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Abstract

We study the symmetric traveling salesman problem via frequency
graphs. One computes the frequency of edges by computing how many
times an edge occurs in an optimal path involving four vertices. The
edges that are in the Optimal Hamiltonian Cycle (OHC) have a higher
frequency than most edges that are not in the OHC and thus edges with
a low frequency can safely be ignored when searching for the optimal
solution. A binomial distribution model is introduced for the symmetric
traveling salesman problem based on frequency quadrilaterals. When the
frequency of each edge is computed with N frequency quadrilaterals, our
model suggests that the minimum frequency of an edge in the OHC is
Fmin = (εmin+1)N where 4

3
+ 4

3(n−2)
< εmin < 4. This suggests a heuristic

to reduce the number of edges that need to be considered in the search for
the OHC which is to keep only those edges whose frequencies are ≥ Fmin.
We explore this heuristic in several real-world examples.
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1 Introduction

We consider the symmetric traveling salesman problem (TSP ). That is, we are
given the complete graph Kn on the vertices {1, . . . , n} such that there is a dis-
tance function d such that for any x, y ∈ {1, . . . , n} and x 6= y, d(x, y) = d(y, x)
is the distance between x and y. The goal is to find the optimal Hamilto-
nian cycle (OHC) with respect to this distance function. That is, we want to
find a permutation σ = (σ1 . . . σn) of 1, . . . , n such that σ1 = 1 and d(σ) :=

d(σn, 1) +
∑n−1
i=1 d(σi, σi+1) is as small as possible. The TSP has been exten-

sively studied to find special classes of graphs where polynomial-time algorithms
exist for either finding an exact solution, that is, finding an OHC, or finding
an approximate solution, that is, finding a permutation τ of the vertices which
gives a Hamiltonian cycle such that d(τ) ≤ cd(σ) where σ is the OHC and c
is some fixed constant. We will call algorithms that find exact solutions exact
algorithms and algorithms that find approximate solutions approximation algo-
rithms. There are a number of special classes of graphs where one can find the
OHC in a reasonable computation time, see [13].

Karp [17] has shown that the question of whether a graph has a Hamiltonian
cycle is NP -complete which implies that TSP is NP -hard.

The computation time of exact algorithms is O(an) for some a > 1 for the
general TSP . For example, Held and Karp [14] and independently Bellman [3]
gave a dynamic programming approach to solve the TSP that required O(n22n)
time. Integer programming techniques, such as either branch-and-bound [7, 10]
or cutting-plane [18, 2], have been able to solve examples of the TSP with
thousands of nodes. In 2006, a VLSI application (Euclidean TSP ) with 85,900
nodes has been solved with an improved cutting-plane method on a computer
system with 128 nodes [2].

On the other hand, the computation times of approximation algorithms and
heuristics have been significantly improved [20]. For example, the MST approx-
imation algorithm [8] and Christofides’ approximation algorithm [16] are able
to find the 2-approximation and 3

2 -approximation in time O(n2) and O(n3),
respectively, for metric TSP . In 2011, Mömke and Svensson [22] gave a 1.461-
approximation algorithm for metric graphs with respect to the Held-Karp lower
bound. In most cases, the LKH heuristic [15] can generate “high quality” so-
lutions within 5% of the optimum in nearly O(n2.2) time. However, these ap-
proximation algorithms and heuristics are not guaranteed to find the OHC in
polynomial time.

In recent years, researchers have developed polynomial-time algorithms to
solve the TSP for sparse graphs. In sparse graphs, the number of Hamiltonian
cycles (HC) is greatly reduced. For example, Sharir and Welzl [25] proved that
in a sparse graph of average degree d, the number of HCs is less than e(d2 )n

where e is the base of the natural logarithm. Gebauer [12] gave a lower bound
for the number of HCs roughly as (d2 )n for a sparse graph of average degree
d. In addition, Björklund [4] proved that the TSP in graphs with bounded
degree could be solved in time O((2 − ε)n), where ε depends on the maximum
degree of a vertex in the graph. For a cubic graph, Eppstein [11] introduced an
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algorithm to solve the TSP with running time O(1.260n). This run time was
improved by Lísewicz and Schuster [19] to O(1.2553n). Aggarwal, Garg and
Gupta [1] and Boyd, Sitters, Van der Ster and Stougie [6] independently gave
two approximation algorithms to solve the TSP with approximation factor 4

3 for
metric cubic graphs. Mömke and Svensson [22] also proved one 4

3 -approximation
for degree three bounded and claw-free graphs with respect to the Held-Karp
lower bound. For cubic connected graphs, Correa, Larré and Soto [9] proved
that the approximation threshold of the TSP in cubic graphs was strictly below
4
3 . For the general bounded-genus graphs, Borradaile, Demaine and Tazari [5]
gave a polynomial-time approximation scheme for TSP . In the case of the
asymmetric version of the TSP , Gharan and Saberi [23] designed constant-
factor approximation algorithms for the TSP for planar graphs with bounded
genus where the constant-factor is 22.51(1 + 1

n ). Thus, whether one is trying to
find exact solutions or approximate solutions to the TSP , one has a variety of
more efficient algorithms available if one can reduce a given instance of TSP to
finding the OHC in a sparse graph.

In this paper, we use a binomial distribution model based on frequency
quadrilaterals to convert a complete graph (or dense graph) into a sparse graph
for TSP . The sparse graphs generally have O(|V |) or O(|V | ln(|V |)) edges. In
addition, if the resulting graph has bounded degree or genus or is planar or
k-edge connected, then there are even more efficient algorithms available to find
exact or approximate solutions to the TSP .

In previous work [26, 27, 30], the first author introduced frequency graphs
as a way to reduce the number of edges that one has to consider to find the
OHC. The basic idea of frequency graphs is the following. Suppose that we are
given a sequence of k vertices ~v = (v1, v2 . . . , vk−1, vk) in Kn where k ≥ 4. Let
~vσ = (vσ1 , . . . , vσk) be a permutation of v1, . . . , vk where vσ1 = v1 and vσk = vk
and let d(~vσ) =

∑k−1
i=1 d(vσi , vσi+1). We assume that d(~vσ) all have different

values, so there is an optimal path ~vσ = (vσ1 , . . . , vσk) of the k vertices (or k−1
edges) connecting v1 and vk using the intermediate vertices v2, . . . , vk−1 which
makes d(~vσ) as small as possible. We will call such a path the optimal k-vertex
path for (v1, . . . , vk). In general, if we are given a set of k vertices {v1, . . . , vk},
we have

(
k
2

)
ways to pick the end points of a k-vertex path using these vertices

so that there are
(
k
2

)
optimal k-vertex paths that arise from the set {v1, . . . , vk}.

