
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 21, no. 2, pp. 195–218 (2017)
DOI: 10.7155/jgaa.00412

Symmetry Breaking Constraints for the
Minimum Deficiency Problem

Sivan Altinakar 1 Gilles Caporossi 2 Alain Hertz 1

1Department of Mathematics and Industrial Engineering
École Polytechnique - Gerad, Montréal, Canada

2Department of Decision Sciences
HEC - Gerad, Montréal, Canada

Abstract

An edge-coloring of a graph G = (V,E) is a function c that assigns
an integer c(e) (called color) in {0, 1, 2, . . . } to every edge e ∈ E so that
adjacent edges receive different colors. An edge-coloring is compact if
the colors of the edges incident to every vertex form a set of consecutive
integers. The minimum deficiency problem is to determine the minimum
number of pendant edges that must be added to a graph such that the
resulting graph admits a compact edge-coloring.

Because of symmetries, an instance of the minimum deficiency problem
can have many equivalent optimal solutions. We present a way to gener-
ate a set of symmetry breaking constraints, called gamblle constraints,
that can be added to a constraint programming model. The gamblle
constraints are inspired by the Lex-Leader ones, based on automorphisms
of graphs, and act on families of permutable variables. We analyze their
impact on the reduction of the number of optimal solutions as well as on
the speed-up of the constraint programming model.

Submitted:
August 2016

Reviewed:
December 2016

Revised:
January 2017

Accepted:
January 2017

Final:
January 2017

Published:
January 2017

Article type:
Regular paper

Communicated by:
G. Liotta

E-mail addresses: sivan.altinakar@gerad.ca (Sivan Altinakar) gilles.caporossi@gerad.ca (Gilles

Caporossi) alain.hertz@gerad.ca (Alain Hertz)

http://dx.doi.org/10.7155/jgaa.00412
mailto:sivan.altinakar@gerad.ca
mailto:gilles.caporossi@gerad.ca
mailto:alain.hertz@gerad.ca

196 S. Altinakar et al. Symmetry Breaking for the Minimum Deficiency

1 Introduction

An edge-coloring of a graph G = (V,E) is a function c : E → {0, 1, 2, . . . } that
assigns a color c(e) to every edge e ∈ E such that c(e) 6= c(e′) whenever e and
e′ share a common endvertex. Let Ev denote the set of edges incident to vertex
v ∈ V . An edge-coloring of G = (V,E) is compact if {c(e) : e ∈ Ev} is a set of
consecutive non-negative integers for all vertices v ∈ V .

The problem of determining a compact k-edge-coloring (if any) of a graph
was introduced by Asratian and Kamalian [3]. Determining whether or not a
given graph admits a compact edge-coloring is known to be an NP-complete
problem [23], even for bipartite graphs. Given an edge-coloring c of a graph G
and a vertex v, the deficiency of c at v, denoted dv(G, c), is the minimum number
of integers that must be added to {c(e) : e ∈ Ev} to form a set of consecutive
integers. The deficiency of c is then defined as the sum d(G, c) =

∑
v∈V dv(G, c).

Hence, c is compact if and only if d(G, c) = 0. The deficiency of a graph G,
denoted d(G), is the minimum deficiency d(G, c) over all edge-colorings c of G.
This concept, which was introduced by Giaro et al. [10], provides a measure of
how close G is to be compactly colorable. Indeed, d(G) is the minimum number
of pendant edges that must be added to G such that the resulting graph is
compactly colorable. The Minimum Deficiency Problem is to determine d(G).
It is an NP-hard problem studied in [1, 2, 4, 8, 9, 10, 11, 12, 13, 20, 22].

As observed in [1], the problem of determining the deficiency of a small
graph is surprisingly hard. The main difficulty is not to generate an optimal
solution, but rather to prove its optimality. This is mainly due to the existence
of many equivalent optimal solutions. The objective of this paper is to intro-
duce symmetry-breaking constraints, in order to eliminate as many redundant
solutions as possible.

Multiple authors have each identified and defined in different ways various
types of symmetries in their respective research contexts. This paper adopts
the terminology of [5, 7], which consists of a very general classification into
solution and problem (or constraint) symmetries. Such permutations of the set
of (variable, value) pairs respectively preserve the solutions or the constraints of
the problem. Moreover, the group of constraint symmetries is a subgroup of the
group of solution symmetries. It is also worth noting that identifying solution
symmetries usually requires finding all the solutions first, whereas constraint
symmetries can be derived from the structure and expression of the problem.
Finally, both of these types of symmetries allow two special cases, variable and
value symmetries, which only permute variables or values, respectively.

The Lex-Leader Method proposed by Crawford, Ginsberg, Luks and Roy [6],
and later improved in [5, 14, 19], will be at the basis of the research presented
here. It adds constraints so as to allow only one member of each equivalence
class. Such a method can produce a huge number of constraints and sometimes
adding them to a model can be counterproductive. We propose to generate
only a subset of these constraints, called gamblle constraints, and analyze
their impact on the reduction of the number of optimal solutions.

In [1], the authors have compared the performances of four models for the

JGAA, 21(2) 195–218 (2017) 197

minimum deficiency problem. It clearly appears that constrained programming
models are significantly better than integer programming ones. The constrained
programming model defined in [1] is described in Section 2. Graph automor-
phisms play an important role in creating symmetries for the minimum defi-
ciency problem. This is illustrated in Section 3, and two methods to identify
some or all of these automorphisms are proposed in Section 4. We then define
gamblle constraints in Section 5. These are added to the constraint program-
ming model. Computational experiments are reported in Section 6 where we
compare eight different ways of adding symmetry breaking constraints for the
minimum deficiency problem.

2 Model

The symmetries encountered when solving a problem are clearly dependant on
the model used to solve it. Following the previous experimentations in [1], a
constraint programming model will be used to solve the minimum deficiency
problem. It appears to be much faster than integer programming models and
provides a simple correspondence to the graph formulation.

Consider a graph G = (V,E), with vertex set V and edge set E. As men-
tioned in the introduction, Ev is the set of edges incident to vertex v. We denote
by degv = |Ev| the degree of vertex v, and by ∆ = maxv∈V degv the maximum
degree of G. Also, C represents a set of colors {0, 1, . . . ,K − 1} where K ≥ ∆,
ce ∈ C is the color assigned to edge e, and cv and cv respectively denote the
minimal and maximal color assigned to an edge incident to vertex v. For the
domain of the last two kind of variables, rather than using the entire set C, it
is possible to shrink it a little, simply by taking into account the degree of their
associated vertex. Finally, dv is the deficiency at vertex v and

∑
v∈V dv is the

deficiency of the coloring. We will use the following constrained programming
model proposed in [1]:

min
∑
v∈V

dv (1)

s.t. allDifferent
e∈Ev

ce ∀v ∈ V (2)

cv = min
e∈Ev

ce ∀v ∈ V (3)

cv = max
e∈Ev

ce ∀v ∈ V (4)

dv = cv − cv + 1− degv ∀v ∈ V (5)

|{e ∈ E | ce = 0}| ≥ 1 (6)

ce ∈ C ∀e ∈ E

cv ∈ {0, . . . ,K − degv} ∀v ∈ V

cv ∈ {degv − 1, . . . ,K − 1} ∀v ∈ V

dv ∈ {0, . . . ,K − degv} ∀v ∈ V

198 S. Altinakar et al. Symmetry Breaking for the Minimum Deficiency

Constraints (2) to (5) are the usual constraints for the minimum deficiency
problem and are sufficient to model it accurately. Constraint (6) is added to
help breaking the value symmetries due to shifting all the colors up or down,
by simply enforcing that color 0 should be used at least once. That single extra
constraint already immensely improves the performance of the model, and does
not interfere with the future ones dealing with variable symmetries based on
graph automorphisms that is the subject of the rest of this paper.

