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Abstract

In this paper, we consider a biologically-inspired Boolean function Pn
D

that models a simple task of detecting global spatial patterns on a two-
dimensional map. We prove that Pn

D is computable by a threshold circuit
of size (i.e., number of gates) O(

√
n logn), which is an improvement on

the previous upper bound O(n), while our circuit has larger depth O(
√
n)

and total wire length O(n log2 n). Moreover, we demonstrate that the size
of our circuit is nearly optimal up to a logarithmic factor: we show that
any threshold circuit computing Pn

D has size Ω(
√
n/ logn).
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1 Introduction

A threshold circuit is a combinatorial circuit comprising logic gates computing
linear threshold function, and comprises one of the most well-studied compu-
tational models in circuit complexity theory. It is known that threshold cir-
cuits have surprising computational power: polynomial-size and constant-depth
threshold circuits can compute a variety of Boolean functions including basic
arithmetic operations such as addition, multiplication, division, sorting, etc.
[6, 8, 9, 11, 10]. Finding an explicit function that cannot be computed by
polynomial-size and constant-depth threshold circuits is a standard approach to
resolving the well-known P vs. NP problem, and threshold circuits are currently
on its cutting edge (e.g., see [12]).

Threshold circuits have been studied from another perspective: threshold
circuits are considered to provide a theoretical model of neural networks in
the brain [6, 7, 10]. It is known that a threshold gate, the basic element of a
threshold circuit, captures the basic input-output characteristic of a biological
neuron. In this line of research, we expect to take a step towards understanding
how a neural network realizes complicated information processing (e.g., sensory
processing) with remarkably high speed and low energy consumption.

However, classical circuit complexity theory provides little insight; Legen-
stein and Maass suggested the following two reasons [2]. (1) Conventional com-
plexity theory focuses on a different set of computational problems such as the
arithmetic operations above mentioned, and (2) standard complexity measures
such as circuit size and depth are not tailored to resources that are of pri-
mary interest in neuromorphic engineering and the analysis of neural circuits
in biological organisms. Motivated by this viewpoint, Legenstein and Maass
attempted to resolve the situation by introducing the following setting.

They proposed several biologically-inspired Boolean functions that model
simple tasks of visual information processing. They consider the so-called local
feature detectors in neural networks, in which a local feature detector is a bi-
ological unit detecting the presence of a salient local feature, such as a center
that emits higher intensity than its surrounding, a line segment in a particular
direction, or even more complex local visual patterns such as an eye or a nose.
Intuitively, they define their Boolean functions as problems of asking whether
two (or more) types of local feature detectors form a predefined simple configu-
ration. In addition, being motivated by the importance of minimizing wiring in
determining brain organization (e.g., see [1] and its references), they propose a
complexity measure, total wire length, that is the sum of the lengths of wires in
a particular circuit implementation model. They investigate threshold circuits
computing their Boolean functions by means of the total wire length [2, 3, 4].

Among the proposed Boolean functions, we focus on one of them, called
PnD, defined on a two-dimensional map on which local feature detectors of two
types reflecting spatial relationship in the outside world are arranged. PnD is
a simple pattern detection problem querying whether there exists a pair of
different local feature detectors satisfying a simple condition: one local feature is
detected below and to the left of the other (see Section 2.3 for precise definition).
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Ref. size depth total wire length

O(n) O(log n · log log n) O(n)

[2] O(n) O
(

logn
log ∆

)
O
(
n ·∆ · logn

log ∆

)
O(n) O(log n) O(n)

Ours O(
√
n log n) O(

√
n) O(n log2 n)

Table 1: Complexities of prior and our circuits. We omit some advantages of
the circuits provided in [2]. The first circuit comprises AND/OR gates with
just two inputs and outputs. The second circuit is formulated in terms of ∆,
2 ≤ ∆ ≤

√
n, which is the maximum number of inputs of the gates. The third

circuit comprises threshold gates with at most O(log n) inputs.