Let OPk denote the set of all optimal k-vertex paths. Then the frequency
f(x, y) of an edge (x, y) in Kn with the distance function d(x, y) is the number
of optimal k-vertex paths which contain (x, y) as an edge. Our intuition is that
if (x, y) is an edge in the OHC for Kn with the distance function d(x, y), then
its frequency is likely to be much higher than the average frequency. This has
been born out by studying many real-world TSP instances, see [26, 27, 30].
This suggests that we can safely eliminate the edges of low frequency below
the average frequency and still keep the OHC intact. The hope is that by
eliminating the edges of low frequency, we can be left with a sparse graph which
has O(n log(n)) edges so that the techniques for either finding or approximating
the OHC for sparse graphs can be applied. The questions then become what
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Figure 1: The quadrilateral ABCD

value of k should we use and what bound on the frequency should we use to
eliminate edges.

The outline of this paper is as follows. First in Section 2, we shall introduce
the concept of frequency quadrilaterals in the case where k = 4. In Section 3,
we shall first discuss the combinatorics of frequency quadrilaterals. Then we
shall introduce our binomial distribution model and study the combinatorics of
frequency quadrilaterals for edges in the OHC. In Section 4, we shall discuss
some heuristic estimates of various parameters of frequency graphs under our
binomial distribution model. In Section 5, we will compare our heuristic es-
timates of such parameters to the actual values of those parameters that are
computed for some graphs in the database [24].

2 The frequency quadrilateral

Suppose that we are given 4 vertices {A,B,C,D} in Kn. Since we are assuming
that the vertex set of Kn = {1, 2, . . . , n}, there is a total order on the elements
in {A,B,C,D} induced by the natural ordering on {1, . . . , n}, which we will
assume to be A < B < C < D. Kn restricted to {A,B,C,D} gives us the
graph pictured in Figure 1. We will list the pairs of endpoints according to
their lexicographic order to find the six optimal 4-vertex paths.

For any pair of vertices U, V ∈ {A,B,C,D}, we shall write UV for d(U, V ).
There are

(
4
2

)
= 6 ways to pick end points of 4-vertex paths using {A,B,C,D},

namely, (I) A,B, (II) A,C, (III) A,D, (IV) B,C, (V) B,D, and (VI) C,D.
Then, for example, there are two 4-vertex paths with end points A,B, namely,
(A,C,D,B) and (A,D,C,B). To pick the optimal 4-vertex path with endpoints
A,B, we must compare AC + CD + DB and AD + DC + CB. Since we are
assuming that we are in the symmetric TSP , we know that CD = DC. Thus,
we must compare AC+BD and AD+BC to determine which one of the two 4-
vertex paths (A,C,D,B) and (A,D,C,B) is the optimal 4-vertex path. Below
we list the comparisons that we must make for each of the cases (I)-(VI).
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Case End points Sum 1 Sum 2
I A,B AC +BD AD +BC
II A,C AB + CD AD +BC
III A,D AB + CD AC +BD
IV B,C AB + CD AC +BD
V B,D AB + CD AD +BC
VI C,D AC +BD AD +BC

It is easy to see that our comparisons involve only three sums of distances,
namely, (1) AB + CD, (2) AC + BD, and (3) AD + BC. Thus, the relative
frequency graph for the quadrilateral ABCD depends only on the relative order
of (1), (2), and (3). For example, if AB+CD < AC+BD < AD+BC, then the
optimal 4-vertex paths for our six possible end points are given in the following
table.

Case End points Inequality formula Optimal 4-vertex path
I A,B AC +BD < AD +BC (A,C,D,B)
II A,C AB + CD < AD +BC (A,B,D,C)
III A,D AB + CD < AC +BD (A,B,C,D)
IV B,C AB + CD < AC +BD (B,A,D,C)
V B,D AB + CD < AD +BC (B,A,C,D)
VI C,D AC +BD < AD +BC (C,A,B,D)

These choices lead to the relative frequency graph for the quadrilateral
ABCD pictured in Figure 2 (a).

On the other hand, if AB+CD < AD+BC < AC +BD, then the optimal
4-vertex paths for our six possible end points are given in the following table.

Case End points Inequality formula Optimal 4-vertex path
I A,B AD +BC < AC +BD (A,D,C,B)
II A,C AB + CD < AD +BC (A,B,D,C)
III A,D AB + CD < AC +BD (A,B,C,D)
IV B,C AB + CD < AC +BD (B,A,D,C)
V B,D AB + CD < AD +BC (B,A,C,D)
VI C,D AD +BC < AC +BD (C,B,A,D)

These choices lead to the relative frequency graph for the quadrilateral
ABCD pictured in Figure 2 (b). One can carry out similar computations for
the other 4 possible orderings of AB+CD, AC+BD, and AD+BC. They are
called four-vertex and three-line inequalities [29] to derive the optimal 4-vertex
paths for any given four vertices A, B, C, D in Kn. We list the resulting
frequency graphs in each case according to the corresponding four-vertex and
three-line inequalities, see Figure 2 (c)-(f).

We will study the properties of frequency graphs on Kn. Let us denote by
Nz the number of frequency graphs in Kn such that the relative frequency graph
is of type (z), for (z) ∈ {(a), (b), (c), (d), (e), (f)} in Figure 2 and note that

Nz =
1

6

(
n

4

)
.
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Figure 2: The six frequency quadrilaterals ABCD in view of four-vertex and
three-line inequality arrays in quadrilaterals ABCD.
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We shall call this model the binomial distribution model. As we will see, this bi-
nomial distribution model suggests a heuristic on what bounds on the frequency
graph should be used to eliminate edges according to their frequency.

3 The binomial distribution model

Our binomial distribution model for frequency graphs is to consider picking
for each set of four vertices A,B,C,D in Kn a total order on the sums of the
distances AD + BC, AB + CD, and AC + BD at random. Then we want to
study the properties of frequency graphs that arise from such random choices.
For example, in cases (a)-(f) of Figure 2, we picture the six relative frequency
graphs that arise from the six ways to put a total order on the AD + BC,
AB+CD, and AC+BD. Note that of the six possible frequency quadrilaterals
that are possible for ABCD, one sees that the possible frequency for any given
edge e is 1, 3, or 5. Moreover, e is assigned frequency 1 in 2 cases, frequency 3 in 2
cases, and frequency 5 in 2 cases. Thus, the average frequency assigned to e over
these six frequency graphs is 3. For i ∈ {1, 3, 5}, let pi(e) be the probability that
edge e is assigned frequency i in a frequency quadrilateral ABCD containing
the edge e. Clearly, p1(e) = p3(e) = p5(e) = 1

3 . More generally, for any subset
S ⊆ {1, 3, 5}, we let pS(e) denote the probability that edge e is assigned any
frequency i where i ∈ S in a frequency quadrilateral ABCD containing the edge
e. Then p{1,3}(e) = p{1,5}(e) = p{3,5}(e) = 2

3 and p{1,3,5}(e) = 1.
Next we want to study the expected frequency of edges e that are in the

