of a set R of rooted
triples and two trees T, T ′ ∈ R B .

a b d b c d a b e

R ={ }
a b

c

ed

T

a cb

d

eT ′

, ,
f

Figure 2: An example of a set R of rooted triples and two rooted binary phy-
logenetic trees T and T ′ that both display R.

Note that we only need to consider a set of rooted triples R rather than a
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more general set of rooted phylogenetic trees P, since the latter can be converted
into the former so that the trees displaying R are exactly those which display P.
Let P ′ be a set of rooted phylogenetic trees such that each tree in P ′ has at
least one internal arc (there are no stars). Then P ′ B = RP′ B , where RP′

is the set of rooted triples such that, for each rooted triple ab|c ∈ RP′ , there is
some tree in P ′ which displays ab|c. The case in which P contains at least one
tree that is a star will be dealt with later.

2.3 The Bordewich result

For any two trees T, T ′ ∈ RB(X), there is a sequence of trees (T1, T2, . . . , Tn)

such that T = T1, T ′ = Tn, and Ti
NNI∼ Ti+1 for all i (1 ≤ i < n). In this paper,

we consider two trees, T and T ′, that display a set of rooted triples R, and
find a sequence of trees satisfying the aforementioned conditions, along with the
additional condition that each tree in the sequence displays R.

The following result was stated and proved in the PhD Thesis of Bor-
dewich [1].

Theorem 1 Let R be a set of rooted triples. Suppose that T, T ′ ∈ R B and
L(T ) = L(T ′). Then there is a sequence of trees (T1, T2, . . . , Tn) such that:

1. T1 = T and Tn = T ′,
2. Ti

NNI∼ Ti+1 for 1 ≤ i < n, and
3. Ti ∈ R B for 1 ≤ i ≤ n (i.e. each Ti displays R).

3 Main result

We first note that Theorem 1 is equivalent to the following:

Theorem 2 Let T, T ′ ∈ R B, where R = r(T ) ∩ r(T ′) and L(T ) = L(T ′).
Then there is a sequence of trees (T1, T2, . . . , Tn) such that Properties (1)–(3)
of Theorem 1 hold.

To see why these two theorems are equivalent, first assume that Theorem 1
holds. Let R′ be the set of rooted triples in Theorem 1 (for clarity of notation).
If we let R′ = r(T )∩r(T ′) in Theorem 1, we have Theorem 2. Now assume that
Theorem 2 holds. Once again letR′ be the set of rooted triples in Theorem 1 (for
clarity of notation). Since R′ ⊆ r(T ) ∩ r(T ′) and each Ti displays r(T ) ∩ r(T ′),
then T , T ′, and each Ti will also display R′, so Theorem 1 holds.

Figure 3 shows an example to illustrate Theorem 2. In this example, R =
r(T )∩r(T ′) = {ac|d, ac|e, ac|f, de|a, de|c, ef |d}. It is easy to check that T1, . . . , T4

all display R, and each tree can be obtained from the previous tree by a single
NNI operation.

We are only considering rooted trees in this paper because there is no re-
sult directly analogous to Theorem 1 for unrooted trees and quartet trees (the
unrooted analogue of rooted triples). To see this, consider the following coun-
terexample. The two unrooted trees in Figure 4 both display the quartet trees
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a b

d

e f a

b

c d

e f a

b

c
d
e f a

b
c

d

e f

T2 T3 T4 = T ′T = T1

c

Figure 3: An example to illustrate Theorem 2 with R =
{ac|d, ac|e, ac|f, de|a, de|c, ef |d}.

12|45, 34|16, and 56|23. However, it is straightforward to check that the two
trees in Figure 4 are the only two trees which display these quartet trees and
that they are not one (unrooted) NNI operation apart. See [8] for further infor-
mation and definitions.

1 12

23

34 45

56

6

Figure 4: The two unrooted trees that display the quartets 12|45, 34|16, and
56|23.

The proof of Theorem 1 in [1] is based on an inductive argument. We
present an alternative proof that provides an explicit procedure for obtaining
the sequence of trees (T1, . . . , Tn).

The main result of this section is the following theorem.

Theorem 3 Given T, T ′ ∈ R B, where R = r(T ) ∩ r(T ′) and L(T ) = L(T ′),
one can construct (in polynomial time) a sequence of trees (T1, T2, . . . , Tn) such
that:

1. T1 = T and Tn = T ′,
2. Ti

NNI∼ Ti+1 for 1 ≤ i < n, and
3. Ti ∈ R B for 1 ≤ i ≤ n (i.e. each Ti displays R).

This takes into consideration the case in which L(R) ⊂ L(T ) = L(T ′), that
is, there are leaves in T and T ′ that are not in any rooted triple in R. We call
these leaves (the leaves in L(T ) \ L(R)) free leaves.

Let P ′′ be a set of rooted phylogenetic trees such that at least one of these
trees is a star. Let PS be the subset of P consisting of all trees in P which
are stars and let P ′ = P ′′ \ PS . All leaves which are in L(PS) \ L(P ′) (i.e. all
leaves that are in a tree in PS and are not in any tree in P ′) are free leaves.
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So P ′′ B = {T ∈ RP ′ B : L(P ′′) ⊆ L(T )} where RP ′ B is defined as in
Section 2.2.