Legenstein and Maass showed that PnD is computable by a circuit of reasonably
small size, depth, and total wire length [2]. They provide a circuit of size (i.e.,
number of gates) O(n), depth O(log n · log log n), and total wire length O(n), in
which every gate computes the AND or OR of two inputs. They then consider
the case in which AND/OR gates are permitted to have larger inputs and total
wire length and show that PnD is computable by a circuit of size O(n), depth
O(log n/ log ∆), and total wire length O((n ·∆ · log n)/ log ∆) for any integer ∆,
2 ≤ ∆ ≤

√
n, in which every gate computes AND or OR of at most ∆ inputs.

They also give a threshold circuit of size (i.e., the number of gates) O(n), depth
O(log n), and total wire length O(n), in which the threshold gates have O(log n)
inputs. (See Table 1.)

Our main result in this paper is an improvement on the size of threshold
circuits computing PnD. We prove that PnD is computable by a threshold circuit
of size O(

√
n log n), depth O(

√
n), and total wire length O(n log2 n). We obtain

our circuit by construction, and our proof exhibits the explicit structure of the
desired circuit. We note that our circuit comprises a number of copies of sub-
circuits performing the same task with a different set of inputs.

An optimal size of threshold circuits computing PnD is of independent inter-
est. In fact, as a complement to our circuit construction, we further show that
any threshold circuit computing PnD is of size Ω(

√
n/ log n). Thus, the size of

our circuit is optimal up to a polylogarithmic factor.

The remainder of the paper is organized as follows. In Section 2, we define
threshold circuits and the complexity measures, and provide a formal definition
of PnD. In Section 3, we show that PnD is computable by a threshold circuit of
O(
√
n log n) gates. In Section 4, we provide a lower bound Ω(

√
n/ log n) . In

Section 5, we finally conclude with some remarks.
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2 Definitions

In Section 2.1, we define threshold circuits. In Section 2.2, we define three
complexity measures, size, depth, and total wire length. In Section 2.3, we
provide the precise definition of PnD.

2.1 Threshold Circuits

A threshold gate with an arbitrary number z of inputs computes a linear thresh-
old function with z inputs: for every input x = (x1, x2, . . . , xz) ∈ {0, 1}z, the
output g(x) of a threshold gate g with integer weights w1, w2, . . . , wz and thresh-
old t is defined as

g(x) = sign

(
z∑
i=1

wixi − t

)
where for any number η, sign(η) = 1 if η ≥ 0, sign(η) = 0, otherwise.

A threshold circuit C is a combinatorial circuit of threshold gates, and is
defined by a directed acyclic graph. Let n be the number of input variables
to C. Then each node of in-degree 0 in C corresponds to one of the n input
variables x1, x2, . . . , xn, and the other nodes correspond to threshold gates.

Let C be a threshold circuit with n input variables x1, x2, . . . , xn and s gates.
Let g1, g2, . . . , gs be the gates in C, which are topologically ordered with respect
to the underlying directed acyclic graph of C. We regard the output of gs as the
output C(x) of C, and call the gate gs the top gate of C. A threshold circuit C
computes a Boolean function f : {0, 1}n → {0, 1} if C(x) = f(x) for every input
x = (x1, x2, . . . , xn) ∈ {0, 1}n.

2.2 Complexity Measures for Threshold Circuits

We use three complexity measures, size, depth, and total wire length for thresh-
old circuits. The first two measures are standard in circuit complexity; for a
threshold circuit C, the size s(C) of C, simply denoted by s, is the number of
gates in C, and the depth d(C) of C, simply denoted by d, is the number of gates
on the longest directed path to the top gate of C on its underlying directed
acyclic graph.

Legenstein and Maass proposed the last measure, total wire length, to eval-
uate threshold circuits from the biological viewpoint. The measure is based on
the following model of a circuit implementation that abstracts the total wire
length of a neural network in cortical circuitry. (See [2] and its references for
justification. More precisely, we adopt Model (A) in [2].)