OHC under such a probability model.
First, suppose that A,B,C,D are consecutive vertices in the OHC. In

that case, we know that path (A,B,C,D) must have smaller weight than path
(A,C,B,D) which implies that AB +BC + CD < AC +BC +BD and hence
AB+CD < AC+BD. In the three frequency quadrilaterals in Figure 2 for the
quadrilateral ABCD where AB+CD < AC +BD, we see that the frequencies
assigned to the edges (A,B), (B,C), and (C,D) are 5, 1, 5, 5, 3, 5, and 3, 5, 3,
respectively. Thus, the average frequency of (A,B) is 13

3 , the average frequency
of (B,C) is 3, and the average frequency of (C,D) is 13

3 . For any given edge e
in the OHC, e will be an edge in three optimal 4-vertex paths with consecutive
edges in the OHC so that the total contribution to its frequency from the three
optimal 4-vertex paths in OHC is 13

3 + 3 + 13
3 = 35

3 = 11 2
3 as opposed the

expected value of 9 for an edge that appears in 3 random quadrilaterals.
Second, suppose that (A,B) and (C,D) are two vertex-disjoint edges on the

OHC. That is, we have the situation pictured in Figure 3. In this situation,
we note that there is a Hamiltonian cycle which starts at vertex A and follows
that OHC in clockwise direction to vertex D, then uses the edges (B,D), then
follows the OHC in a counter-clockwise direction to vertex C, and then uses
the edge (A,C). Since this Hamiltonian cycle is not the OHC, it must be the
case that AB + CD < AC +BD.

If one looks at the three quadrilaterals ABCD for which this inequality
holds in Figure 2, one finds that the frequencies for the edge (A,B) are 5, 5
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A B

CD

OHC

Figure 3: Two vertex-disjoint edges in the OHC.

and 3, respectively, so that the summed frequency for the 3 quadrilaterals of
this form is 13 as opposed to the expected value of 9. Note that there are n
edges in the OHC. Since we are assuming that the edges (A,B) and (C,D)
have no vertices in common, then (C,D) cannot be one of the edges adjacent
to (A,B) in the OHC. Hence we have n − 3 choices for (C,D). Thus, for an
edge (A,B) ∈ OHC, it is contained in at least n− 3 such quadrilaterals which
are composed of (A,B) and the other n− 3 non-adjacent edges in the OHC.

Note for any given edge (A,B), (A,B) is part of
(
n−2
2

)
quadrilaterals in Kn.

Using the OHC, we have found at least n− 3 pairs (C,D) where the frequency
of (A,B) relative to the quadrilateral ABCD is either 3 or 5. Assuming that for
the remaining choices of quadrilaterals, the probability p1(e) that e = (A,B)
has frequency 1 in each quadrilateral is 1

3 , the probability p3(e) that (A,B) has
frequency 3 in each quadrilateral is 1

3 , and the probability p5(e) that (A,B) has
frequency 5 in each quadrilateral is 1

3 , we see that

p{3,5}(e) =
2
3 (
(
n−2
2

)
− (n− 3)) + (n− 3)(

n−2
2

) =
2

3
+

2

3(n− 2)
.

Note that this is a very conservative lower bound since we did not take into
account the 3 possibilities where e is part of three consecutive edges in the
OHC. Thus, we shall assume that the probabilities p{3,5}(e) and p{1}(e) for an
edge e in the OHC are equal to the formula (1).

p{3,5}(e) =
2

3
+

2

3(n− 2)
and

p1(e) =
1

3
− 2

3(n− 2)
(1)

We let X denote the random variable which gives the number of frequency
quadrilaterals where the frequency of edge e = (A,B) is either 5 or 3. Our
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assumptions mean that if we select N quadrilaterals from the
(
n−2
2

)
quadri-

laterals which contain the pair (A,B), then X has the binomial distribution
X v B0(N, p{3,5}(e)). In such a situation, the probability P (X = m) that
X = m is given by formula (2).

P (X = m) =

(
N

m

)
(p{3,5})

m(1− p{3,5})N−m (2)

For a binomial distribution model, the function P (X = m) is monotone
increasing if m < (N + 1)p{3,5} − 1 and is monotone decreasing if m > (N +
1)p{3,5}. Thus, the maximum probability P0 is achieved for an integer m when
m equals

m0 = b(N + 1)p{3,5}c =

⌊(
2

3
+

2

3(n− 2)

)
(N + 1)

⌋
or

m0 = d(N + 1)p{3,5}e − 1 =

⌈(
2

3
+

2

3(n− 2)

)
(N + 1)

⌉
− 1.

Thus, if we select N frequency quadrilaterals containing the edge (A,B) at
random, we see that the case where there are m0 frequency quadrilaterals with
the frequency of edge (A,B) being greater than or equal to 3 has the maximum
probability. In these m0 frequency quadrilaterals, we assume that the number
of frequency quadrilaterals with the frequency of (A,B) equal to 5 also has a
binomial distribution X v B(m0, δ0) where 0 ≤ δ0 ≤ 1 is the ratio between the
number of frequency quadrilaterals with the frequency of (A,B) equal to 5 and
m0. Thus, if X = bδ0(m0 + 1)c or dδ0(m0 + 1)e − 1, the maximum probability
will be obtained. For any edge e in the OHC, e is contained in n− 3 frequency
quadrilaterals consisting of the vertices of e and the vertices of another edge f
in the OHC and we assume that in those frequency quadrilaterals, e has equal
probability of having frequency 5 or 3. Given the possible relative frequency
graphs pictured in Figure 2, it is easy to see that δ0 = 1

2 on average in our
binomial distribution model.

If we use N random quadrilaterals to compute the frequency of e = (A,B)
in the OHC, its total frequency will be equal to formula (3) where ε0 =
4(1 + δ0)(n− 1)

3(n− 2)
.

F0 = N(p1(e) + 3(1− δ0)p{3,5} + 5δ0p{3,5})

= N

(
1

3
− 2

3(n− 2)
+ 3(1− δ0)

(
2

3
+

2

3(n− 2)

)
+ 5δ0

(
2

3
+

2

3(n− 2)

))
= N

(
1

3
− 2

3(n− 2)
+ 3

(
2

3
+

2

3(n− 2)

)
+ 2δ0

(
2

3
+

2

3(n− 2)

))
= N

(
1 + 4(1 + δ0)

(
1

3
+

1

3(n− 2)

))
= (ε0 + 1)N (3)
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The minimum frequency Fmin of an OHC edge is given by formula (4) where

εmin =
4(1 + δmin)(n− 1)

3(n− 2)
.

Fmin = (εmin + 1)N (4)

In the worst case, δmin = 0 which would mean that all m0 frequency quadri-
laterals would assign the frequency of (A,B) to be 3 which means that(

7

3
+

4

3(n− 2)

)
N

is a lower bound for Fmin.