Before we prove Theorem 3, we need some preliminary results.

Lemma 1 Let R be a set of rooted triples and let L = L(R). Suppose that
T, T ′ ∈ R B and L(T ) = L(T ′). For T ∗ ∈ {T, T ′}, it is possible to construct,

in polynomial time, a sequence of NNI-related trees from T ∗ to a tree T̃ ∗ with
subtree T ∗|L such that each tree in the sequence displays R and T̃ \ (T |L) is

equivalent to T̃ ′ \ (T ′|L).

Informally, this means that we can disregard the free leaves, transform T |L
into T ′|L, and then reinstate the free leaves in T ′. As these free leaves do not
appear in any of the rooted triples in R, this process will not affect whether a
particular tree displays R.

Proof: [Proof of Lemma 1] First note that T and T ′ have the same leaf set, and
let L(T ) = L(T ′) = {x1, . . . , xm} such that x1, . . . , xn (for some n ≤ m) are the
free leaves. The following steps describe NNI operations which give a sequence
of NNI-related trees from T to a tree T̃ that has subtree T |L. An example of
this can be seen in Figure 5.

(a) Consider L(T ) \ L = {x1, . . . , xn}, the free leaves of T . Let U0 = T and
let S = (U0).

(b) For j = 1, . . . , n:
(i) If j 6= 1, let vj−1 be the root of the subtree T |(L(T )\{x1, x2, . . . , xj−1})

of Uj−1. Otherwise (if j = 1), let vj−1 be the root of U0.
(ii) Consider Uj−1. If xj is a child of vj−1, let Uj = Uj−1. Otherwise,

(1) Perform a minimum sequence of NNI operations with respect to
xj that results in a tree in which xj is the grandchild of vj−1.
Append the sequence of trees (each of which is the result of one
NNI operation in the sequence) to S.

(2) If j 6= 1, perform the following NNI operation: prune xj , subdi-
vide the arc between vj−1 and its parent with a vertex w, insert
arc (w, xj), and suppress the vertex with outdegree one.
Otherwise (if j = 1), perform the following NNI operation: prune
x1, introduce a vertex r′, insert arc (r′, v0) and arc (r′, x1), and
suppress the vertex with outdegree one.

(3) Call the resulting tree Uj and append Uj to the sequence S.

(c) Let T̃ = Un, the last tree of the sequence S. The tree T̃ has subtree T |L,
as required.

The trees in S will only differ on rooted triples that contain some xj (for
1 ≤ j ≤ n), but by our assumption xj is not in any rooted triple. Therefore S is

a sequence of NNI-related trees from T to T̃ for which each tree in the sequence
displays R.

Recall that L(T ) = L(T ′) = {x1, . . . , xm}, where x1, . . . , xn (for some
n ≤ m) are the free leaves. Repeating steps (a) through (c) for T ′, we obtain
a sequence of trees S′, where the first tree in the sequence is T ′ and the last
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x1
x2

xn

x1x1

x2

U0 = T

T |L

T̃ = Un

v0 r′ r′ r′

v1
v2

vn

U2U1

Figure 5: An example of the process in the proof of Lemma 1, where x1, . . . , xn
are the free leaves.

tree is T̃ ′ which has subtree T ′|L. Now S′ is a sequence of NNI-related trees

from T ′ to T̃ ′ for which each tree in the sequence displays R. Since step (b) is

acting on the leaf sets in T and T ′ in the same order, T̃ \ (T |L) is equivalent to

T̃ ′ \ (T ′|L), as required. �

This last result simplifies our analysis so that we can always consider T |L
instead of T , where L is the set of leaves that are not free leaves. We have a
sequence of trees from T to T̃ and a sequence of trees from T ′ to T̃ ′ (which

can be reversed to give a sequence of trees from T̃ ′ to T ′ as NNI operations are
invertible). We now need a sequence of trees from T̃ to T̃ ′. We find a sequence of
NNI operations which transforms T |L into T ′|L and apply these NNI operations

to T̃ , transforming the subtree T |L into the subtree T ′|L and giving the tree T̃ ′.
The following result further simplifies our analysis.

Lemma 2 Suppose that R is a set of rooted triples and T, T ′ ∈ R B, with
L(T ) = L(T ′) = L(R). Suppose that T ′ is obtained from T by one rooted subtree
prune-and-regraft operation. Then there is a sequence of trees (T0, T1, . . . , Tn)
such that:

1. T0 = T and Tn = T ′,
2. Ti

NNI∼ Ti+1 for 0 ≤ i < n, and
3. Ti ∈ R B for 0 ≤ i ≤ n (i.e. each Ti displays R).

The proof of Lemma 2 is given in the Appendix.
Lemma 2 allows us to convert a sequence of rSPR operations into an equiv-

alent sequence of NNI operations.