It was proved in [1] that if G is a graph with n vertices, then all edge-colorings
with minimum deficiency d(G) use at most 2n−4+d(G) colors. A fixed number
of colors K = 3n− 4 can therefore be used for all practical purposes, based on
the conjecture that the minimum deficiency d(G) of G is always at most equal
to n. If the conjecture is proven wrong and the model is applied to a graph
with minimum deficiency greater than n, then the optimal value D =

∑
v∈V dv

produced by the model will be larger than n, and we can then run the model a
second time, using K = 2n−4 +D instead of 3n−4 to determine the minimum
deficiency of the considered graph.

3 Graph automorphisms

An automorphism of a graph G = (V,E) is a permutation σ of its vertex set V
such that (u, v) ∈ E ⇔ (σ(u), σ(v)) ∈ E. This reordering of the vertices
of G thus preserves the adjacency matrix. The set of all automorphisms of
a graph G forms the permutation group Aut(G). This group acts naturally
on V , by its definition. More interestingly, it can act on the edge set E by
using the edge action hE that maps a permutation σ ∈ Aut(G) of vertices to a
permutation σE = hE(σ) of the edges, where σE((u, v)) = (σ(u), σ(v)).

In what follows, we use the standard cycle notations for permutations [21].
It expresses a permutation as a product of cycles corresponding to the orbits
of the permutation; since distinct orbits are disjoint, this is referred to as a
decomposition into disjoint cycles. Cycles of length 1 are commonly omitted
from the cycle notation. The identity permutation, which consists only of 1-
cycles will be denoted by Id. Two solutions to the minimum deficiency problem
that can be obtained one from the other by a permutation in Aut(G) are called
equivalent solutions.

Consider for example the chain P4 on four vertices in Figure 1(a). Per-
mutation (v1, v4)(v2, v3) ∈ Aut(P4) translates into permutation (e1, e3) of the
edge set, and these two permutations both indicate that the two bottom optimal
edge-colorings s3 and s4 are equivalent. As another example, consider the clique
K3 on three vertices in Figure 1(b). The two permutations (v1, v2) and (v2, v3)
are generators for the permutation group Aut(K3), and these two permutations
translate into permutations (e2, e3) and (e1, e2) of the edge set. In this case, the
permutations in Aut(K3) indicate that all optimal edge-colorings are equivalent.

JGAA, 21(2) 195–218 (2017) 199

v2

v1 v4

v3

e1

e2

e3

v1

v2 v3

v4 v1

v2 v3

v4

v1

v2 v3

v4 v1

v2 v3

v4

The chain P4 on four vertices

Aut(P4)={Id, (v1,v4)(v2,v3)}

0

1

0 1

0

1

0

1

2 2

1

0

The four optimal edge-colorings of P4

Solutions s3 and s4 are equivalent

0

2

1 0

1

2 2

1

0

1

2

0 1

0

2 2

0

1

v3v2

v1

The six equivalent optimal

 edge-colorings of K3

e3

e1 e2

v3v2

v1

v3v2

v1

v3v2

v1

v3v2

v1

v3v2

v1

v3v2

v1

The clique K3 on three vertices

Aut(K3)={Id, (v1,v2,v3),(v1,v3,v2),

 (v1,v2),(v1,v3),(v2,v3)}

(a) (b)

solution s1 solution s2

solution s3 solution s4

solution s1 solution s2

solution s4 solution s5

solution s3

solution s6

Figure 1: Automorphisms and optimal edge-colorings for P4 and K3.

Aut(G) also acts on families of vertex (resp. edge) variables which have a
one-to-one mapping with the set of vertices (resp. edges) of the graph, such as
cv, cv and dv (resp. ce). For example, consider again the chain on four vertices
in Figure 1(a). Permutation (v1, v4)(v2, v3) in Aut(P4) defines the four following
variable permutations (cv1 , cv4)(cv2

, cv3), (cv1 , cv4)(cv2 , cv3), (dv1 , dv4)(dv2
, dv3),

and (ce1 , ce3).
Constructing Aut(G) is at least as difficult (in terms of computational com-

plexity) as solving the graph isomorphism problem. Just counting the automor-
phisms is polynomial-time equivalent to graph isomorphism [15]. It is therefore
unknown whether there is a polynomial time algorithm for constructing Aut(G).

4 Methods for identifying automorphisms

4.1 nauty

Given an input graph G, the nauty library created by Brendan McKay[16, 17]
outputs a description of Aut(G) in terms of a generating set. The permutations
that are part of this set tend to be fairly simple (when possible, a combina-
tion of disjoint transpositions). However, the set is not necessarily minimal
for generating Aut(G). For example in Figure 2, nauty outputs generators
(v2, v3), (v3, v4), (v5, v6), (v7, v8) and (v5, v7)(v6, v8); (v7, v8) is redundant since
it can be obtained by applying (v5, v7)(v6, v8) followed by (v5, v6) and then
(v5, v7)(v6, v8) again.

200 S. Altinakar et al. Symmetry Breaking for the Minimum Deficiency

v1

v3

v2

v4

v6

v5

v7

v8

v9

clique of twins
stable set

of twins

stable set

of twins

Figure 2: A graph with clique and stable sets of twins.

4.2 clusters

We define two vertices u and v as twins if all vertices w 6= u, v are either adjacent
to both u and v or to none of them. A stable set of twins is a set of at least
two pairwise non-adjacent twins, and a clique of twins is a set of at least two
pairwise adjacent twins. For illustration, vertices v2, v3, v4 in Figure 2 form a
clique of twins, while both sets {v5, v6} and {v7, v8} are stable sets of twins. The
following theorem shows that there is a partition of the vertex set of a graph
so that every block of the partition is a maximal stable set of twins, a clique of
twins, or a singleton.

Theorem 1 The intersection of a stable set of twins and a clique of twins is
empty.

Proof: Suppose, by contradiction, that there is a stable set S of twins and a
clique K of twins such that I = S ∩ K 6= ∅. Clearly, I contains at most one
vertex since vertices in S are non-adjacent, while those in K are adjacent. So
let {w} = I and let u 6= w be a second vertex in S. All vertices v 6= w in
K must be adjacent to u since u and w have the same set of adacent vertices.
But no vertex v 6= w in K can be adjacent to u since v and w have the same
neighborhood. Hence K contains only one vertex, a contradiction. �

Finding a partition of the vertex set into maximal stable sets of twins, max-
imal cliques of twins and singletons is an easy task. Indeed, it is sufficient to
observe that every maximal stable set of twins corresponds to a maximal set
of identical lines of the adjacency matrix, and every maximal clique of twins
corresponds to a maximal set of identical lines of the matrix obtained from the
adjacency matrix by changing to 1 every element of its diagonal. All elements
that are not in a stable set of twins or in a clique of twins are singletons of the
partition. For example, the partition of the vertex set for the graph in Figure 2
is {{v1}, {v2, v3, v4}, {v5, v6}, {v7, v8}, {v9}}.

Note that a permutation of a subset of vertices in a stable set of twins
or in a clique of twins corresponds to an automorphism. More precisely, let
T = {vi1 , vi2 , . . . , vip} be a stable set of twins or a clique of twins. The p − 1

JGAA, 21(2) 195–218 (2017) 201

permutations (vi1 , vi2), (vi2 , vi3),. . . , (vip−1 , vip) define a set of generators for
all possible permutations of a subset of vertices in T . We call clusters the
procedure that produces these generators. For the example of Figure 2, clus-
ters would produce the set {(v2, v3), (v3, v4), (v5, v6), (v7, v8)} of generators.
Observe that permutation (v5, v7)(v6, v8) (i.e. swapping the two stable sets of
twins) found by nauty cannot be obtained by these generators.