We assume that gates, input-ports and output-ports are placed on intersec-
tion points on a two-dimensional grid on which two adjacent points are unit-
distance apart. We can connect these gates and ports by routing wires in the
Euclidean plane; wires can cross and need not run rectilinearly. If a gate g has
k inputs, then g occupies a set of k intersection points that are all connected by
an undirected wire. Any of these k points can be used to provide one of the k
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Figure 1: Arrangement of indices of x = (x0,0, x0,1, . . . , xσ,σ) ∈ {0, 1}n and
y = (y0,0, y0,1, . . . , yσ,σ) ∈ {0, 1}n on the 2-dimensional grid.

inputs or one of the outputs of the function computed by g. A wire is permitted
to branch and provide inputs to the other gates. We define total wire length of
a circuit C as the minimal value of the sum of all the wire lengths of any such
arrangement implementing C.

2.3 Target Function P n
D

Let n be a positive integer. In the rest of the paper, we assume that n is a
perfect square, and define σ =

√
n− 1. Let x = {x0,0, x0,1, . . . , xσ,σ} ∈ {0, 1}n

and y = {y0,0, y0,1, . . . , yσ,σ} ∈ {0, 1}n be two input variables, each of which is
arranged in an n× n square. (See Fig. 1.)

The function PnD represents a simple task relating global patterns concerning
two local features and is defined as

PnD(x,y) =

{
1 if ∃i1, i2, j1, j2 :xi1,j1 =yi2,j2 =1 such that i1>i2 and j1<j2;
0 otherwise

for every pair of x = (x0,0, x0,1, . . . , xσ,σ) and y = (y0,0, y0,1, . . . , yσ,σ). In other
words, PnD(x,y) = 1 if and only if there exists a pair of locations xi1,j1 and
yi2,j2 such that (i) xi1,j1 = yi2,j2 = 1, and (ii) xi1,j1 is below and to the left of
yi2,j2 . (See Fig. 2.) The function PnD models a task for determining whether a
set of locations with xi1,j1 = 1 overlaps those with yi2,j2 = 1.

3 Construction of Circuit

In this section we give an upper bound on the size of threshold circuits comput-
ing PnD, as in the following theorem.

Theorem 1 PnD is computable by a threshold circuit C of size O(
√
n log n),

depth O(
√
n) and total wire length O(n log2 n).
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Figure 2: Input assignment (x,y) for P 49
D , where (a) and (b) depict x and

y, respectively. Note that we omit 0s in x and y for simplicity. In this case,
P 49
D (x,y) = 1, since x3,1 = 1 and y1,2 = 1 (the corresponding locations are

shaded).

We prove the theorem by construction. In Section 3.1, we define some terms,
and obtain a useful lemma. In Section 3.2, we construct the circuit. In Sec-
tion 3.3, we evaluate the size, depth and total wire length of the circuit.

3.1 Terms and Idea

Let x = (x0,0, x0,1, . . . , xσ,σ) ∈ {0, 1}n. For each j, 0 ≤ j ≤ σ, consider the
j-th column of x, and define max(x; ∗, j) and min(x; ∗, j) as the maximum and
minimum indices i, respectively, satisfying xi,j = 1:

max(x; ∗, j) = max{i | xi,j = 1, 0 ≤ i ≤ σ},

and

min(x; ∗, j) = min{i | xi,j = 1, 0 ≤ i ≤ σ};

if there is no index i satisfying xi,j = 1, we define max(x; ∗, j) = 0 and
min(x; ∗, j) = σ. For example, see Fig. 2(a) where max(x; ∗, 2) = 0 and
max(x; ∗, 5) = 5, and see Fig. 2(b) where min(y; ∗, 0) = 2 and min(y; ∗, 2) = 1.

Let x = (x0,0, x0,1, . . . , xσ,σ) ∈ {0, 1}n and y = (y0,0, y0,1, . . . , yσ,σ) ∈ {0, 1}n
be an arbitrary pair of inputs of PnD. Then PnD(x,y) can be determined by the
following lemma.