Lemma 3 Let R be a set of rooted triples and suppose that T ∈ R B and
ab|c ∈ R. Then a, b ∈ C for some maximal proper cluster C of T .

Proof: Let r be the root of T and let C and C̄ be the maximal proper clusters
of T . For ab|c ∈ R suppose, without loss of generality, that a ∈ C and b ∈ C̄.
The most recent common ancestor of a and b is then r, so the path from a to
b will contain r and so this path will intersect the path from c to r. Therefore
ab|c 6∈ R, a contradiction. Hence if ab|c ∈ R, then either a, b ∈ C or a, b ∈ C̄.

�
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Lemma 4 Let R be a set of rooted triples and let T ∈ R B, where L(T ) =
L(R). Let C and C̄ be non-empty subsets of L(T ) for which C ∪ C̄ = L(T ),
C ∩ C̄ = ∅, and C and C̄ are maximal proper clusters of at least one tree in
R B. Consider T |C and T |C̄, with roots rC and rC̄ respectively. Let T̂ ∈ R B

be the tree rooted at r̂ composed of exactly the subtrees T |C and T |C̄ and the
arcs (r̂, rC) and (r̂, rC̄). Then there is a sequence of trees (T1, T2, . . . , Tn) such
that:

1. T1 = T and Tn = T̂ ,
2. Ti|C = T |C and Ti|C̄ = T |C̄ for 1 ≤ i ≤ n,

3. Ti
rSPR∼ Ti+1 for 1 ≤ i < n, and

4. Ti ∈ R B for 1 ≤ i ≤ n.

Proof: We first show how to obtain, from T , a tree T ′ with subtree T ′|C = T |C.
For any i (1 ≤ i ≤ n), the tree Ti contains one or more maximal subtrees whose
leaf sets are subsets of C. If Ti contains only one such subtree, then that subtree
must be T |C and so T ′ = Ti. Now consider the case in which Ti contains two
or more such subtrees. Let tv be a minimal subtree of Ti containing exactly
two maximal subtrees, tx and ty, whose leaf sets are subsets of C. (Note that
tv may contain leaves in C̄.) We assume i ≤ n− 2 and apply the following two
rSPR operations, starting at Ti, to produce a tree in which there is a subtree
with leaf set L(tx) ∪ L(ty).

(a) Consider v, the most recent common ancestor of x and y. If v is not the
root of Ti, let v′ be the parent of v, and subdivide the arc (v′, v) with a
vertex u. Otherwise (if v is the root of Ti), introduce a vertex u and insert
arc (u, v).

(b) Prune tx, insert arc (u, x), regrafting tx, and suppress the vertex with
outdegree one. Call the resulting tree Ti+1. Note that Ti+1|C = T |C (and
similarly for C̄).

(c) Subdivide the arc (u, x) with a vertex u′. Prune ty, insert arc (u′, y), re-
grafting ty, and suppress the vertex with outdegree one. Call the resulting
tree Ti+2. We now have a subtree tu′ of Ti+2 containing exactly the leaves
in L(tx) ∪ L(ty). Note that Ti+2|C = T |C (and similarly for C̄).

We now prove by induction on |C| that we can repeatedly perform the above
sequence of rSPR operations to obtain, from T , a tree T ′ with subtree T ′|C =
T |C. In the case |C| = 1, T ′ = T and so the result holds. Consider the case
|C| = 2. Let C = {x, y} and C̄ = L(T ) \ {x, y}. Starting with T , apply the
above steps (a) through (c), where tx and ty are each a single leaf (x and y
respectively), to obtain a tree T3 = T ′ with a subtree containing exactly the
leaves in L(tx) ∪ L(ty) = {x} ∪ {y} = C, as required.

Assume that, for tree T with 2 ≤ |C| ≤ k (for some k ≥ 2), we can perform
a sequence of rSPR operations to obtain a tree T ′ with subtree T ′|C = T |C.
Now consider a tree T where |C| = k + 1, and let tv be the minimal subtree
of T such that C ⊆ L(tv). Then tv has two maximal proper subtrees, say t′

and t′′, each of which must contain at least one leaf in C, and so each contains
no more than k leaves in C. By the induction assumption, we obtain a tree
T ∗ with subtree t∗v containing subtrees t′|C and t′′|C. Now t∗v is the minimal
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subtree of T ∗ containing t′|C and t′′|C, so we apply steps (a) through (c) above,
starting with the tree T ∗, to obtain a tree T ′ with a subtree containing exactly
the leaves in L(t′|C) ∪ L(t′′|C) = C, as required.