The union of the generators produced by clusters defines the cluster-
automorphism group AutC(G), which is a subgroup of Aut(G). Hence, if C
is the set containing all stables sets of twins and all cliques of twins, we have
|AutC(G)| =

∏
T∈C(|T | !) ≤ |Aut(G)|, and the total number of generators for

AutC(G) is
∑

T∈C(|T | − 1) ≤ n− |C|.
It is known that for a graph G on n vertices, Aut(G) can be specified by

no more than n− 1 generators. However, as mentioned in [18], nauty possibly
requires an exponentional time to provide such a set of generators. For compar-
ison, we have observed above that the partition of the vertex set into maximal
stable sets of twins, maximal cliques of twins and singletons can be obtained in
polynomial time, which means that clusters produces generators for AutC(G)
in polynomial time.

5 gamblle constraints

The Lex-Leader constraints [6] deal with variable symmetries. They use a vector
representation of the variables of a solution, and constrain all permutations of
this vector under a set of symmetries to be lexicographically smaller to the
first one. This amounts to reducing the solution space to one element for each
equivalence class defined by symmetries. Such a method can produce a huge
number of constraints, while a subset of these constraints can already be useful,
for example when limited to the symmetries due to graph automorphisms.

v
1

e
1

v
2

v
3

v
4

v
5

e
2

e
3

e
4

e
5

e
6

Figure 3: The K2,3 bipartite graph, with |AutC(K2,3)| = |Aut(K2,3)| = 12.

Consider for example the graph K2,3 of Figure 3 and the following ordering
of the variables of the model: (cv1 , . . . , cv5 , cv1 , . . . , cv5 , dv1 , . . . , dv5 , ce1 , . . . , ce6).
Both clusters and nauty produce the set {(v1, v2), (v3, v4), (v4, v5)} of gen-
erators. Permutation (v3, v4) imposes the following constraint :

(cv1,cv2,cv3,cv4,cv5
,cv1,cv2,cv3,cv4,cv5,dv1,dv2,dv3,dv4,dv5,ce1,ce2,ce3,ce4,ce5,ce6)

�lex(cv1,cv2,cv4,cv3,cv5
,cv1,cv2,cv4,cv3,cv5,dv1,dv2,dv4,dv3,dv5,ce2,ce1,ce3,ce5,ce4,ce6).

202 S. Altinakar et al. Symmetry Breaking for the Minimum Deficiency

When the head of the solution vector comprises all the elements of a fam-
ily of permutable variables, part of the effect of a permutation of the ver-
tices or of the edges is a rearrangment of this head. In the above example,
the effect of permutation (v3, v4) is to change (cv1 , cv2 , cv3 , cv4 , cv5 , . . .) into
(cv1 , cv2 , cv4

, cv3 , cv5 , . . .). The first simplification (called trimming) is to only
explicit the first non-trivial comparison of each lexicographical constraint. In
the previous example, the constraint becomes

cv3 ≤ cv4 .

If we rearrange the variables so that (ce1 , ce2 , ce3 , ce4 , ce5 , ce6 , . . .) is the head of a
solution vector, then it is changed to (ce2 , ce1 , ce3 , ce5 , ce4ce6 , . . .) by permutation
(v3, v4), and the constraint resulting from the trimming is

ce1 ≤ ce2 .

In some cases, it is possible to use original constraints in the model to further
strengthen a constraint to a strict inequality, as with the edge color variables
when the considered edges have an endvertex in common. This results from
the fact that such variables appear together in an allDifferent constraint. This
special case makes the trimmed constraint equivalent to the full original lexico-
graphical one. In the considered example, the constrained programming model
imposes that ce1 , ce2 and ce3 must be all different, and permutation (v3, v4)
therefore gives

ce1 < ce2 .

The second simplification consists in adding constraints for only a few per-
mutations from the automorphism group. Consider a permutation in Aut(G)
and let π be its effect on a family of permutable variables. Permutation π can
be written as a product of disjoint cycles. Let C be the cycle in π that contains
the variable with smallest index, say ui. For every uj in C with j 6= i we do
the following: if the model does not imply ui 6= uj , we add inequality ui ≤ uj
to the set of constraints; otherwise, we add the strict inequality ui < uj . Every
permutation π thus produces |C| − 1 constraints, to account for the whole orbit
of the variable ui created by repeated application of π. We name the result-
ing inequalities Graph AutoMorphism-Based Lex-Leader Enforcing (gamblle)
constraints. This is summarized in Algorithm 1. Line 3 guarantees that the
inequality compares the first differing pair of the underlying lexicographical
constraint based on the solution vector headed by the family F of permutable
variables.

For illustration, consider the graph G in Figure 4 with |Aut(G)| = 3. It is
the smallest graph with all permutations π 6= Id in Aut(G) having no trans-
position (i.e., cycle with only two elements). nauty generates permutation
(v1, v4, v7)(v2, v5, v8)(v3, v6, v9) with three cycles. The corresponding permuta-
tion of the cv variables is π = (cv1 , cv4 , cv7)(cv2 , cv5

, cv8)(cv3 , cv6 , cv9). The cycle
with the variable of smallest index is C = (cv1 , cv4 , cv7) and we therefore add
constraints

cv1 ≤ cv4 and cv1 ≤ cv7 .

JGAA, 21(2) 195–218 (2017) 203

Algorithm 1: Generation of gamblle constraints for a family of per-
mutable variables
input : Graph G, a subset P ⊆ Aut(G), a family F of ordered

permutable variables
output: A set L of gamblle inequality constraints

1 Let PF be the set of permutations of the elements of F obtained from P

2 foreach π 6= Id in PF do
3 Let C be the cycle of π with the smallest indexed variable ui
4 foreach uj ∈ C with j 6= i do
5 if the model implies ui 6= uj then
6 Add inequality ui < uj to L
7 else
8 Add the inequality ui ≤ uj to L

v1
v2

v3

v4

v5 v6

v7

v8

v9

(v1,v4,v7)(v2,v5,v8)(v3,v6,v9)

translates into

(e1,e9,e14)(e2,e10,v3)(e4,e7,e12)

(e5,e8,e13)(e6,e11,e15)

GAMBLLE constraints for the ce variables

ce1
 ≤ ce9

 and ce1
 ≤ ce14

e1

e4
e2 e3

e5

e6
e7

e8

e9

e10

e11

e12 e13

e14

e15

v1
v2

v3

v4

v5 v6

v7

v8

v9

(v1,v4,v7)(v2,v5,v8)(v3,v6,v9)

translates into

(e1,e2,e3)(e4,e5,v6)(e7,e8,e9)

(e10,e11,e12)(e13,e14,e15)

GAMBLLE constraints for the ce variables

ce1
 < ce2

 and ce1
 < ce3

e7

e6
e1 e3

e15

e10
e4

e13

e8

e2

e11

e5 e14

e9

e12

Aut(G)={Id, (v1,v4,v7)(v2,v5,v8)(v3,v6,v9),(v1,v7,v4)(v2,v8,v5)(v3,v9,v6)}

v1
v2

v3

v4

v5 v6

v7

v8

v9

Figure 4: Illustration of the generation of gamblle constraints.

204 S. Altinakar et al. Symmetry Breaking for the Minimum Deficiency

If we are interested in the edge colors, we first have to order the edges. One
possible way is to order them using the lexicographical ordering of their pair of
endvertices. Hence e1 is the edge linking v1 with v2, e2 is the edge linking v1 with
v4, and so on. Such an ordering is shown on the leftside of Figure 4. Permutation
(v1, v4, v7)(v2, v5, v8)(v3, v6, v9) translates into the following permutation of the
ce variables:

(ce1 , ce9 , ce14)(ce2 , ce10 , ce3)(ce4 , ce7 , ce12)(ce5 , ce8 , ce13)(ce6 , ce11 , ce15).

The cycle with smallest index is C = (ce1 , ce9 , ce14) and we therefore add con-
straints

ce1 ≤ ce9 and ce1 ≤ ce14 .
Note that the ordering of the variables has an impact on the generated con-
straints. Indeed, for the same graph, we give on the rightside of Figure 4 a
different labelling, where (v1, v4, v7)(v2, v5, v8)(v3, v6, v9) translates into

(ce1 , ce2 , ce3)(ce4 , ce5 , ce6)(ce7 , ce8 , ce9)(ce10 , ce11 , ce12)(ce13 , ce14 , ce15).