For edges (A,B) in the OHC, computational evidence suggests that δmin is
approximately 1

2 or larger. If δmin = 1
2 , then εmin = 2 + 2

n−2 so that Fmin =(
3 + 2

n−2

)
N which is bigger than the expected frequency Favg = 3N . This

is the intrinsic reason that the frequencies of the OHC edges computed with
optimal 4-vertex paths for the examples in [30] are much bigger than those of
most of the other edges. However, one can construct examples of TSP where(

7

3
+

4

3(n− 2)

)
N ≤ Fmin <

(
3 +

2

n− 2

)
N.

However, the probability that the minimum frequency of (A,B) ∈ OHC
equal to ( 7

3 + 4
3(n−2) )N approaches 0 as n approaches infinity.

For reasonable-sized graphs, such as the instances appearing in the database
[24], one can compute the probabilities of the frequency of a given edge e using
all
(
n−2
2

)
quadrilaterals containing e. If Ni is the number of quadrilaterals

containing e where the frequency is i for i ∈ {1, 3, 5}, then

p5(e) =
2N5

(n− 2)(n− 3)
,

p3(e) =
2N3

(n− 2)(n− 3)
, and

p1(e) =
2N1

(n− 2)(n− 3)
.

Thus, when N frequency quadrilaterals are chosen at random, the total fre-
quency F of e is given by formula (5).

F = N(p1(e) + 3p3(e) + 5p5(e))

= N(p1(e) + p3(e) + p5(e) + 2p3(e) + 4p5(e))

= N(1 + 2p3(e) + 4p5(e))

= (ε+ 1)N (5)
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Where

ε = 2p3(e) + 4p5(e)

= 2(p3(e) + p5(e)) + 2p5(e)

= 2(1 + δ)p{3,5}

and δ = N5

N3+N5
= p5(e)

p3(e)+p5(e)
. Here we assume N3+N5 6= 0 and p3(e)+p5(e) 6= 0

for edge e. The number N5 clearly plays a fundamental role in determining ε
and F . As N5 increases, both ε and F increase. In the extreme case where N5 =(
n−2
2

)
, ε = 4. Thus, ε always lies in the interval [0, 4]. Based on the binomial

distribution model (2) where p{3,5} = 2
3 + 2

3(n−2) , we know P (ε = 0) = P (X = 0)

or P (ε = 4) = P (X = N5 =
(
n−2
2

)
) approaches zero for big n. This means that

the number of edges with ε ≈ 0 or ε ≈ 4 have a very small probability. On
average, when p3(e) = p5(e) = 1

3 + 1
3(n−2) for an edge e in the OHC, it follows

that the εs of the OHC edges will be bigger than 2 + 2
n−2 . Computational

evidence from the graphs in [30] suggests that εmin is bigger than 2 + 2
n−2 due

to the fact that N5 is large.
This suggests the following criterion to determine whether a given edge e is

likely to be in the OHC. That is, we should compare ε and εmin. For any given

edge e, if ε > εmin = 4(1+δmin)(n−1)
3(n−2) , then F > Fmin and e is more likely to be

in the OHC. For example, if δmin ≥ 0.5, then the criterion becomes that ε > 2.
This suggests that we can safely trim the edges e with ε < 2 and still keep the
edges in the OHC. In Section 5, we shall give several examples to show what
happens using this criterion for TSP instances in the database [24].

4 Some heuristic for the binomial distribution
model

Recall that under our binomial distribution model, for each set of four vertices
A,B,C,D of Kn, we are essentially picking one of the six relative frequency
quadrilaterals pictured in Figure 2 (a)-(f) at random. If we compute many
frequency graphs where each frequency graph is computed with N random fre-
quency quadrilaterals with edge e, then the cumulative probability P (X ≤ m)
of m frequency quadrilaterals where the frequency f associated with e is either
5 or 3 is computed with formula (6).

P (X ≤ m) =

m∑
k=0

(
N

k

)
(p{3,5})

k(1− p{3,5})N−k (6)

If N is large, then X v B(N, p{3,5}) approximately follows a normal distri-
bution X v N (Np{3,5}, Np{3,5}(1 − p{3,5})) because Np{3,5} > 5 and N(1 −
p{3,5}) > 5. In this case, P (X ≤ m) will approach 1 when m = Np{3,5} + 3σ,

where σ =
√
Np{3,5}(1− p{3,5}) is the standard deviation.
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For the edges e with p{3,5} >
2
3 + 2

3(n−2) , the number of frequency quadri-

laterals where the frequency of e is either 5 and 3 will be bigger than m0. Their
frequencies F computed with N frequency quadrilaterals will be bigger than
Fmin. The cumulative probability P (X ≥ m0) is computed as formula (7).

P (X ≥ m0) =

N∑
k=m0

(
N

k

)
(p{3,5})

k(1− p{3,5})N−k (7)

The bigger the difference between p{3,5} and 2
3+ 2

3(n−2) , the closer the probability

P (X ≥ m0) approaches 1. For the edges e with p{3,5} above 2
3 + 2

3(n−2) , F has

a high probability of being above Fmin if it is computed with the same number
of random frequency quadrilaterals. Meanwhile, these edges with big p{3,5} will
have a small probability according to the binomial distribution (2).

We have seen that for edges e in OHC, their p{3,5}s are on average bigger

than the expected value of p{3,5} which is 2
3 . On the other hand, the edges

e with p{3,5} below 2
3 + 2

3(n−2) have a small probability that their frequency

F is above Fmin. The bigger the difference between 2
3 + 2

3(n−2) and p{3,5} in

such cases, the closer the probability P (X ≥ m0) approaches 0. For most of
the edges not in the OHC, their p{3,5}s are generally smaller than the average

probability 2
3 .

Next, we consider the edges e with frequency above the average frequency.
In view of the six frequency quadrilaterals, we know that the expected value of
p{3,5} is 2

3 . In other words, every edge has the probability 2
3 that its frequency is

bigger than the average frequency 3 in a frequency quadrilateral in Kn. Consider
the event that the total frequency F of e is greater than 3N where N represents
the number of random frequency quadrilaterals with edge e which we denote by
P (F > 3N). The expected value of P (F > 3N) is 2

3 over all the
(
n
2

)
edges. This

suggests that we can throw away 1
3

(
n
2

)
edges with small frequency. As n→∞,

the number of edges with F above 3N conforms to the normal distribution
N ( 2

3

(
n
2

)
, 29
(
n
2

)
). This suggests that we should select only the 2

3

(
n
2

)
edges with

top frequency in our search for a solution to TSP .

We also want to estimate the number of edges e such that their cumulative
frequencies Fe satisfy Fe > Fmin when we compute such frequencies with N
random frequency quadrilaterals containing the edge e. If there are K such
edges e where Fe > Fmin, the number of edges e with Fe ≤ Fmin will be R =(
n
2

)
− K. Note that the total number of frequency quadrilaterals chosen is(

n
2

)
N
6 = n(n−1)

12 N . Let FK and FR denote the average frequency of the K edges
e with Fe > Fmin and the average frequency of the R edges e with Fe ≤ Fmin.
Note that the six possible quadrilaterals containing vertices A, B, C, D give
a cumulative frequency of 18 to each quadrilateral. It follows that the formula
(8) holds.