We now prove that neither of the rSPR operations in steps (a) through
(c) violate any rooted triples in R. Note that tx or ty (or both) may consist
of only a single leaf. Consider the rSPR operation with respect to tx (given
in steps (a) and (b)) used to obtain Ti+1 from Ti (1 ≤ i ≤ n − 2). Assume
that Ti displays R, but suppose, without loss of generality, that Ti+1 does
not display rooted triple ab|c ∈ R. Consider Ti and a, b, c ∈ L(Ti), and the
possible locations of the leaves a, b, and c in Ti with respect to the subtrees
tx, ty, and tv. The scenarios in which a, b ∈ L(tx) or a, b 6∈ L(tx) result in
contradictions. So, without loss of generality, consider the scenarios in which
a ∈ L(tx) and b 6∈ L(tx). The cases in which c 6∈ L(tv) or b 6∈ L(tv) also result in
contradictions, so assume that b, c ∈ L(tv). If b ∈ L(ty), then c 6∈ L(tv), which is
a contradiction, hence b 6∈ L(ty). However, since b 6∈ L(tx) and b 6∈ L(ty), b 6∈ C,
which is a contradiction of Lemma 3 because C is a maximal proper cluster of
some tree in R B . This concludes the case analysis. All possibilities result
in contradictions, hence Ti+1 displays ab|c. Now consider the rSPR operation
with respect to ty (given in step (c)) used to obtain Ti+2 from Ti+1. Assume
that Ti+1 displays R, but suppose, without loss of generality, that Ti+2 does
not display rooted triple ab|c ∈ R. Consider Ti+1 and a, b, c ∈ L(Ti+1), and the
possible locations of the leaves a, b, and c in Ti+1 with respect to the subtrees
tx, ty, and tu. Similar reasoning, replacing tv with tu (recalling u is the parent
of v in Ti+1) and swapping tx and ty, again leads to contradictions. Hence, Ti+2

displays ab|c.
We now show how to obtain T̂ from T ′. In T ′, let w be the root of subtree

T |C, and let x be the parent of w (x always exists as w is not the root of T ′,
otherwise |C̄| = 0). If x is the root of T ′, then T |C is a maximal proper subtree
of T ′ and so T̂ = T ′. Otherwise, the following rSPR operation is performed
to obtain T̂ from T ′. Let r′ be the root of T ′. Prune subtree T |C, introduce
a vertex r̂, insert arc (r̂, r′) and arc (r̂, w), regrafting T |C, and suppress the
vertex with outdegree one. We have now obtained a tree T̂ (with root r̂) with
maximal proper subtrees T |C and T |C̄, as required.

We now prove that this rSPR operation does not violate any rooted triples
in R. Assume that T ′ displays R but suppose, without loss of generality, that T̂
does not display rooted triple ab|c ∈ R. Consider T ′ and a, b, c ∈ L(T ′), and the
possible locations of the leaves a, b, and c in T ′ with respect to the subtree T |C.
The scenarios in which a, b ∈ L(T |C) or a, b 6∈ L(T |C) result in contradictions.
So, without loss of generality, consider the scenario in which a ∈ L(T |C) and
b 6∈ L(T |C). Then a ∈ C and b 6∈ C, which is a contradiction of Lemma 3.
Hence T̂ displays ab|c.

We have established that each of (T2, T3 . . . , Tn = T̂ ) display R. Further-
more, since T = T1 displays R by definition, we have shown that Ti displays R
for all 1 ≤ i ≤ n. �

The process described in Lemma 4 will be referred to as disentangling C
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from T .
We now have all the necessary preliminary results, so we return to the proof

of Theorem 3.

Proof: [Proof of Theorem 3] We first prove the special case in which L(T ) =
L(T ′) = L(R) (i.e. there are no free leaves). We prove that we can obtain a
sequence of NNI-related trees from T to T ′ for which each tree in the sequence
displays R. We use strong induction on m = |L(T )|.

Consider the case m = 2. Then the two children of the root of T ′ are leaves,
and since L(T ) = L(T ′), then T = T ′ and so the result holds.

Assume that the result holds for trees T and T ′ with at most k − 1 leaves.
Now consider two trees T, T ′ ∈ R B with |L(T )| = |L(T ′)| = |L(R)| = k.
Let C and C̄ be the maximal proper clusters of T ′. Note that L(T ) = C ∪ C̄.
Consider T and apply Lemma 4 to disentangle C from T , giving a sequence of
rSPR-related trees from T to a tree Ti (1 < i ≤ n) such that each tree displaysR,
and the tree Ti has maximal proper subtrees T |C and T |C̄. Applying Lemma 2
to this sequence of trees, we obtain a sequence S of NNI-related trees from T
to Ti for which each tree in the sequence displays R.

The tree T ′ has maximal proper subtrees T ′|C and T ′|C̄. Let RC = {ab|c ∈
R : a, b, c ∈ C} (i.e. the set of rooted triples for which the leaves are all in C).
Define RC̄ similarly. Now note that |L(T |C)| = |L(T ′|C)| < k so, by the induc-
tion assumption, there is a sequence of NNI-related trees (T |C, . . . , T ′|C) such
that each tree in the sequence displays RC . Since |L(T |C̄)| = |L(T ′|C̄)| < k,
the same applies to C̄.