The cycle with smallest index is then C = (ce1 , ce2 , ce3) and we therefore obtain
the following strenghtened constraints:

ce1 < ce2 and ce1 < ce3 .

As a second example, consider the complete binary tree of Figure 5. nauty
produces permutations (v2, v3)(v4, v6)(v5, v7), (v4, v5) and (v6, v7) of the vertex
set which correspond to permutations (e1, e2)(e3, e5)(e4, e6), (e3, e4) and (e4, e6)
of the edges when they are ordered as shown on the leftside of Figure 5, according
to the lexicographical ordering of their pair of endvertices. The gamblle con-
straints associated with the ce variables are ce1 < ce2 , ce3 < ce4 and ce5 < ce6 .
The reverse ordering of the edges gives different gamblle constraints since one
of them is not a strict inequality. Indeed, the three permutations of the vertex
set translate into permutations (e1, e3)(e2, e4)(e5, e6), (e3, e4) and (e1, e2) of the
edge set, and the associated gamblle constraints are ce1 ≤ ce3 , ce3 < ce4 and
ce1 < ce2 .

v1

v2 v3

v4 v5 v6 v7

e1 e2

e3 e4 e5 e6

(v2,v3)(v4,v6)(v5,v7), (v4,v5), (v6,v7)

translate into

(e1,e2)(e3,e5)(e4,e6), (e3,e4), (e5,e6)

GAMBLLE constraints for the ce variables

ce1
 < ce2

 , ce3
 < ce4

and ce5
 < ce6

v1

v2 v3

v4 v5 v6 v7

e6 e5

e4 e3 e2 e1

(v2,v3)(v4,v6)(v5,v7), (v4,v5), (v6,v7)

translate into

(e1,e3)(e2,e4)(e5,e6), (e3,e4), (e1,e2)

GAMBLLE constraints for the ce variables

ce1
 ≤ ce3

 , ce3
 < ce4

and ce5
 < ce6

Figure 5: gamblle constraints for two different edge orderings of a binary tree.

JGAA, 21(2) 195–218 (2017) 205

In the experiments reported in the next section, we consider all permuta-
tions obtained using nauty and clusters, and the edges are ordered accord-
ing to the lexicographical ordering of their pair of endvertices. For example,
consider again the P4 of Figure 1(a). clusters does not generate any per-
mutation since the graph does not contain any stable set of twins or clique of
twins. nauty generates permutation (v1, v4)(v2, v3) that translates into permu-
tation (cv1 , cv4)(cv2 , cv3) of the cv variables. The considered cycle C is therefore
(cv1 , cv4) which gives the gamblle constraint cv1 ≤ cv4 that forbids solution
s4. Similarly, with the cv variables, we get the gamblle constraint cv1 ≤ cv4
which forbids solution s4. For the dv variables, we get the gamblle constraint
dv1 ≤ dv4 that does not break any symmetry since dv1 = dv4 = 0 in both s3
and s4. The permutation of the ce variables associated with (v1, v4)(v2, v3) is
(ce1 , ce3), and the associated gamblle constraint ce1 ≤ ce3 again forbids s4.

Consider now the clique K3 of Figure 1(b). Both clusters and nauty
produce permutations (v1, v2) and (v2, v3). The corresponding gamblle con-
straints for the cv variables are cv1 ≤ cv2 ≤ cv3 , which remove all optimal
solutions except s1 and s2. The gamblle constraints for the cv variables are
cv1 ≤ cv2 ≤ cv3 which are only satisfied by solutions s1 and s4. With the dv
variables, we get dv1 ≤ dv2 ≤ dv3 satisfied by s4 and s5. The only variables that
leave exactly one solution among the six equivalent ones are the ce variables.
Indeed, their associated gamblle constraints are ce1 < ce2 < ce3 which forbid
all optimal solutions except s1. Note that gamblle constraints associated with
different sets of permutable variables cannot be combined, since all solutions
to the minimum deficiency problem are then possibly forbidden. For example,
for the clique K3, the union of the gamblle constraints dv1 ≤ dv2 ≤ dv3

and
ce1 < ce2 < ce3 forbids all solutions: dv2

≤ dv3 and ce3 > max{ce1 , ce2} is
equivalent to ce3 − ce1 ≤ ce3 − ce2 which implies ce2 ≤ ce1 .

6 Computational experiments

6.1 Experimental setup

To generate gamblle constraints, two parameters come into play. The first
one is the method to obtain a set of permutations, either through the nauty
library (N) or the clusters method (C). The second is the family of permutable
variables used, which can be the color ce of the edges (col), the minimum
color cv at the vertices (min), the maximum color cv at the vertices (max), or
the deficiency dv at the vertices (def). The set of extra constraints and the
resulting algorithm when using them are both denoted by putting the letters of
the options together in the format G<method><family>. Also, none denotes the
original model solved without any gamblle constraints.

The following two datasets are considered in our experiment: D1, the com-
plete set of connected simple graphs of size 4 to 9, and D2, a series of random
connected simple graphs, 8 for each pair (n, p) with 4 ≤ n ≤ 100 vertices and
density in (p− 0.05, p+ 0.05] with p ∈ {0.1, 0.2, . . . , 0.9}.

206 S. Altinakar et al. Symmetry Breaking for the Minimum Deficiency

The tests were run on a Lenovo Thinkpad X300 laptop, with Intel Core 2 Duo
CPU at 1.2 GHz and 4Gb of RAM. Given a graph and a family of permutable
variables, the pre-processing step generates the gamblle constraints, using
either nauty (v2.4r2) or clusters. Using IBM/ILOG’s optimization suite, the
basic model is expressed in OPL (Optimization Programming Language). It is
then instanciated with the graph and augmented with the additional constraints.
This object is solved with either cp optimizer (v12.2) to competitively find the
deficiency, or CPLEX (v12.2) to find the list of optimal solutions. For the latter
the generation of graph images in post-processing relies on Graphviz. This whole
process and the batch processing are both orchestrated by programs written in
Ruby.

6.2 clusters versus nauty

Given a graph G, it may happen that AutC(G) is strictly contained in Aut(G).
Also, we possibly have AutC(G) = {Id}, which means that G does not contain
any stable set of twins or clique of twins. In order to justify the use of clusters,
we first show that most graphs have AutC(G) = Aut(G). For this purpose, we
distinguish the following four cases, denoted A1, A2, A3 and A4.

1 = |AutC(G)| 1 < |AutC(G)|

AutC(G) = Aut(G)
A1 A2

GC<fam>≡ GN<fam>≡ none GC<fam>≡ GN<fam>

AutC(G) (Aut(G)
A3 A4

GC<fam>≡ none

The graph K2,3 of Figure 3 is in A2 since both clusters and nauty pro-
duce the 3 generators for the 12 permutations in Aut(K2,3). The graph in
Figure 4 belong to A3 since clusters does not produce any permutation while
nauty does. The graph in Figure 2 is in A4 since nauty produces permuta-
tion (v5, v7)(v6, v8) that does not belong to AutC(G) and |AutC(G)| = 24. An
example of graph in A1, is shown in Figure 6.

Figure 6: The smallest graph G with AutC(G) = Aut(G) = {Id}.

When G is in class A1 or A3, GC<family> is equivalent to none, and when
G is in A1 or A2, GC<family> and GN<family> produce the same results.

As shown in Figure 7, the proportion of graphs in D1 that belong to A1
increases monotonically with the the number of vertices. This becomes even
more clear in Figure 8 for the random graphs in D2. When |Aut(G)| > 1,
class A2 seems to dominate, which suggests that most automorphisms are due
to stable sets of twins and cliques of twins.