18n(n− 1)

12
N = KFK +

n

2
(n− 1− 2K

n
)FR (8)
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If we let FK = (1 + εK)N and FR = (1 + εR)N as in equation (5), then we
can substitute these expressions into (8) and solve for K in which case we see
that the formula (9) is derived.

K =
2− εR
εK − εR

(
n

2

)
(9)

For a given instance of the TSP with n vertices, we can fix some ordering of

the edges ek for 1 ≤ k ≤
(
n
2

)
and compute εk =

4
(
1+ 1

δk

)
N5

(n−2)(n−3) = 2(1 + δk)p{3,5}
where the frequency of ek is given by Fek = (1 + εk)N . In fact, we will assume
that we have fixed an ordering where the sequence (ε1, ε2, · · · , εk, · · · , ε(n2)) is

weakly decreasing. In this case,
∑(n2)
k=1 εk = n(n− 1). Because we are assuming

that εR < 2 < εK , it will follow that K ≤
(
n
2

)
. In addition, K < n(n−1)

4 if
εK + εR > 4.

The sum of the monotone sequence (ε1, ε2, · · · , εk, · · · , ε(n2)) is equal to n(n−
1). The expected value µ(ε) is equal to 2. When n is large, we expect that εk
decreases relatively smoothly for 1 ≤ k ≤

(
n
2

)
. Indeed, if we form the graph of

all points (k, εk) for 1 ≤ k ≤
(
n
2

)
, we should expect that the graph is almost flat

in any given small interval. This suggests that we can roughly approximate εk
with the linear function ε(k) = − 8

n(n−1)k + 4 so that ε1 = 4 and ε(n2)
= 0. The

standard deviation is computed as σ(ε) = 2√
3
. If ε1 decreases more gradually to

ε(n2)
, σ(ε) will be less than 2√

3
. Applying Chebyshev’s inequality, we obtain the

following formula (10).

P (|ε− µ(ε)| ≥ tσ(ε)) ≤ 1

t2
(10)

Thus, no more than 1
t2

(
n
2

)
εks can be more than 2√

3
t away from the mean

µ(ε) = 2. Note, however, the random variables in Chebyshev’s inequality are
assumed to have an infinite range. In our case, the maximum possible value of ε
is εmax = 4. In our situation, where ε1, . . . , ε(n2)

is a weakly decreasing sequence,

it will be the case that if the εks are distributed symmetrically around µ(ε) = 2,

then the number of εk ∈ [2 + tσ(ε), 4] will be less than 1
2 ( 1
t2 −

σ2(ε)
4 )

(
n
2

)
.

If we compute the average ε of an edge e with N random frequency quadri-
laterals, the average ε will conform to a normal distribution N (µ(ε), σ2(ε)) as
N becomes large according to the central limit theorem. We must confirm that
every random εe of e in a frequency quadrilateral has a well-defined expected
value µ(εe) and variance σ(εe). The expected value will be µ(εe) = 2 in the
six frequency quadrilaterals. This suggests that we can compute σ(εe) based on
the six frequency quadrilaterals as follows. The εe corresponding to an edge e
is equal to 2(1 + δe)p{3,5}, where p{3,5} = 2

3 according to our assumption about
the distribution of the frequency of e in the six frequency quadrilaterals in our

binomial distribution model. We need to compute the δe = p5(e)
p5(e)+p3(e)

for edge

e to determine the σ(εe).
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For every edge, its frequency is 5, 3 or 1 in a frequency quadrilateral. There-
fore, we draw the pairwise frequency from {5, 3 , 1} to form three frequency
sets {5, 3}, {5, 1} and {3, 1}. In the three frequency sets, the corresponding δe
is either 0.5, 1.0, 0 and each occurs with probability 1

3 . Of course, the expected
value µ(δe) = 0.5. For every edge e which corresponds to δe = 0.5 (1.0, 0), the
corresponding εe is 2 ( 8

3 ,
4
3 ) and the expected value of εe, µ(εe) = 2. It follows

that σ2(εe) = ( 2
3 )3 ≈ 0.2963 and σ(εe) ≈ 0.5443. One can compute that in the

normal distribution εe ∼ N (2, ( 2
3 )3). P (εe ≥ 4) ≤ 0.000119184. However, we

know that P (εe > 4) = 0 for every edge e.

Note that there are in total 6
(
n
4

)
εes because a Kn has

(
n
4

)
quadrilaterals

and each quadrilateral contains 6 edges. Let εe denote the ε associated with
edge e. If we draw N εes, i.e., {εe1 , εe2 , · · · , εeN } where εek means the kth εe,

at random, then we let ε = 1
N

∑N
k=1(εek) denote the associated mean value and

σ2(ε) = σ2( 1
N

∑N
k=1(εek)) denote the associated variance. Obviously,

√
N(ε −

µ(ε)) conforms to a normal distribution based on the central limit theorem.
Here

√
N(ε− µ(ε)) ∼ N (0, ( 2

3 )3) or
√
Nε ∼ N (2

√
N, ( 2

3 )3). The maximum and

minimum ε are 4 and 0, respectively. As N becomes big, the
√
Nε also increases.

However, the variance of all these εs remains unchanged. This means that the
probability that ε is close to 4 becomes smaller as N becomes large.

The ε computed according to formula (5) for every edge e is just the mean
value of the

(
n−2
2

)
εes. The ε of every edge will conform to the normal dis-

tribution
√
N(ε − µ(ε)) ∼ N (0, ( 2

3 )3) where N =
(
n−2
2

)
. This means that the

probability that the εs deviate from their expected value µ(ε) = 2 and approach
4 tends to zero as n → ∞. Thus, the number of εs close to 4 is very small. In
the next section, we will see the εs of the OHC edges increase with the scale of
TSP n until they approach the maximum value 4.

A linear transformation does not change the probability properties of random
variables. Therefore, we can use the εs computed according to formula (5) to
analyze their distribution for TSP . For the

(
n
2

)
εs, the expected value µ(ε)

and variance σ2(ε) are computed as follows. We assume M =
(
n
2

)
, N =

(
n−2
2

)
and {ε1, ε2, · · · , εM} are the εs of the M edges. For the jth edge, εj =
1
N

∑N
i=1(εij), where every εij = εe ∈ {1, 3, 5}. In addition, we suppose all εijs

are independently and uniformly distributed. The expected value of εj is µ(εj) =
1
N

∑N
i=1 µ(εij) = 2. The variance of εj is σ2(εj) = 1

N2

∑N
i=1 σ

2(εij) = 1
N ( 2

3 )3.
This holds in our binomial distribution model because we are assuming that the
frequency of edge ej being 1, 3, or 5 has the equal probability 1

3 . In real graphs,
it is often the case that short edges have a high probability of having frequency
5 and 3 in their frequency quadrilaterals. On the other hand, it is often the case
that for long edges, there is a small probability that the edge will have frequency
5 or 3 in their frequency quadrilaterals. Based on the N ×M matrix of εijs, we
can derive the expected value and variance of them. The expected value of the
εijs is µ(εij) = 1

MN

∑M
j=1

∑N
i=1 µ(εij) = 2. Meanwhile, the variance of the εijs

is computed as σ2(εij) = 1
MN

∑M
j=1

∑N
i=1 σ

2(εij) = ( 2
3 )3.