Consider the sequence of NNI operations above that create the sequence
(T |C, . . . , T ′|C). Starting with tree Ti with subtree T |C, perform this sequence
of NNI operations to obtain a tree Tj (1 < i ≤ j ≤ n) with subtree T ′|C,
where the rest of the tree remains unchanged (that is, Ti \ (T |C) is equivalent
to Tj \ (T ′|C)). Since each tree in the sequence (Ti, . . . , Tj) displays RC , and
Ti\T |C is equivalent to Tj \T ′|C, each tree this sequence displays R. Repeating
this process for C̄ (with set of rooted triples RC̄), starting with the tree Tj , gives
the tree T ′ with maximal proper subtrees T ′|C and T ′|C̄, as required. We now
have a sequence of NNI-related trees from Ti to T ′ such that each tree in the
sequence displays R.

Combining this sequence of trees with the earlier sequence S, we obtain a
sequence of NNI-related trees (T, . . . , T ′) such that each tree in the sequence
displays R, as required.

We now turn to the general case in which L(R) ⊆ L(T ) = L(T ′). By

Lemma 1, there is a sequence of NNI-related trees from T to a tree T̃ with
subtree T |L(R), and there is a sequence of trees from T ′ to a tree T̃ ′ with subtree

T ′|L(R), such that each tree in these sequences displays R and T̃ \ (T |L(R)) is

equivalent to T̃ ′ \ (T ′|L(R)).

Next, we need a sequence of NNI-related trees from T̃ to T̃ ′ such that each
tree in the sequence displays R. By the special case (proved above), there is a
sequence of NNI-related trees from T |L(R) to T ′|L(R) such that each tree in the
sequence displays R. Performing the corresponding sequence of NNI operations,
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starting with the tree T̃ , transforms the subtree T |L(R) into T ′|L(R), giving

the tree T̃ ′. We now have a sequence of NNI-related trees from T̃ to T̃ ′ such
that each tree displays R, as required. �

4 Algorithm

In this section, we take the steps from the proofs of Lemmas 1, 2,and 4 and
create an algorithm which takes two trees T, T ′ ∈ R B as input and produces
a sequence of NNI-related trees from T to T ′, such that each tree in the sequence
displays R. The algorithm consists of the following five procedures.

The first procedure, FreeLeaves, takes a tree T and a set of rooted triples
R as input and uses steps (a) through (c) in the proof of Lemma 1 to create a

sequence of NNI-related trees ending with a tree T̃which has a subtree containing
exactly the leaves in R (as illustrated in Figure 5). It returns the sequence of
NNI-related trees.
Procedure FreeLeaves:
Input: A set R of rooted triples; a tree T ∈ R B .
Output: A sequence F of NNI-related trees from T to a tree with subtree
T |L(R).

1. Label the free leaves L(T ) \ L(R) = {x1, x2, . . . xn}.
2. Apply steps (a) through (c) in the proof of Lemma 1 where T is the

starting tree and the free leaves are labeled as in step 1 to produce F .
3. Return F .
The second procedure, ToNNI, uses steps (a) through (e) in the proof of

Lemma 2 to produce a sequence of NNI-related trees from a sequence of rSPR-
related trees.
Procedure ToNNI:
Input: A sequence S = (S1, . . . , Sk) of rSPR-related trees; a set R of rooted
triples displayed by each tree in S.
Output: A sequence S̃ of NNI-related trees.

1. Let S̃ = ( ).
2. For i = 1, . . . , k − 1:

(i) Apply steps (a) through (e) from the proof of Lemma 2 (given in
the appendix) to the trees Si and Si+1 to obtain a sequence Ui of
NNI-related trees, where Si is the first tree in the sequence Ui and
Si+1 is the last tree in the sequence Ui. Each tree in the sequence Ui

displays R by Lemma 2.
(ii) If i 6= k, remove the last tree (Si+1) from Ui (so that it will not be

repeated) and append Ui to S̃.

3. Return S̃.
The third procedure, Disentangle, takes a tree Tcurrent as input and uses

steps (a) through (c) in the proof of Lemma 4 to disentangle a given leaf set
from a specified subtree of Tcurrent, and returns the resulting sequence of rSPR-
related trees.
Procedure Disentangle:
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Input: A set R of rooted triples; a tree Tcurrent ∈ R B ; the root w of the
subtree of Tcurrent to disentangle; the leaf set C to disentangle.
Output: A sequence S of rSPR-related trees.

1. Let tw be the subtree of Tcurrent rooted at w. Let S = ( ) and let
Tworking = Tcurrent.

2. While Tworking does not have subtree Tcurrent|C = Tworking|C:
Let tw be the subtree of Tworking rooted at w. There is a minimal subtree
of tw containing exactly two maximal subtrees tx and ty, whose leaf sets are
subsets of C (note that tx or ty may contain only a single leaf). Perform
steps (a) through (c) in the proof of Lemma 4, starting with the tree
Tworking, to obtain two trees T ∗ and T ∗∗, where T ∗∗ has a subtree with
leaf set L(tx) ∪ L(ty). Append T ∗ and T ∗∗ to S. Let Tworking = T ∗∗.

3. The tree Tworking now has subtree Tcurrent|C. Consider the root rC
of the subtree Tcurrent|C of Tworking and the root rL of the subtree
Tworking|L(R) of Tworking. If rC is not a child of rL, perform one more
rSPR operation to prune the subtree Tcurrent|C and regraft it to a vertex
subdividing the arc between rL and its parent, giving tree T̂ . Append T̂
to S.