Lemma 1 PnD(x,y) = 1 if and only if there exists an index j, 0 ≤ j ≤ σ − 1,
such that

min
j+1≤q≤σ

min(y; ∗, q) < max(x; ∗, j) (1)
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Proof: (⇐) Suppose there exists an index j satisfying Eq. (1). Let

i1 = max(x; ∗, j) and i2 = min
j+1≤q≤σ

min(y; ∗, q). (2)

Clearly,

xi1,j = 1 (3)

and there exists an index q, j + 1 ≤ q ≤ σ, satisfying

yi2,q = 1. (4)

By Eqs. (1) and (2), we have

i1 > i2. (5)

Furthermore, we have

j < j + 1 ≤ q. (6)

Thus, by Eqs. (3)−(6), PnD(x,y) = 1 holds.
(⇒) Suppose PnD(x,y) = 1, that is, there exist indices i1, i2, j1 and j2 such

that xi1,j1 = 1 and yi2,j2 = 1 satisfying

i1 > i2 (7)

and

j1 < j2. (8)

Since Eq. (8) holds, we have

i1 ≤ max(x; ∗, j1)

and
i2 ≥ min

j2≤q≤σ
min(y; ∗, q),

and hence by Eqs. (7) and (8)

min
j1+1≤q≤σ

min(y; ∗, q) ≤ min
j2≤q≤σ

min(y; ∗, q) ≤ i2 < i1 ≤ max(x; ∗, j1)

as required when j = j1. �

3.2 Construction of C
Based on Lemma 3.1, we now construct the desired threshold circuit C. Let
τ = dlog

√
ne for simplicity.

First, for each j, 0 ≤ j ≤ σ, we construct a set of τ threshold gates gtj ,
0 ≤ t ≤ τ − 1, such that the outputs of τ gates represent max(x; ∗, j) in
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binary system. We utilize a circuit construction used in [2]. For each pair
of i, 0 ≤ i ≤ σ, and t, 0 ≤ t ≤ τ , let

p(i, t) =

⌊
i

2t

⌋
and

u(i, t) = (−1)1+p(i,t) · 2i. (9)

Clearly, if the (t + 1)st bit of the binary representation of i is 1, then p(i, t) is
odd, thus u(i, t) = 2i; and otherwise, p(i, t) is even, thus u(i, t) = −2i. Let j,
0 ≤ j ≤ σ, be an arbitrarily fixed index. For each t, 0 ≤ t ≤ τ − 1, the gate
gtj has threshold 1, and receives every input in the jth column: gtj receives xi,j
with weight ui,t for every i, 0 ≤ i ≤ σ. Thus, for every x ∈ {0, 1}n,

gtj(x) = sign

(
−1 +

σ∑
i=0

u(i, t)xi,j

)
. (10)

Equations (9) and (10) imply that

max(x; ∗, j) =

τ−1∑
t=0

2t · gtj(x), (11)

and thus equals to the (t+ 1)st bit of the binary representation of max(x; ∗, j).
Second, for each j, 0 ≤ j ≤ σ, we similarly construct a set of τ threshold

gates htj , 0 ≤ t ≤ σ, such that the outputs of the τ gates represent min(y; ∗, j)
in the binary system. For each t, 0 ≤ t ≤ τ − 1, the gate htj has threshold 1,
and receives every input in the jth column: htj receives yi,j with weight

v(i, t) = (−1)1+p(i,t) · 2σ−i (12)

for every i, 0 ≤ i ≤ σ. Thus, for every y ∈ {0, 1}n,

htj(y) = sign

(
−1 +

σ∑
i=0

v(i, t)yi,j

)
. (13)

Then Eqs. (12) and (13) imply that

min(y; ∗, j) =

τ−1∑
t=0

2t · htj(y), (14)

and hence the output of hti equals to the (t+1)st bit of the binary representation
of min(y; ∗, j).

Using htj , 0 ≤ t ≤ τ − 1, we construct gates ĥtj , 0 ≤ t ≤ τ − 1, that represent

min
j≤q≤σ

min(y; ∗, q);
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Figure 3: Overview of the circuit for ĥtj , 0 ≤ t ≤ τ − 1, where the gates
labeled with “∧” compute the AND of two inputs and the gates labeled with
“∨” computes the OR of two inputs.

the construction is inductive on j from σ to 0. For the case in which j = σ,
we do not create any new gate, and simply identify ĥtσ with htσ for every t,
0 ≤ t ≤ τ − 1, since

min
σ≤q≤σ

min(y; ∗, q) = min(y; ∗, σ).