In general, if we compute the εs of edges with random frequency quadri-
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laterals, the expected value of ε, µ(ε), will be 2 and the variance σ2(ε) can
also be determined. One would expect that εs of the

(
n
2

)
edges will approxi-

mately conform to the normal distribution N (µ(ε), σ2(ε)) according to the cen-
tral limit theorem. The probability P (ε ≥ µ(ε) + tσ(ε)) is equal to 1 − Φ(t)

where Φ(t) = 1
2 [1 + erf( t√

2
)] and erf(x) = 2√

π

∫ x
0
e−t

2

dt = 2√
π

∑∞
n=0

(−1)nx2n+1

n!(2n+1)

is the Gauss error function. It follows that P (ε ≥ µ(ε) + tσ(ε)) is given by the
formula (11).

P (ε ≥ µ(ε) + tσ(ε)) =
1

2
− 1

2
erf(

t√
2

) =
1

2
− 1√

π

∞∑
n=0

(−1)n( t√
2
)2n+1

n!(2n+ 1)
(11)

Thus, P (ε ≥ µ(ε) + tσ(ε)) is a function of the variable t which will reach a
maximum at some value tmax. In our frequency graphs, the maximum ε is
4. This means P (ε ≥ 4) approaches 0 which is not consistent with a normal
distribution. When t reaches the maximum value tmax, tmax σ(ε) = 2 holds for
a given σ(ε). Therefore, we can compute P for a distribution of ts to determine
the tmax and then compute the corresponding σ(ε) later. For example, suppose
one uses the first 14 terms of formula (11) to compute the probability. Then the
change in this probability P according to tmax is shown in Figure 4. If we take
a threshold at 0.0025 as a small probability (which is reasonable considering the
3σ rule for the normal distribution), then tmax = 2.819 and σ(ε) ≈ 0.7094 which

is bigger than the theoretical value 0.5443 (or (2
3 )

3
2 ) of the ideal case. If we

want to compute a more accurate approximation σ(ε), then we must use more
terms in the expansion of (11). We tried 22 terms of formula (11) to compute
the other small P (ε ≥ µ(ε) + tσ(ε)) and tmax and found that the corresponding
graph did not differ much from the graph pictured in Figure 4. If we choose
σ(ε) = 0.7094, the probability density function (PDF ) of the εs is approximated
by formula (12).

f(ε;µ(ε), σ2(ε)) =
1

0.7094
√

2π
e−

1
2 (

ε−2
0.7094 )

2

(12)

Since we are assuming that the distribution of the εs nearly conforms to
the normal distribution with the exception that P (ε > 4) = 0, we can use
some characteristics of the normal distribution to approximately analyze their
distribution. For example, we can use the 3σ rule of the normal distribution
with tmax = 3 to compute the distribution of P (ε ≥ µ(ε) + tσ(ε)) in which case
we find that σ(ε) = 2

3 .
The number of edges with ε above εmin decreases exponentially in proportion

to the difference between εmin and µ(ε) = 2. For TSP of large size, our results
suggest that εmin will be close to 4 and the number of edges with εs above εmin is
close to n. For TSP of medium size, our computer experiments described in the
next section suggest we will end up with a sparse graph if we keep only the edges
with ε above µ(ε)+2σ(ε) or µ(ε)+2.5σ(ε). For TSP of small size, our computer
experiments described in the next section suggest that we will end up with a
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Figure 4: The change of P (ε ≥ µ(ε) + tmaxσ(ε)) according to tmax.

sparse graph if we keep only the edges with ε above µ(ε)+σ(ε) or µ(ε)+1.5σ(ε).
The number of edges with ε ∈ [µ(ε) + tσ(ε), 4] can be approximated according
to formulas (11) and (12).

For the OHC edges, the distribution of their εs will conform to another
normal distribution based on the central limit theorem. The expected value is
limn→∞ µo(ε) = 4 and the standard deviation is limn→∞ σo(ε) = 0. Thus, the
probability density function becomes a Dirac delta function. That is, it is zero
everywhere except at µo(ε) = 4, with an integral of one over the span [0, 4].

5 Examples and analysis

The Concorde package on-line (NEOS Server for Concorde) [21] has computed
the OHC for several families of TSP . In this section, we will report on some
computer experiments where we used the OHC that had been computed for
such TSP instances to compute the corresponding εmin, σ(ε), µo(ε), σo(ε), εK ,
εR. In each case, we keep only those edges whose corresponding ε is larger than
εmin. Let r = 2−εR

εK−εR be the ratio between K and
(
n
2

)
, which shows how sparse

the graph is. The smaller the values r are, the sparser the graphs are. We also

compute c = K
n log2(n)

= r(n−1)
2 log2(n)

for comparisons. If c is much smaller than

the size of the number of vertices n of TSP , then we are reduced to considering
graphs with only O(n log2(n)) edges, and we can use various efficient algorithms
which work on sparse graphs to search for solutions to our given TSP .

The results are listed in Table 1 according to r as r ranges from big to small
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values. Six digits after the decimal point are kept. In most cases, we found that
εmin is bigger than µ(ε) = 2. As the number of vertices gets larger, εmin seems
to approach or exceed 3 and σ(ε) is close to 0.7094. Similarly, as the number
of vertices get larger, the corresponding values of ε related to the OHC edges
which we call µo(ε) seem to approach 4 and and the corresponding variance
σo(ε) is much smaller than σ(ε). Similarly, we see that εK is much bigger than
εR. In general, we found that εK + εR > 4 and r is less than 0.5, except for
the instance brg180. The deviation for brg180 from the other examples that
we computed is probably due to the fact that brg180 has a lot of equal-weight
edges so that the distribution of the computed frequency quadrilaterals does not
conform to our binomial distribution model. As expected, our examples also
show that r decreases quickly as εmin grows. Our results nearly conform to the
results predicted by formula (11) and Figure 4. The number of edges with ε
above εmin approximately conforms to the normal distribution formula (12). In
the last column, we see that c is much smaller than n and they are smaller than
6.5 for all the TSP instances in Table 1. In such cases, the graph that remains
after keeping only those edges with ε > εmin are sparse enough to be resolved
with the current exact algorithms that work only under the assumption that
the underlying graph is sparse.