4. Return S.

The fourth procedure, TraverseTree, is a recursive procedure that traverses
a tree depth-first, calls the procedure Disentangle for each subtree, and com-
bines the resulting sequences of trees. It then returns the entire sequence of
rSPR-related trees produced by all of the recursive calls.
Procedure TraverseTree:
Input: a set R of rooted triples; a tree Tcurrent ∈ R B to traverse; the root
w of a subtree of Tcurrent; a tree T ′ ∈ R B .
Output: A sequence S of rSPR-related trees from Tcurrent to a tree with sub-
tree T ′.

1. Let S = ( ) and let tw be the subtree of Tcurrent rooted at w. If |L(tw)| ∈
{1, 2}, go to step 5 (i.e. if tw consists of only a single leaf or a cherry,
return an empty sequence.)

2. Let C be a maximal proper cluster of T ′.
3. Do S = S+Disentangle(R, Tcurrent, w, C). If |S| 6= 0, let Tcurrent be the

last tree in the sequence S.
4. For A ∈ {C, C̄} (where C̄ is the complement of C with respect to L(tw)):

(i) Do S = S+TraverseTree(RA, Tcurrent, rA, T
′|A), whereRA = {ab|c ∈

R : a, b, c ∈ A} and rA is the root of the subtree Tcurrent|A of Tcurrent
(the subtree containing exactly the leaves in A).

(ii) If |S| 6= 0, let Tcurrent be the last tree in the sequence S.
5. Return S.

The last procedure, TreeSequence, takes two trees, T and T ′, as input and
uses all of the above procedures to produce a sequence of NNI-related trees from
T to T ′ such that each tree in the sequence displays R. TreeSequence first calls
FreeLeaves with input T (respectively T ′) to produce a sequence of NNI-related

trees from T to a tree T̃ (respectively from T ′ to a tree T̃ ′). TraverseTree is then
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applied to produce a sequence of rSPR-related trees from T̃ to T̃ ′, which ToNNI
converts into a sequence of NNI-related trees. Lastly, these three sequences are
combined to produce the required sequence of NNI-related trees from T to T ′.
Procedure TreeSequence:
Input: Two rooted binary phylogenetic trees, T and T ′.
Output: A sequence of NNI-related trees from T to T ′ such that each tree in
the sequence displays R.

1. Let R = r(T ) ∩ r(T ′), so T, T ′ ∈ R B . Let L = L(R). Do F =

FreeLeaves(R, T ) and F ′ = FreeLeaves(R, T ′). Let T̃ and T̃ ′ be the last

trees in the sequences F and F ′ respectively. Note that T̃ \ (T |L) is

equivalent to T̃ ′ \ (T ′|L)).

2. Reverse F ′ and call this sequence of trees
←−
F ′.

3. Do S = TraverseTree(R, T̃ , rT |L, T̃ ′), where rT |L is the root of the subtree

T |L of T̃ . Now S is a sequence of rSPR-related trees from T̃ to T̃ ′ for
which each tree in the sequence displays R.

4. Do S̃ = ToNNI(S).

5. Return F + S̃+
←−
F ′, which is a sequence of NNI-related trees from T to T ′

satisfying the required properties.

4.1 Complexity

In this section we calculate the complexity of each procedure. We start by
noting that one rSPR operation is O(1), as is one NNI operation. Recall that
T, T ′ ∈ R B and L(R) ⊆ L(T ) = L(T ′). Let n = |L(T )|. Let nR = |L(R)|,
the number of leaves in R, and let nF = |L(T )| − nR, the number of free leaves
in T , so that n = nR + nF .

First consider the procedure FreeLeaves. This procedure uses NNI oper-
ations to produce, from T , a tree with subtree T |L(R), as described in the
procedure. Let D = d(T ) be the depth of T . For tree T , each leaf requires
O(D) NNI operations. There are nF leaves for which this must be repeated, so
this procedure is O(nFD).

Next, we consider the procedure ToNNI applied to a sequence S = (S1, . . . , Sk)
of rSPR-related trees. This procedure produces from S a sequence of NNI-
related trees. Let DS = max{d(Si) for 1 ≤ i ≤ k}. Each rSPR operation
corresponds to at most 2DS NNI operations since, in the worst case, arcs e and
f (given in the definition of an rSPR operation) are distance 2DS − 2 apart.
Therefore, each consecutive pair of trees in S produces a sequence of up to
2DS NNI-related trees. There are k − 1 consecutive pairs of trees in S, so this
procedure is O(kDS) = O(|S|DS).

Consider the procedure Disentangle. Let tw be the subtree of Tcurrent rooted
at w. Disentangling the leaf set C from tw requires up to 2|C| − 1 rSPR op-
erations. Therefore, the total number of rSPR operations required is at most
2|C| − 1. Since 2|C| − 1 < 2|C| < 2nR, the procedure Disentangle is O(nR).