For each j, σ− 1 ≥ j ≥ 1, we introduce two gates aj , bj and 2τ gates atj and btj ,

0 ≤ t ≤ τ−1, whose outputs are used for inputs to ĥtj , 0 ≤ t ≤ τ−1. The gates aj
and bj determine whether min(y; ∗, j) is smaller than minj+1≤q≤σ min(y; ∗, q),
and are defined as

aj(y) = sign

(
−1−

τ−1∑
t=0

2thtj(y) +

τ−1∑
t=0

2tĥtj+1(y)

)
and

bj(y) = sign

(
τ−1∑
t=0

2thtj(y)−
τ−1∑
t=0

2tĥtj+1(y)

)
.

By Eq. (14), aj outputs 1 if and only if

min(y; ∗, j) < min
j+1≤q≤σ

min(y; ∗, q);
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whereas bj outputs 1 if and only if

min(y; ∗, j) ≥ min
j+1≤q≤σ

min(y; ∗, q);

Thus, exactly one of aj and bj outputs 1 for any input. Then, for each t,
0 ≤ t ≤ τ − 1, the gate atl computes the AND of the outputs of htj and aj :

atj(y) = sign(htj(y) + aj(y)− 2).

Clearly, the output of atj is equal to that of htj if aj(y) = 1 (i.e. min(y; ∗, j) <
minj+1≤q≤σ min(y; ∗, q)); and equals to 0, otherwise. Similarly, the gate btj
computes the AND of the outputs of htj+1 and bj :

btj(y) = sign(ĥtj+1(y) + bj(y)− 2).

The output of btj is equal to that of ĥtj+1 if bj(y) = 1 (i.e. min(y; ∗, j) ≥
minj+1≤q≤σ min(y; ∗, q)); and equals to 0, otherwise. For each t, 0 ≤ t ≤ τ − 1,

we obtain the gate ĥtj simply computing the OR of the outputs of atj and btj ;

ĥtj(y) = sign(atj(y) + btj(y)− 1).

Clearly, we have

min
j≤q≤σ

min(y; ∗, q) =

τ−1∑
t=0

2t · ĥtj(y). (15)

See Fig. 3 which depicts the circuit for computing ĥtj , 0 ≤ t ≤ τ − 1.

Finally, we construct σ + 1 gates r0, r1, . . . , rσ such that for each j, 0 ≤ j ≤
σ− 1, the gate rj determines whether there exists an index j satisfying Eq. (1).
Equations (11) and (15) imply that we can obtain such rj , as follows: rj has

threshold 0 and receives the outputs of gtj with weight 2t and ĥtj+1 with weight
−2t for every t, 0 ≤ t ≤ τ − 1. More formally,

rj(x, y) = sign

(
−1−

τ−1∑
t=0

2t · gtj(x) +

τ−1∑
t=0

2t · ĥtj+1(y)

)
.

Consequently, Lemma 3.1 implies that PnD(x, y) = 1 if and only if there exists
an index j, 0 ≤ j ≤ σ−1, such that rj(x, y) = 1. Therefore, our construction of
C is completed by adding the top gate s computing the OR of r0, r1, . . . , rσ−1:

s(x,y) = sign

−1 +

σ−1∑
j=0

rj(x,y)

 .
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Figure 4: Overview of the layout of C.

3.3 Analysis of C
We now analyze the size, depth and total wire length of C.

For every j, 0 ≤ j ≤ σ, we have 3τ gates gtj , h
t
j and ĥtj , 0 ≤ t ≤ τ − 1. In

addition, for every j, 0 ≤ j ≤ σ, we have 2τ gates atj and btj , 0 ≤ t ≤ τ − 1
together with two gates aj and bj . Besides, we have r0, r1, . . . , rσ−1 and s.
Consequently, the size of C is

3τ(σ + 1) + (2τ + 2)(σ + 1) + σ + 1 = O(στ) = O(
√
n log n).