JGAA, 21(2) 195–218 (2017) 207

In D1, when fixing the number n of vertices and varying the density d,
the middle range of density tends to have a bigger proportion of graphs with
no automorphism, contrary to the extremes that mostly have some. Figure 7
shows the case of n = 8. This observation seems to stay true for larger graphs
(see Figure 8 with n = 20).

4 5 6 7 8 9
0

0.5

1

n

p
ro

p
o
rt

io
n

o
f

g
ra

p
h
s

(a) Distribution for every n ∈ {4, 5, . . . , 9}.

18
22
61
11

106
46
212
26

20
0
20
0

1
0
3
0

0.2 0.4 0.6 0.8
0

2,000

4,000

density p

n
u
m

b
er

o
f

g
ra

p
h
s

A4

A3

A2

A1

(b) Distribution for n = 8 and p ∈ {0.1, 0.2, . . . , 0.9}.

Figure 7: Distribution of the automorphism group classes for dataset D1.

Let gN (G) (respectiveley gC(G)) denote the number of generators produced
by nauty (respectively clusters) when applied to G. Figures 7 and 8 clearly
show that most graphs belong to A1 and A2, in which case we have gN (G) =
gC(G). If G belongs to A3 or A4, gC(G) tends to be usually only slightly smaller
than gN (G), as shown in Table 1, where we indicate the number of graphs G
with n = 8 vertices for every pair (gN (G), gC(G)). Indeed among the 11117
graphs, only 228 of them (i.e., 2%) have gN (G) − gC(G) > 1. By summing
the numbers on the diagonal, we obtain that 8565 graphs out of 11117 (i.e.
77%) belong to A1 or A2. These observations justify the use of clusters since
AutC(G) = Aut(G) in a majority of cases.

Using again D1, we analyze in Table 2 the relationship between the minimum
deficiency d(G) and the automorphism group class a(G) ∈ {A1,A2,A3,A4} to
which G belongs, as well as the relationship between d(G) and the number
gN (G) of generators produced by nauty. We indicate the percentage of graphs

208 S. Altinakar et al. Symmetry Breaking for the Minimum Deficiency

20 40 60 80 100

20

40

60

n

n
u
m

b
er

o
f

g
ra

p
h
s

A4

A3

A2

A1

(a) Distribution for every n ∈ {4, 5, . . . , 100}.

0.2 0.4 0.6 0.8
0

2

4

6

8

density p

n
u
m

b
er

o
f

g
ra

p
h
s

(b) Distribution for n = 20 and p ∈ {0.1, 0.2, . . . , 0.9}.

Figure 8: Distribution of the automorphism group classes for dataset D2.

g C
(G

)

7 1
6 8 1
5 39 4
4 177 22 1 1
3 555 71 1
2 1408 263 14
1 2825 690 48 2
0 3552 1273 144 16 1

0 1 2 3 4 5 6 7
gN (G)

Table 1: gN (G) versus gC(G) for n = 8

with n = 8 vertices for every pair (d(G), gN (G)) and every pair (d(G), a(G)).
Notice first that most graphs (97.7%) have minimum deficiency 0. Among the
257 graphs (2.31%) with d(G) > 0, only 6 of them (0.05 % of 11117, which is
also 2.33% of 257) have no automorphism (i.e., belong to A1). Also, it appears

JGAA, 21(2) 195–218 (2017) 209

that the average value of gN (G) tends to increase when the minimum deficiency
increases : it is equal to 1.11 for graphs with d(G) = 0, to 2.39 for graphs with
d(G) = 1, and to 4.5 for graphs with d(G) = 2.

d(G) gN (G) automorphism class
0 1 2 3 4 5 6 7 1 2 3 4

0 31.9 36.34 19.46 7.33 2.1 0.44 0.1 0.03 31.9 43.28 12.48 10.04
1 0.05 0.52 0.71 0.6 0.27 0.1 0.02 0.05 1.08 0.42 0.72
2 0.02 0.02 0.03 0.01

Table 2: d(G) versus gN (G) and the automorphism group classes.

6.3 Impact on the size of the optimal solution space

In this section, we analyze the impact of adding symmetry breaking constraints
on the size of the set of optimal solutions. For this purpose, let Lnone(G) be
the set of optimal solutions to the minimum deficiency problem when no extra
constraints are added to the constrained programming model of Section 2. Such
a set can be represented by a graph Hnone(G) where each vertex is a solution in
Lnone(G), and two solutions are adjacent if one can be transformed into the other
by swapping the two colors along a path or cycle of alternating colors. These
are the two most fundamental neighborhoods used in heuristics for solving the
minimum deficiency problem [4]. They leave unaltered the deficiency in their
interior vertices, so there can only be a potential effect on the deficiency at the
two ends of a path. Consider for example the graph in Figure 9. The coloring
on the leftside is optimal since the deficiency is zero. A swapping of colors
1 and 2 on the cycle containing vertices v1, v2, v5, v6 produces a new optimal
solution. These two solutions are equivalent, one being obtained from the other
by permuting vertices v2 and v5 which belong to a stable set of twins. The two
solutions are therefore linked by an edge in Hnone(G). A swapping of colors 1
and 2 on a path is shown on the rightside of Figure 9. In this case, we obtain a
deficiency at vertex v8. Hence, this third coloring is not optimal and therefore
not represented in Hnone(G).

0 21

1 3

21

2 2

0 22

1 3

22

1 1

0 11

2 3

11

2 2

optimal edge-coloring

with no deficiency

colors 1 and 2 are swapped

on the cycle with bold lines

v1 v2 v3 v4

v5 v6 v7 v8

v1 v2 v3 v4

v5 v6 v7 v8

v1 v2 v3 v4

v5 v6 v7 v8

colors 1 and 2 are swapped

on the path with bold lines

Figure 9: Illustration of swappings on cycles and paths.

210 S. Altinakar et al. Symmetry Breaking for the Minimum Deficiency

Let alg be any of the proposed algorithms. Since alg adds constraints to
the original constrained programming model, it ideally forbids some solutions
in Lnone(G) to produce a subset Lalg(G) of optimal solutions. Therefore, the
graph Halg(G) representing the links between the optimal solutions when the
extra constraints produced by alg are taken into account is always an induced
subgraph of the original graph Hnone(G).

One way to compare the performance of the algorithms is to observe their
impact of their respective extra constraints on the solution space, and in par-
ticular on the the sets Lalg(G) of optimal solutions. In the best case, a set
of symmetry breaking constraints can at most divide the size of the original
optimal solution space by |Aut(G)|. Hence,

|Lnone(G)|
|Aut(G)|

≤ |Lalg(G)| ≤ |Lnone(G)|.

These bounds are not tight. Indeed, consider for example the P4 in Figure 1(a).
It has two automorphisms, the identity permutation and (v1 v4)(v2 v3), and four
optimal solutions. As already mentioned, the last solution is equivalent to the
third one and is removed by our algorithms. Hence, every proposed algorithm
alg breaks all symmetries while we have

|Lnone(P4)|
|Aut(P4)|

=
4

2
< 3 = |Lalg(P4)| < 4 = |Lnone(P4)|.

This means that when the lower bound is reached, we have the guarantee
that all symmetries due to graph automorphisms have been broken, which is
our objective. But it is also possible to attain that goal and still not reach the
lower bound.

stable sets of twins stable sets of twinsclique

of twins

stable set

of twins

clique

of 5 twins

G1 G4G3G2

Figure 10: Four graphs with 5 vertices.