Now consider the procedure TraverseTree. The maximum recursion depth
is nR. The call to the procedure Disentangle in step 3 is O(nR), as described
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above. Step 4 is O(|C|) × O(nR) + O(|C̄|) × O(nR) = (O(|C|) + O(|C̄|)) ×
O(nR) = O(nR)×O(nR) = O(n2

R). So the overall complexity of the procedure
TraverseTree is O(nR) +O(n2

R) = O(n2
R).

Lastly, consider the procedure TreeSequence. Let DT = max{d(T ), d(T ′)}.
Step 1 is O(nFDT ) (two calls to the procedure FreeLeaves). This gives two
sequences of trees, F and F ′, where the length of F ′ is AnFDT for some con-
stant A. Step 2 is therefore O(nFDT ), reversing the sequence F ′. Step 3 is
O(n2

R) (call to the procedure TraverseTree). This gives a sequence of trees S′

of length Bn2
R for some constant B. Step 4 is O(|S′|DS′) = O(Bn2

RDS′) =
O(n2

RDS′) (call to the procedure ToNNI). Step 5 concatenates three sequences,
the complexity of which can be O(1) (depending on the implementation). There-
fore, the procedure TreeSequence is O(n2

RDS′ + nFDT ). Letting Dmax =
max{DS′ , DT } and noting that nR ≤ n and nF ≤ n, the complexity isO(n2Dmax).

Hence, producing a sequence of NNI-related trees from T to T ′ has a com-
plexity of O(Dmaxn

2).

5 Concluding comments

In this paper, we have provided an explicit polynomial-time procedure for mov-
ing between any two trees on a phylogenetic ‘terrace’ using elementary (NNI)
operations, so that each tree in the sequence also belongs to the terrace. Thus
if two trees have an optimal score under some linear scoring function satisfying
Eqn.(1), each tree in the sequence is also optimal. Of course, there are likely
to be many other such sequences between the two trees that also lie on the
terrace, so having some way of quantifying this number would be interesting. A
further question, that is particularly relevant to many applications, asks for the
development of a polynomial-time approximation procedure for sampling the
trees on a terrace uniformly at random (or, equivalently, the trees that display
a set of rooted triples). An approach based on random NNI or rSPR walks
(sequences of NNI or rSPR operations) that move between trees on the terrace
may provide a way to approach this problem; this was, in part, the motivation
for our study. The development of an efficient randomized sampling scheme for
trees on a terrace seems a worthy topic for further study.
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Appendix: Proof of Lemma 2

For convenience, we restate Lemma 2 here.
Suppose that R is a set of rooted triples and T, T ′ ∈ R B, with L(T ) =

L(T ′) = L(R). Suppose that T ′ is obtained from T by one rooted subtree prune-
and-regraft operation. Then there is a sequence of trees (T0, T1, . . . , Tn) such
that:

1. T0 = T and Tn = T ′,
2. Ti

NNI∼ Ti+1 for 0 ≤ i < n, and
3. Ti ∈ R B for 0 ≤ i ≤ n (i.e. each Ti displays R).

Proof: Consider the trees T and T ′. By our assumption, T
rSPR∼ T ′. If T = T ′

or T
NNI∼ T ′, we are done. So suppose that this is not the case. Let the rSPR

operation be with respect to some subtree tu of T . Then T and T ′ both have
subtree tu. Let v0 be the parent of u in T (the vertex v0 always exists because
tu is a proper subtree of T ). Similarly, let v′ be the parent of u in T ′. When
defining the neighbours of v′ in T ′, there are two cases to consider. The first
case is that v′ has three neighbours, u, vn, and vn+1. Note that vn and vn+1

are both in T , so there is a path v0, . . . , vn, vn+1 in T . The second case is that
v′ has two neighbours, u and vn. In this case, v′ is the root of T ′. As vn is in
T , there is a path v0, . . . , vn in T .

We now describe the minimum sequence of NNI operations with respect to
tu that is performed to obtain T ′ from T .

a) In the first NNI operation, delete the arc (v0, u) from T , subdivide the arc
{v1, v2} with a vertex w1, insert arc (w1, u), and then suppress v0. Call
the resulting tree T1.

b) For i = 2, . . . , n − 1, perform the following (ith) NNI operation: Delete
the arc (wi−1, u) from Ti−1, subdivide the arc {vi, vi+1} with a vertex wi,
insert arc (wi, u), and then suppress the vertex wi−1. Call the resulting
tree Ti.

c) The last (nth) NNI operation is as follows. If vn is the root of Tn−1 and
v′ is the root of T ′, delete the arc (wn−1, u) from Tn−1, introduce a vertex
wn, and insert arc (wn, vn). (Note that, in this case, wn is the root of
the resulting tree.) Otherwise, delete the arc (wn−1, u) from Tn−1, and
subdivide the arc {vn, vn+1} with a vertex wn.

d) Insert arc (wn, u) and then suppress the vertex wn−1. The resulting tree
is T ′, where wn = v′.

We now have a sequence of NNI-related trees from T to T ′. Next, we prove
that for each i (0 ≤ i ≤ n), Ti ∈ R B . Let ri denote the root of Ti for each i.
We proceed using induction on i and note that T0 = T ∈ R B by assumption.