Moreover, we require at most three layers to obtain ĥtj , 0 ≤ t ≤ τ − 1, for each
j, 0 ≤ j ≤ σ, followed by the two layers containing r0, r1, . . . , rσ−1 and the top
gate s. Thus, the depth is O(σ) = O(

√
n).

Finally, we show that the total wire length of C is O(n log n). To obtain
the desired circuit layout, we use a number of duplicated copies of four basic
layouts, A,B and C together with a layout D. An overview of the entire layout
depicted with A,B,C, and D is shown in Fig 4. We first evaluate the length of
wires within each of the four layouts and then evaluate the length among the
layouts.

In the layout A, we place the gates gtj , 0 ≤ t ≤ τ − 1, for every j, 0 ≤ j ≤ σ,
as follows: we place the inputs x0,j , x1,j , . . . , xσ,j , vertically; moreover, to the
right of the inputs, we place the gates gtj , 0 ≤ t ≤ τ − 1, each of which occupies
σ vertical intersection points (see Fig 5(a)). The length of the wires comprising
a gate is O(σ); therefore the length for all of the gates is O(στ). The length of
wires connected to each input is O(τ); therefore the length for all of the gates
is O(στ). We consequently have wires of length O(στ) in total for each layout.
Similarly, the layout A is used to place the gates htj , 0 ≤ t ≤ τ − 1, for every j,
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Figure 5: Circuit layout A applied to (a) gtj , 0 ≤ t ≤ τ − 1, and to (b) htj ,
0 ≤ t ≤ τ − 1.

0 ≤ j ≤ σ (see Fig 5(b)). In total, we have wires of length O(στ) within each
A. Since we have O(σ) copies of the layout A, we have wires of O(σ2τ) length
for the A’s.

In the layout B, for every j, 0 ≤ j ≤ σ, we place the gates aj , bj , a
t
j and btj ,

0 ≤ t ≤ τ − 1, together with ĥtj , as follows. We place the gate bj at the bottom
of the layout, and place aj just above bj ; each of them occupies 2τ horizontal
intersection points. We then place atj and btj , 0 ≤ t ≤ τ − 1, each of which

occupies two vertical intersection points. Finally, we place ĥtj , 0 ≤ t ≤ τ − 1,
just above atj , 0 ≤ t ≤ τ − 1, each of which occupies two vertical intersection
points (see Fig. 6). The length of wires for composing aj (and bj) is O(τ), and
the length for the other gates is O(1); therefore, the length for all the gates is
O(τ). The length of wires among aj , bj , a

t
j and btj , 0 ≤ t ≤ τ−1, is clearly O(τ),

whereas the length of wires among btj and ĥtj , 0 ≤ t ≤ τ−1, is O(τ2) = O(log2 n).

The length of wires for the outputs of ĥtj , 0 ≤ t ≤ τ −1, is O(τ2). Consequently,

in total, we have wires of length O(τ2) within each B. Since we have O(σ)
copies of the layout B, we have wires of O(στ2) length for the B’s.

In the layout C, we place each of the gates rj , 0 ≤ j ≤ σ− 1, as follows. We
place the gate rj so that each gate occupies τ horizontal intersection points and
τ vertical intersection points (see Fig. 7). The length of wires for composing the
gate is clearly O(τ). Since we use O(σ) copies of the layout C, in total, wires
of length O(στ) for the C’s.

In the layout D, we place the gate s as follows. The gate s occupies O(σ)
horizontal intersection points (see Fig. 8). The length of wires for composing
the gate s is clearly O(σ), and the length for the output of the gate is O(1).
Consequently, in total, we have wires of length O(σ) within D.

Consider at last the wires on the outside of the layouts A,B,C and D. The
length of a vertical wire between a pair of layouts A and C is O(στ); since we
have O(στ) of such wires, the length of wires for all of the pairs among A’s
and C’s is O(σ2τ2). Similarly, we have wires of length O(σ2τ2) for all of the
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Figure 6: Circuit layout B.