We first consider the four graphs of Figure 10 with five vertices. The first
one is the K2,3 of Figure 3. The second one is a clique on 5 vertices, and hence
a clique of twins. The third one is obtained from G2 by removing one edge, and
contains a clique of twins and a stable set of twins. The fourth one is obtained
from G2 by deleting two disjoint edges, and contains two stable sets of twins.
The results of our algorithms are shown in Table 3. On the left part of the table,
we indicate for every graph Gi the class to which its belong (i.e., A1, A2, A3 or
A4), the sizes of the cluster-automorphism AutC(Gi) and of the automorphism
group Aut(Gi), and the minimum deficiency d(Gi). On the rightside of the

JGAA, 21(2) 195–218 (2017) 211

Table, we indicate the size of the sets Lalg(Gi). The optimal solution spaces
Halg(Gi) are shown in Figures 11, 12, 13 and 14. Solid edges correspond to a
swapping on a path, while dashed edges correspond to a swapping on a cycle.
The width of each edge is proportional to the number of vertices in the path or
cycle.

graph class |AutC(Gi)| |Aut(Gi)| d(Gi) none G col G min G max G def
C N C N C N C N

G1 A2 12 12 0 12 1 1 1 1 1 1 12 12
G2 A2 120 120 2 720 18 18 24 24 24 24 96 96
G3 A2 12 12 1 96 8 8 22 22 22 22 32 32
G4 A4 4 8 1 48 16 8 12 10 16 8 32 32

Table 3: Size of the optimal solution spaces for the proposed algorithms.

none G{C,N}col G{C,N}min G{C,N}max G{C,N}def

0 0 0

12 1 1 1 12

Figure 11: Optimal solutions spaces Halg(G1) for G1.