We note that one of the basic assumptions is that for all vertices A,B,C,D,
the sum of the distances for the path (A,B,C,D) is always different from the
sum of the distances for the path (A,C,B,D). This allows us to always pick the
optimal 4-vertex paths for each of the 6 possible pairs paths in our frequency
quadrilateral. Thus, a natural question arises of what should be done when
there are lots of sets of four vertices, A,B,C,D, such that AC + CB + BD =
AB+BC+CD. In such a situation, we have no criterion to determine which of
(A,B,C,D) and (A,C,B,D) should be used as the optimal 4-vertex path. In
our computer experiments, this issue is resolved by numbering the vertices from
1, . . . , n, and then making the choice between (A,B,C,D) and (A,C,B,D) by
choosing the one that is smallest in lexicographic order based on our labeling
of the vertices. For example for given four vertices A < B < C < D and
AC+CB+BD = AB+BC+CD, we choose the path (A,B,C,D) rather than
(A,C,B,D) as an optimal 4-vertex path in our computer experiments. In such
a situation, the frequency or ε of edges computed with them will deviate from
our binomial distribution model. The problem instance brg180 is an example of
a graph where there are many such sets of 4 vertices. In such a situation, some
edges in the OHC may have small frequency in their frequency quadrilaterals
due to our selection strategy for the optimal 4-vertex paths. This seems to
produce a smaller εmin and bigger values of r and c.

In another computer experiment, we computed the number of edges e whose
εs are greater than εmin as εmin varied from 2.0 to 3.4 for the instances pr144,
brg180, kroA200, pr226, fl417 and gr431. We shall call the resulting graph in
each case the residual graph. The number of edges in the original graphs equals(
n
2

)
. The experimental results are shown in Table 2. One sees as the threshold

εmin grows, the number of edges in the residual graph decreases sharply. The
numbers in parenthesis in Table 2 represent the number of edges from the OHC
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Table 1: The computational results of some TSP instances (n is the TSP scale)
TSP n εmin σ(ε) µo(ε) σo(ε) εK εR r c
brg180 180 2.077745 0.69068 3.302347 0.203426 2.584331 1.352981 0.535548 6.404693
pr144 144 2.077695 0.740290 3.699199 0.295564 2.741467 1.472082 0.415885 4.147292
pr226 226 2.355422 0.737526 3.742785 0.221221 2.948051 1.581856 0.306065 4.403008
kroA200 200 2.610097 0.722493 3.595294 0.310257 3.085069 1.700230 0.216465 2.817722
fl417 417 2.512650 0.714986 3.710468 0.217121 3.160457 1.697672 0.206680 4.939098
lin318 318 2.738794 0.739881 3.691154 0.248299 3.189280 1.728645 0.185779 3.542209
gr431 431 2.691909 0.710105 3.581473 0.270107 3.096364 1.751279 0.184911 4.542725
si175 175 3.024279 0.795722 3.866228 0.163097 3.447857 1.712433 0.165704 1.934752
rd400 400 2.866249 0.744384 3.694329 0.233032 3.271729 1.771145 0.152511 3.519950
d657 657 2.867387 0.739090 3.723399 0.208537 3.263634 1.776356 0.150371 5.269552
pcb442 442 2.863235 0.742620 3.695240 0.221822 3.276539 1.774525 0.150115 3.766582
pr439 439 2.911339 0.734087 3.707294 0.213165 3.292903 1.792572 0.138255 3.449257
rat575 575 2.884824 0.714930 3.633131 0.255639 3.262541 1.804531 0.134066 4.197140
d493 493 2.888322 0.722681 3.648368 0.245401 3.266274 1.805411 0.133201 3.663031
ail535 535 2.919370 0.734018 3.706185 0.205480 3.285298 1.822376 0.121417 3.576842
u724 724 2.975773 0.724267 3.708220 0.231430 3.345162 1.824725 0.115279 4.386740
att532 532 2.981047 0.722783 3.650877 0.241076 3.327321 1.828218 0.114590 3.359767
rat783 783 3.006706 0.715987 3.672295 0.236411 3.347090 1.839564 0.106423 4.328717
rl1323 1323 3.121597 0.729567 3.765055 0.162765 3.402678 1.850251 0.095126 6.063715

Table 2: The number of edges in the sparse graphs and the number of lost
OHC edges in the parentheses according to εmin

εmin

(n
2

)
2.1 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.4

pr144 10296 4195(1) 2981(1) 2582(2) 2242(2) 1948(3) 1642(4) 1406(4) 1192(5) 556(13)
brg180 16110 8252(1) 3100(1) 2868(1) 2868(1) 2862(6) 2856(12)2856(12)2216(12) 28(155)
kroA20019900 7964(0) 5652(0) 5001(0) 4382(0) 3756(2) 3219(4) 2728(8) 2285(10) 845(51)
pr226 25425 10113(0)7429(1) 6471(1) 5649(2) 4903(2) 4237(2) 3623(3) 3113(4) 1604(12)
fl417 86736 31611(0)20355(0)16407(0)16392(1)15172(4)14227(5)13047(8)11513(11)5256(29)
gr431 92665 38941(0)26821(0)23197(0)19845(0)16872(1)14007(4)11523(8)9245(12) 3049(107)

whose corresponding ε is less than εmin. For εmin ≤ 2.7, we see that the number
of lost OHC edges do not change much. Indeed, when εmin = 2.7 is taken as the
threshold, only a few OHC edges are lost whereas the number of edges that we
keep is sharply reduced. Based on our experimental results, we suggest that one
should use εmin = 2.7 as the frequency threshold to compute the residual graph
for most small TSP instances. In most cases, the residual graph has less than
15.86% of total number of edges in the original graph. If the residual graph
includes the OHC, then significant computation time will be saved to resolve
TSP. Of course, in theory, the residual graph may not even have an HC if we
use a big threshold, such as εmin > 2.7. We used the improved genetic algorithm
[28] to search the new OHC in the sparse graphs computed with εmin > 2.7,
but in nearly all of the cases we failed to find any HC. For the small instances
of the TSP, µ(ε) + 2σ(ε) is too big to take as the εmin. In such cases, many of
the OHC edges are not included in the residual graph.
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There is another possibility for dealing with graphs where there are many
sets of vertices A,B,C,D where AB + BC + CD = AC + CB + BD so that
we can not choose between the paths (A,B,C,D) and (A,C,B,D) based on
the sum of the distances of their edges. One way to resolve this problem is to
add a small random distance rd ∈ [0, 1] to the distance of every edge, i.e., the
d(A,B) of an edge (A,B) becomes d(A,B) + rd(A,B). For symmetrical TSP ,
rd(A,B) = rd(B,A) ∈ [0, 1] for an arbitrary edge (A,B). The random distance
rd is so small that it does not change the OHC. However, the small random
distance converts the “special” TSP into a general TSP so that our binomial
distribution model can work well. In addition, rds are generated at random for
every edge. Therefore, the random distance rd has the nearly equivalent impact
on the probability p{3,5} for any edge e. Meanwhile, the εk(1 ≤ k ≤

(
n
2

)
) of

every edge also complies with the binomial distribution model. We carried out
experiments using this idea to generate the same kind of statistics as shown in
Table 2. These results are illustrated in Table 3.