Figure 7: Circuit layout C.
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Figure 8: Circuit layout D.

pairs among A’s and B’s. Since the length of a wire between a pair of B’s is
O(1), we have wires of length O(σ) for all of the pairs among B’s. The length
of a horizontal wire between a pair of layouts B and C is O(στ); since we have
O(στ) of such wires, the length of wires for all the pairs among B’s and C’s is
O(σ2τ2). The length of a wire connecting a C and D pair is O(στ); since we
have O(σ) such wires, the length of wires for all of the pairs is O(σ2τ). Thus,
we have, in total, wires of length O(στ2)

Therefore, the layout A has length O(nτ), B has length O(στ2), C has
length O(στ), and D has length O(σ); the outside of A, B, C and D has length
O(σ2τ2). Therefore, the total wire length of C is O(σ2τ2) = O(n log2 n), as
desired.

4 Lower Bound

In this section, we show that the size of the circuit given in Theorem 1 is optimal
up to a polylogarithmic factor, as in the following theorem.

Theorem 2 Let C be an arbitrary threshold circuit computing PnD. Then C has
size Ω(

√
n/ log n).

Let C be an arbitrary threshold circuit computing PnD. We prove the theorem
by reducing the disjointness function DISJn to our function, where DISJn

is defined as follows: For every pair of x = (x1, x2, . . . , xn) ∈ {0, 1}n and
y = (y1, y2, . . . , yn) ∈ {0, 1}n,

DISJn(x,y) =

{
1 if ∀i : xi = 0 or yi = 0;
0 otherwise.

It is known that any threshold circuit computing DISJn has almost linear size
in n.

Lemma 2 ([5]) Let D∗ be an arbitrary threshold circuit computing DISJn.
Then D∗ has size Ω(n/ log n).

Thus, it suffices to show that we can construct a circuitD∗ computingDISJO(
√
n)

from C such that D∗ has same size as that of C. We obtain the desired circuit
D∗ by fixing some of the input variables of C to 0s, as follows.

Let
X = {x0,0, x0,1, . . . , xσ,σ}
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Figure 9: In (a) (and (b), respectively), the unshaded locations indicate X ′ (and
Y ′), whereas shaded locations indicate X\X ′ (and Y \Y ′).

and
Y = {y0,0, y0,1, . . . , yσ,σ}

be sets of the input variables x = (x0,0, x0,1, . . . , xσ,σ) and y = (y0,0, y0,1, . . . , yσ,σ)
to PnD. We define subsets X ′ and Y ′ of X and Y as

X ′ = {xi+1,i | 0 ≤ i ≤ σ − 1} ⊆ X

and
Y ′ = {yi,i+1 | 0 ≤ i ≤ σ − 1} ⊆ Y.

(See Fig. 9.) We then fix every input in (X\X ′)∪ (Y \Y ′) of C to 0. We denote
the resulting circuit by D . Clearly, D computes PnD over X ′ ∪ Y ′. By the
definition of PnD, D∗ outputs 1 if and only if there exist indices ix and iy such
that ix + 1 > iy and ix < iy + 1:

iy − 1 < ix < iy + 1;

therefore ix = iy. Consequently, D outputs 1 if and only if there exists an
index ix, 0 ≤ i ≤ σ − 1, such that xi+1,i = yi,i+1 = 1; thus D computes the

complement of DISJσ, that is, DISJ
√
n−1.

We complete the construction of D∗ by replacing the top gate g of D with a
new gate g∗ computing its complement. Suppose g has threshold t and weight
w1, w2, . . . , wz for a number z of inputs comprising xj+1,j and yj,j+1, 0 ≤ j ≤√
n − 2, together with the outputs of the gates in D∗. We then replace g with

g∗ with threshold −2t+ 1 and weight −2w1,−2w2, . . . ,−2wz.

5 Conclusion

In this paper, we consider a Boolean function PnD that models a simple infor-
mation processing task on two-dimensional maps. We demonstrated that PnD is
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computable by a threshold circuit of size O(
√
n log n), whereas any threshold

circuit computing PnD requires size Ω(
√
n/ log n). Our circuit has smaller size

but greater depth than those given in [2]. It would be interesting to discover a
trade-off between the size and depth of threshold circuits computing PnD.
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