Assume that Ti ∈ R B for some i < n. To see that Ti+1 ∈ R B , consider
a rooted triple ab|c ∈ R. Recall that a tree displays ab|c if and only if the path
from a to b does not intersect the path from c to the root of the tree. This is the
case in Ti and we show that it is also the case in Ti+1. There are six possible
cases to be considered with respect to the possible locations of a, b, and c in
Ti. Let vab be the most recent common ancestor of a and b in Ti and let vabc
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be the most recent common ancestor of a, b, and c in Ti. Recall that all of the
NNI operations are with respect to tu.

Case 1: a, b, c ∈ tu. In this case, in Ti, the (a-b)-path (the path from a to b)
does not intersect the (c-ri)-path, so, in tu, the (a-b)-path does not intersect the
(c-u)-path. The tree Ti+1 contains the subtree tu, so, as before, the (a-b)-path
does not intersect the (c-u)-path and hence, in Ti+1, the (a-b)-path does not
intersect the (c-ri+1)-path. Therefore, Ti+1 displays ab|c.

Case 2: a, b, c 6∈ tu. In this case, in Ti, no element of the (a-b)-path, or the
(c-ri)-path, is in tu. Let q be the path between vab and vabc in Ti and let p be
a path in Ti with one endpoint in the (a-b)-path and the other endpoint in the
(c-ri)-path. Then p must contain q, so |p| ≥ |q|. Therefore, the (a-b)- and (c-ri)-
paths intersect if and only if q has length zero, in which case vab = vabc. Assume
that Ti+1 does not display ab|c, so the (a-b)- and (c-ri+1)-paths intersect and so,
by the same argument, vab = vabc. Then, in Ti+1, vabc has three children and
so Ti+1 is not a binary tree. This is a contradiction because, by definition, an
NNI operation on a binary tree produces another binary tree. Therefore Ti+1

displays ab|c.
Case 3: a, b ∈ tu and c 6∈ tu. In this case, in Ti, the (a-b)-path is contained

entirely in tu and the (c-ri)-path contains no arcs or vertices in tu, so these
two paths do not intersect. Performing an NNI operation on Ti to obtain Ti+1

will not affect this, so the same property will hold in Ti+1. In Ti+1, the (a-b)-
path will be contained entirely in tu and the (c-ri+1)-path will not contain any
of these vertices or arcs, so these two paths do not intersect. Therefore, Ti+1

displays ab|c.
Case 4: b, c ∈ tu and a 6∈ tu (which is analogous to the case a, c ∈ tu, b 6∈ tu).

In this case, in Ti, the (a-b)-path and the (c-ri)-path both contain u, so these two
paths intersect. Therefore, Ti does not display ab|c, which is a contradiction. It
is thus not possible that b, c ∈ tu and a 6∈ tu.

Case 5: a ∈ tu and b, c 6∈ tu (which is analogous to the case b ∈ tu, a, c 6∈ tu).
Let v′ab be the most recent common ancestor of a and b in Ti+1 and let v′abc be
the most recent common ancestor of a, b, and c in Ti+1. First assume that, in
Ti+1, v′ab is a proper descendant of v′abc. Then Ti+1 displays ab|c. Now assume
that this is not the case; that is, in Ti+1, v′ab is not a proper descendant of v′abc.
Then the (a-b)-path and the (c-ri+1)-path intersect. Furthermore, in Ti+1, both
the (a-b)-path and the (c-ri+1)-path contain vabc. Now for each Tk, where k > i,
both the (a-b)-path and the (c-rk)-path contain vabc. Hence, in Tn = T ′, both
the (a-b)-path and the (c-rn)-path contain vabc, so these two paths intersect, a
contradiction of the assumption that T ′ ∈ R B . Therefore, Ti+1 displays ab|c.

Case 6: c ∈ tu and a, b 6∈ tu. Let v′ab and v′abc be defined as in case 5.
First assume that, in Ti+1, v′abc is a proper ancestor of v′ab. Then Ti+1 displays
ab|c. Now assume that this is not the case; that is, in Ti+1, v′abc is not a proper
ancestor of v′ab. Then u (and therefore c) is a descendant of vab. So the (a-b)-path
and the (c-ri+1)-path intersect. Furthermore, in Ti+1, both the (a-b)-path and
the (c-ri+1)-path contain vab. Now for each Tk, where k > i, both the (a-b)-path
and the (c-rk)-path contain vab. Hence, in Tn = T ′, both the (a-b)-path and
the (c-rn)-path contain vab, so these two paths intersect, a contradiction of the



268 Mark, McLeod, Steel Navigating tree space

assumption that T ′ ∈ R B . Therefore, Ti+1 displays ab|c.
In each of the six cases, either the scenario is not possible (case 4) or Ti+1

displays ab|c. Since ab|c was an arbitrary rooted triple in R, we can extend this
result to all of the rooted triples in R, so Ti+1 ∈ R B . Therefore, by induction,
Tj ∈ R B for all 0 ≤ j ≤ n. �
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