none G{C,N}col G{C,N}min G{C,N}max G{C,N}def

0

6

{3,4}

9

{2,3}

25

{1,2}

384

{0,3}

1

8

{2,3}

19

{2,4}

48

{1,3}

232

{0,2}

2

3

{2,5}

7

{3,4} 10

{2,3}

28

{1,2}

5

{1,5}

11

{2,3}

236
{0,2}

524

{0,4}

4

{3,5}

12
{2,3}

18

{2,4}

52

{1,3}

13
{2,3}

388

{0,3}

525

{0,4}

15
{2,3}

22

{2,5}

30

{1,2}

14

{2,3}

31

{1,2}

391
{0,3}

16

{3,4}

32

{1,2}

376

{0,3}

{2,4}

41

{1,3}

240

{0,2}

{3,5}

{2,4}

44

{1,3}

{1,5}

380

{0,3}

536

{0,4}{2,5}

17

{3,4}

36

{1,2}

244

{0,2}

537
{0,4}

47

{1,3}

247

{0,2}

23

{3,5}

46

{1,3}

{2,3}

20

{2,5}

38

{1,2}

{2,3}

39

{1,2}

402

{0,3}

55

{1,3}

258

{0,2}

21

{3,5}

54

{1,3}

{2,3}70

{1,5}

264

{0,2}

520

{0,4}

71 {1,5}

408 {0,3}

521

{0,4}

{2,3}

68

{1,5}

266

{0,2}

546

{0,4}
69

{1,5}

410

{0,3}

547

{0,4}

24

35

{1,3}

40

{2,3}

58

{2,4}

217
{0,2}

26

{2,5}

{3,4}

{2,3}

29

{1,5}

42

{2,3}

218

{0,2}

556

{0,4}

27

{3,5}

33

{1,3}

43

{2,3}

59

{2,4}

{3,4}

{2,3}

418

{0,3}

45

{2,3}

423 {0,3}

561

{0,4}

{2,3}

424

{0,3}

{2,3}

{2,5}

34

{2,5}

{3,4}

{2,3}

49

{2,3}

64

{2,4}

225

{0,2}

37
{1,5}

50

{2,3}

226

{0,2}

566

{0,4}

{3,5}

51

{2,3}

65

{2,4}

{3,4}

{2,3}

413

{0,3}

53

{2,3}

416

{0,3}

571

{0,4}

{2,3}

432

{0,3}

{2,3}

{2,5}

{1,2}

56
{3,4}

361

{0,3}

{3,5}

{2,4}

{1,5}

362
{0,3}

592

{0,4}

{2,5}

{1,2}

57

{3,4}

{2,4}

274

{0,2}

279 {0,2}

597

{0,4}

280

{0,2}

{3,5}

{3,5}

{2,4}

62
{3,4}

369

{0,3}

{1,5}

370

{0,3}

602

{0,4}

{2,5}

63

{3,4}

{2,4}

269

{0,2}

272

{0,2}

607
{0,4}

288

{0,2}

{3,5}

{2,3}

60

{2,5}

{1,2}

{2,3}

{1,2}

459
{0,3}

61 {3,5}

{1,3}

{1,3}

315

{0,2}

{2,3}

66

{1,5}

320

{0,2}

508

{0,4}

67

{1,5}

464

{0,3}

509

{0,4}

{2,3}

{2,5}

{2,3}

468

{0,3}

{3,5}

324

{0,2}

{2,3}

480

{0,3}

514

{0,4}

336

{0,2}

515

{0,4}

{2,3}

488

{0,3}

626

{0,4}

344

{0,2}

627
{0,4}{2,3}

496

{0,3}

624

{0,4}

352
{0,2}

625

{0,4}

72

78

{3,4}

81

{2,3}

140
{0,3}

216

{1,2}

73

80

{2,3}

91

{2,4}

97

{0,2}

368

{1,3}

74

75

{1,5}

76

{2,5}

82

{2,3}

100

{0,2}

176

{0,4}

77

{3,5}

83

{2,3}

144

{0,3}

177

{0,4}

79

{3,4}

84

{2,3}

220

{1,2}

85
{2,3}

90

{2,4}

372

{1,3}

87

{2,3}

94

{2,5}

222

{1,2}

86

{2,3}

148

{0,3}

223

{1,2}

88

{3,4}

133

{0,3}

224{1,2}

{2,4}

104

{0,2}

360

{1,3}

{1,5}

{3,5}

136

{0,3}

188

{0,4}

{2,5}

108

{0,2}

189

{0,4}

{2,4}

364

{1,3}

89

{3,4}

228

{1,2}

112

{0,2}

367

{1,3}

95

{3,5}

366

{1,3}

{2,3}

92

{2,5}

230

{1,2}

{2,3}

158

{0,3}

231

{1,2}

122

{0,2}

375

{1,3}

93

{3,5}

374

{1,3}

{2,3}

128

{0,2} 172

{0,4}

650

{1,5}

164

{0,3}

173

{0,4}

651

{1,5}

{2,3}

130
{0,2}

198 {0,4}

648

{1,5}

166

{0,3}

199

{0,4}

649

{1,5}

96

102

{3,4}

105

{0,3}

132

{2,3}

233

{1,2}

98

{1,5}

99

{2,5}

123

{0,4}

{2,3}

101

{3,5}

106

{0,3}

124

{0,4}

134

{2,3}

103

{3,4}

135

{2,3}

234

{1,2}

{2,3}

170

{2,4}

412

{1,3}

137

{2,3}

171

{2,4}

417

{1,3}

139

{2,3}

204

{2,5}

238

{1,2}117

{0,3}

138
{2,3}

239

{1,2}

{1,5}

107

{2,5}

114

{0,4}

{2,3}

109

{3,5}

115

{0,4}

141

{2,3}

118

{3,4}

142

{2,3}

241

{1,2}

119

{3,4}

143

{2,3}

243

{1,2}

{2,3}
186

{2,4}

419

{1,3}

145

{2,3}

187

{2,4}

422

{1,3}

110
{0,3}

120

{3,4}

146

{2,3}

246

{1,2}

111

{2,5}

121

{3,4}

147

{2,3}

248

{1,2}

{0,4}

{2,3}

666

{1,5}

113

{0,2}

149

{2,3}

192

{2,4}

425

{1,3}

{1,5}

131

{3,5}

150

{2,3}

151

{2,3}

208
{2,5}

116

{3,5}

152
{2,3}

190

{2,4}

428

{1,3}

153

{2,3}

669

{1,5}

154

{2,3}

211

{2,5}

254

{1,2}

127

{0,3}

155

{2,3}

255

{1,2}

{2,5}

157

{2,3}

256

{1,2}

{0,3}

156

{2,3}

257

{1,2}

{0,4}

{2,3}674 {1,5}

{1,5}

129

{3,5}

159

{2,3}

125

{0,2}

160

{2,3}

214

{2,5}
161

{2,3}

181

{2,4}

433

{1,3}
126

{3,5}

162

{2,3}

179

{2,4}

436

{1,3}

163

{2,3}

677

{1,5}

{2,3}

184

{2,4}

440

{1,3}

165

{2,3}

185{2,4}

442

{1,3}

{2,3}

200

{2,4}

447

{1,3}

167

{2,3}

201

{2,4}

449

{1,3}

{2,4}

{0,2}

377
{1,3}

{1,5}

{3,5}

{0,4}

{2,5}

{0,2}

{0,4}

{2,4}

378

{1,3}

168

{3,4}

268

{1,2}

169

{3,4}

273

{1,2}

{0,2}

383

{1,3}

205

{3,5}

382

{1,3}

{1,5}

{3,5}

{0,4}

{2,5}

{0,4}

{2,4}

385

{1,3}

{2,4}

387

{1,3}

174

{3,4}

275

{1,2}

175

{3,4}

278

{1,2}

{0,2}

{2,4}

390

{1,3}

{3,5}

{2,4}

392

{1,3}

{0,4}

682 {1,5}

{0,3}

178

{3,4}

281

{1,2}

{1,5}

{2,5}

206

{3,5}

{2,5}

180

{3,4}

284

{1,2}

685

{1,5}

210

{3,5}

398

{1,3}

{0,2}

399

{1,3}

{0,2}

401

{1,3}

{3,5}

400

{1,3}

{0,4}

690
{1,5}

{1,5}

{2,5}

{0,3}

212
{3,5}

191

{3,4}

289

{1,2}

{2,5}

193

{3,4}

292

{1,2}

693

{1,5}

196

{3,4}

296

{1,2}

197

{3,4}

298

{1,2}

202

{3,4}

303

{1,2}

203

{3,4}

305

{1,2}

{2,3}

{2,5}

308

{1,2}

{2,3}

194

{0,3}

309

{1,2}

{3,5}

452

{1,3}

182

{0,2}

453

{1,3}

{2,3}

{0,3}

696

{1,5}

{0,2}

697

{1,5}

{2,3}

{2,5}

310

{1,2}

183

{0,3}

{2,3}

311

{1,2}

{1,5}

{0,3}

{3,5}

{2,3}

{0,2}

{2,3}

{2,5}

{2,5}

{2,3}

312

{1,2}

{2,3}

469

{1,3}

{2,3}

314

{1,2}

{3,5}

{2,3}

466

{1,3}

{0,4}

{2,3}

706

{1,5}

195

{2,3}

708

{1,5}

{2,3}

474

{1,3}

{2,3}

475{1,3}

{3,5}

454

{1,3}

{0,2}

455

{1,3}

{1,5}

{0,2}

{2,5}

{0,3}

{3,5}

458

{1,3}

{2,5}

322

{1,2}

{3,5}

456

{1,3}

325

{1,2}

{0,4}

714

{1,5}

716

{1,5}

330

{1,2}

331

{1,2}

{2,3}

{0,3}

698

{1,5}

{0,2}

699

{1,5}

{2,3}

482

{1,3}

{2,3}

483

{1,3}

338

{1,2}

339

{1,2}

{2,3}

207

{0,2}

{0,4}

652

{1,5}

209

{0,3}

{0,4}

653{1,5}

{2,3}

213

{2,4}

492

{1,3}

{2,3}

{2,4}

493
{1,3}

215

{3,4}

348

{1,2}

{3,4}

349

{1,2}

{2,3} {0,3}

658

{1,5}

{0,2}

659

{1,5}

{2,3}

500
{1,3}

{2,3}

501

{1,3}

356

{1,2}

357
{1,2}

{2,5}

{3,4}

{2,3}

221

{1,5}

313

{0,4}

{2,3}

227
{1,3}

{2,3}

506

{2,4}

219

{3,5}

{1,3}

363{2,3}

507

{2,4}

{3,4}

276
{0,3}

{2,3}

{0,3}

317

{0,4}

365

{2,3}

282

{0,3}

{2,3}