Our computer experiments focused on the instances brg180, pr144, pr226
and fl417 which have many equal-weight edges. We added a random distance
rd ∈ [0, 1] to the distance of every edge in order to compute the 6 optimal 4-
vertex paths in each weighted quadrilateral. Because rds are random variables,
the results may vary in different trials. That is, for any given quadrilateral, we
may not compute the same six optimal 4-vertex paths. However, our exper-
iments showed that the final result for the frequency graphs does not change
very much. On average, the added random distances to the edges allowed us to
generate 6 exact optimal 4-vertex paths for most of the weighted quadrilaterals.
For some parameters of brg180, refer to Table 4. The number of edges in the
sparse graphs is computed with εmin varying from 2.0 to 3.4. The number of the
lost OHC edges is also recorded in the parentheses. Our results showed that
the εs of edges have only small changes when we add a random distance rd to
their distances as compared to the results in Table 1. However, the number of
edges with εs above εmin is changed to some extent. For example, the εmin of
brg180 becomes 2.337671 which is bigger than that in Table 1. The r is com-
puted as 0.407138. It means that 2068 more edges are removed comparing with
the results in Table 1.

Table 3: The experiments for the TSP with many equal-weight edges
εmin 2.1 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.4
pr144 4193(1) 2981(1) 2581(2) 2243(2) 1947(3) 1637(4) 1398(4) 1191(5) 557(13)
brg180 8732(0) 5932(1) 4922(1) 3973(1) 2990(6) 2856(12)2856(12)2677(12) 28(155)
kroA200 7962(0) 5656(0) 5000(0) 4377(0) 3756(2) 3219(3) 2728(8) 2286(10) 843(51)
pr226 9988(0) 7346(1) 6407(1) 5600(2) 4850(2) 4173(2) 3561(3) 3050(4) 1664(12)
fl417 31624(0)20351(0)18143(0)16402(1)15187(4)14215(5)13051(8)11574(11) 5277(29)
gr431 38945(0)26817(0)23201(0)19845(0)16877(1)14000(4)11532(8)9244(12) 3051(106)

Finally, we carried out a few more experiments of this type for brg180 which
includes a lot of equal-weight edges. In each experiment, we multiply the small
random distance rd ∈ [0, 1] with a different coefficient co, i.e., co × rd and
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rd ∈ [0, 1]. The number of equal-weight edges will be reduced greatly so that we
can compute just 6 optimal 4-vertex paths for nearly every given quadrilateral.
The εmin is recorded and r is computed according to the coefficients co. The
results are given in Table 4. We note that the results in Table 3 for brg180 were
computed according co=1.0 in Table 4.

The εmins are not equal for different coefficients co. The number of edges with
εs above εmin changes according to co · rd. In the worst experiment, the residual
graph includes 0.565988 × 180×179

2 = 9118 edges. In the best experiment, the
residual graph includes 0.307886 × 180×179

2 = 4960 edges. For the coefficients
co = 1.5, 2.0, 2.5 and 2.8, the εmins are less than 2 + 2

(n−2) which is probably

due to the fact that we still have many quadrilaterals where we cannot compute
the right optimal 4-vertex paths. One reason is that there are still many edges
with equal weights. The other reason is that adding random distances leads to
many inappropriate optimal 4-vertex paths for brg180. Although we compute
6 optimal 4-vertex paths for a given quadrilateral, the frequency of some OHC
edges may not be as big as the the frequency of the other OHC edges in their
frequency quadrilaterals.

With the other coefficients, the corresponding εmins are much bigger than
2 + 2

(n−2) . This suggests that these coefficients are able to change brg180 into a

weighted graph to which our binomial distribution model applies. Thus, adding
random increments to the distances of edges can still allow the binomial distri-
bution model to work well. Because the rds are generated at random, we cannot
expect to obtain the best results with just one experiment. We found that by
using many experiments, we were able to acquire some results where εmins were
much bigger than 2 + 2

(n−2) .

In each of the experiments represented in Table 4, we extracted the 180 εs
of the OHC edges and ordered them from big to small values. In Table 4,
one sees that εmins vary quite a bit. However, the second smallest value was
approximately 2.674499 in the 11 experiments with different cos. In addition,
the 3rd, 4th, 5th and 6th smallest values, which were approximately 2.680589,
did not change much in the 11 experiments. Moreover, the seventh smallest ε
was bigger than 2.7. Thus, when εmin = 2.7 is taken as the frequency threshold,
the number of lost OHC edges is at most 6 in each of the experiments. When
one adds random distances to the edges for a TSP with a lot of equal-weight
edges, the number of edges in the residual graph will vary from experiment
to experiment. This suggests that one should do multiple experiments when
adding random distances to the edges until one finds an εmin which is bigger
than 2 + 2

(n−2) . In this way, we can compute a residual graph with a relatively

small number of edges.

6 Conclusions

The main result of this paper is to give a heuristic to cut down the number
of edges in the search for an OHC in a symmetric TSP based on comput-
ing frequency graphs. That is, first one adds a small increment of distance to
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Table 4: The experiments with different co · rd for brg180
co 1.0 1.5 2.0 2.5 2.8 3.0
εmin 2.337671 1.752619 1.827020 1.726974 1.893164 2.434364
r 0.407138 0.565988 0.560896 0.568031 0.556175 0.345190
co 3.2 3.5 4.0 4.5 5
εmin 2.497838 2.386143 2.051816 2.203885 2.281959
r 0.307886 0.376662 0.545750 0.493540 0.438427

each edge to ensure that one can distinguish between the distances of the path
(A,B,C,D) versus the path (A,C,B,D) for all sets of 4 vertices A,B,C,D.
Next, one computes the frequency graph based on randomly choosing N fre-
quency quadrilaterals with each edge and then eliminates those edges e whose
corresponding ε is less than a pre-specified εmin. The analysis of our binomial
distribution model for such randomly chosen frequency quadrilaterals and our
computer experiments suggest εmin = 2.7 is a good first choice. In this case, the
residual graph has less than 15.86% of the total number of edges in the original
graph. The cost of computing a frequency graph is O(n4).

One could ask whether we can produce a similar analysis by working with
optimal 5-vertex paths and pentalaterals instead of optimal 4-vertex paths and
quadrilaterals. In this case, there are 32 different frequency graphs that are
possible using five vertices A,B,C,D,E and the distribution of frequencies is
not uniform as it is in the case of frequency quadrilaterals using optimal 4-
vertex paths. Thus, it is much harder to analyze. Another drawback is the cost
of computing a frequency graph is O(n5) in this case.

When end with two questions for further research. The first question is what
happens if we iterate the procedure of computing the residual graphs. In theory,
we can throw away more and more edges. We shall pursue such an analysis in
a subsequent paper. The second question is to estimate the complexity of the
algorithms that we use an exact or approximation algorithm to resolve TSP
based the residual graphs that we produce. This will be the next focus of our
future research.
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