{2,3}

{2,5}

{2,5}

{3,4}

{2,3}

229

{1,5}

323

{0,4}

{2,3}

{2,3}

512

{2,4}

{3,5}

371

{2,3}

513

{2,4}

{3,4}

271

{0,3}

{2,3}

{0,3} 328

{0,4}

373

{2,3}

290

{0,3}

{2,3}

{2,3}

{2,5}

{2,5}

235

{1,5}

259

{0,4}

{2,3}

{3,4}{2,3}

{3,4}

242

{0,3}

{2,3}

237

{3,5}

{0,3}

260

{0,4}

379

{2,3}

270

{1,3}

{2,3}

518

{2,4}

{1,3}

381

{2,3}

519

{2,4}

252

{0,3}

{2,3}

{2,3}

{2,5}

{2,5}

{1,5}

249

{0,4}

{2,3}

{3,4}

{2,3}

245{3,5}

251

{0,4}
386

{2,3}

{3,4}

{2,3}

277

{1,3}

{2,3}

534

{2,4}

{1,3}

389

{2,3}

535

{2,4}

{2,5}

{3,4}

{2,3}

{0,4}

346

{1,5}

{2,3}

{0,3}

{3,4}

{2,3}

{1,5}

267

{3,5}

393

{2,3}

250

{0,2}

283

{1,3}

394

{2,3}

540

{2,4}

395

{2,3}

656

{2,5}

253

{3,5}

350

{1,5}

396

{2,3}

286

{1,3}

397

{2,3}

538

{2,4}

262

{0,3}

{2,3}

{2,3}

{2,5}

{0,3}

{2,3}

{2,5}

{2,3}

{0,4}

354

{1,5}

{2,3}

{1,5}

265

{3,5}

403

{2,3}

261

{0,2}

404{2,3}

662

{2,5}

291

{1,3}

405

{2,3}

529
{2,4}

263

{3,5}

358

{1,5}

406

{2,3}

294

{1,3}

407 {2,3}

527

{2,4}

297

{1,3}

{2,3}

532

{2,4}

300

{1,3}

409

{2,3}

533

{2,4}

302

{1,3}

{2,3}

548

{2,4}307

{1,3}

411

{2,3}

549

{2,4}

{2,5}

{3,4}

{2,3}

{1,5}

293

{0,4}

{2,3}

{3,5}

414

{2,3}

588

{2,4}

295

{0,4}

415

{2,3}

{2,3}

589

{2,4}

{3,4}

{2,3}

{2,5}

{1,5}

285

{0,4}

{2,3}

{3,4}

{2,3}

{3,5}

287
{0,4}

420

{2,3}

421

{2,3}

590{2,4}

{3,4}

{2,3}

{2,3}

591
{2,4}

{2,5}

{0,4}

304

{1,5}

{2,3}

{3,4}

{2,3}

{3,5}

306

{1,5}

426

{2,3}

427

{2,3}

593

{2,4}

{0,3}

{3,4}

{2,3}

{1,5}

345

{3,5}

429

{2,3}

{0,2}

430
{2,3}

594

{2,4}

431

{2,3}

681

{2,5}

{2,5}

{0,4} 299

{1,5}
{2,3}

{3,4}

{2,3}

{3,5}

301

{1,5}

434

{2,3}

435

{2,3}

603

{2,4}

{0,3}

{3,4}

{2,3}

{1,5}

353

{3,5}

437

{2,3}

{0,2}

438

{2,3}

606

{2,4}

439

{2,3}

689

{2,5}

{3,4}

{2,3}

{2,5}

{3,5}

441

{2,3}

610

{2,4}

{0,3}

{3,4}{2,3}

{0,4}

355 {3,5}

443

{2,3}

{0,2}

444

{2,3}

611{2,4}

445

{2,3}

691

{2,5}

{3,5}

446

{2,3}

618

{2,4}

{3,4}

{2,3}

{2,5}

{0,3}

{0,4}

347

{3,5}

448

{2,3}

{3,4}

{2,3}{0,2}

450

{2,3}

683

{2,5}

451
{2,3}

619

{2,4}

326

{0,3}

{2,3}

{2,3}

{2,5}

316

{0,3}

{2,3}

{2,3}

{2,5}

{0,3}

{2,3}

{1,5}

321

{3,5}

457

{2,3}

{2,5}

{2,3}

{0,4}

340

{1,5}

{2,3}

319

{3,5}

343

{1,5}

460

{2,3}

318

{0,2}

461

{2,3}

702

{2,5}

327

{1,3}

462

{2,3}

563

{2,4}

329

{1,3}

463

{2,3}

562

{2,4}

332

{1,3}

{2,3}

564

{2,4}

334

{1,3}

465
{2,3}

565

{2,4}

{0,3}
{2,3}

{1,5}

337

{3,5}

467

{2,3}

{2,5}

{0,4}

333

{1,5}

{2,3}

{2,3}

{3,5}

335

{1,5}

470

{2,3}

471

{2,3}

572

{2,4}

{0,2}

472

{2,3}

712

{2,5}

473

{2,3}

573

{2,4}

{0,3}

{2,3}

{2,3}

{2,5}

{3,5}

476

{2,3}

576

{2,4}

{0,4}

341

{3,5}

477

{2,3}

{0,2} 478
{2,3}

577
{2,4}

479
{2,3}

719

{2,5}

{1,3}

{2,3}

581

{2,4}

342

{1,3}

481

{2,3}

580

{2,4}

{0,3}

{2,3}

{2,3}

{2,5}

{0,4}

484

{2,3}

485

{2,3}

584

{2,4}

{0,2}

486

{2,3}

587

{2,4}

487

{2,3}

711

{2,5}

{1,3}

{2,3}

629

{2,4}

351

{1,3}

489

{2,3}

628

{2,4}

{0,3}

{0,4}

490
{2,3}

491

{2,3}

642

{2,4}

{3,4}

{2,3}

{3,4}

{2,3}

{2,5}

{0,2}

494

{2,3}

670

{2,5}

495

{2,3}

646

{2,4}

{1,3}

{2,3}

633

{2,4}

359

{1,3}

497

{2,3}

632

{2,4}

{0,3}

{0,4}

498 {2,3}

499

{2,3}

635

{2,4}

{2,3}

{2,3}

{2,5}

{0,2}

502

{2,3}

679

{2,5}

503

{2,3}

638

{2,4}

{3,5}

{2,4}

{1,5}

{0,4}

{1,2}

504

{3,4}

{2,5}

{1,2}

505

{3,4}

{2,4}

{0,2}

{0,2}

{0,4}

{0,2}

{3,5}

{3,5}

{2,4}

{1,5}

{0,4}

510

{3,4}

{2,5}

511
{3,4}

{2,4}

{0,2}

{0,2}

{0,4}

{0,2}

{3,5}

{3,5}

{1,5}

{0,4}

{2,4}

{2,4}

{0,2}

{2,5}

{0,2}

{0,4}

{1,2}

516

{3,4}

{1,2}

517
{3,4}

{0,2}

{3,5}

{3,5}

{1,5}

{0,4}

{2,4}

{2,5}

{0,4}

{2,4}

{1,2}

522

{3,4}

{1,2}

523

{3,4}

{3,5}

{2,4}

{0,4}

{1,5}

{0,2}

{2,4}

{1,5}

{2,5}

{0,3}

{1,2}

526

{3,4}

654
{3,5}

{2,5}

{1,5}

{1,2}

528

{3,4}

{0,2}

{3,5}

{0,2}

{3,5}

{0,4}

{1,5}

{1,5}

{2,5}

{0,3}

660

{3,5}

{1,2}

539

{3,4}

{2,5}

{1,5}

{1,2}

541

{3,4}

{1,2}

544

{3,4}

{1,2}

545

{3,4}

{1,2}

550
{3,4}

{1,2}

551

{3,4}

{3,5}

{2,4}

{1,5}{0,4}

{2,5}

552

{3,4}

{0,4}

553

{3,4}

{2,4}

{3,5}

{1,5}

{0,4}

{2,4}

{2,5}

{0,4}

554

{3,4}

{2,4}

555

{3,4}

{3,5}

{0,4}

{1,5}

{2,4}

{2,5}

{1,5}

557
{3,4}

{0,2}

{2,4}

{1,5}

{2,5}

{0,3}

558

{3,4}

665

{3,5}

{3,5}

{0,4}

{1,5}

{2,4}

{2,5}

{1,5}

567

{3,4}

{0,2}

{2,4}

{1,5}

{2,5}

{0,3}

570

{3,4}

673

{3,5}

{2,4}

{3,5}

{2,5}

574

{3,4}

{0,2}

{2,4}

{0,4}

{2,5}

{0,3}

575

{3,4}

675

{3,5}

{2,5}

582

{3,4}

{2,4}

{3,5}

{0,2}

{0,4}

{2,5}

{2,4}

{0,3}

667

{3,5}

583

{3,4}

{0,2}

{3,5}

{0,2}

{3,5}

{0,2}

{1,5}

{2,5}

{3,5}

{0,4}

{1,5}

{2,5}

{1,5}

{0,3}

701

{3,5}
{1,2}

598 {3,4}

{1,2}

599

{3,4}

{1,2}

600

{3,4}

{1,2}

601

{3,4}

{0,2}

{1,5}

{2,5}

{3,5}

{0,4}

{1,5}

{2,5}

{1,5}

608

{3,4}

{0,3}

705

{3,5}

609{3,4}

{0,2}

{3,5}

{2,5}

612 {3,4}

{0,4}

{2,5}

{0,3}

613

{3,4}

710

{3,5}

{1,2}

616

{3,4}

{1,2}

617

{3,4}

{0,2}

{3,5}

{0,4}

620

{3,4}

{0,3}
623

{3,4}

718

{3,5}

{1,2}

630

{3,4}

{1,2}

631

{3,4}

{0,2}

{0,4}

634

{3,4}

{2,4}

{2,4} {3,5}

{0,3}

686
{3,5}

639

{3,4}

{1,2}

640
{3,4}

{1,2}

641

{3,4}

{0,2}

{0,4}

643

{3,4}

{3,5}

{0,3}

695

{3,5}

647

{3,4}

{2,3}

{2,5}

{1,2}

{2,3}

{1,2}

595

{0,3}

{3,5}

{1,3}

{1,3}

559

{0,2}

{2,3}

{1,5}

{0,3}

{1,5}

{0,2}

{2,3}

{2,5}

{2,3}

604

{0,3}

{3,5}

568

{0,2}

{2,3}

{0,2}

{0,3}

{2,3}

{2,5}

{1,2}

{2,3}

542

{0,3}

{1,2}

{3,5}

{1,3}

530

{0,2}

{1,3}

{2,3}

{0,3}

{1,5}

{0,2}

{1,5}

{2,3}

{2,5}

{1,2}

531

{0,3}

{2,3}

{1,2}

{1,5}

{0,3}

{3,5}

{2,3}

{0,2}

{2,3}

{2,5}

{2,5}

{2,3}

{1,2}

{2,3}
{1,3}

{2,3}

{1,2}

{3,5}
{2,3}

{1,3}

{0,4}
{2,3}

636

{1,5}

543{2,3}

637

{1,5}

{2,3}

{1,3}

{2,3}

{1,3}

{3,5}

{1,3}

{0,2}

{1,3}

{1,5}

{0,2}

{2,5}

{0,3}

{3,5}

{1,3}

{2,5}

{1,2}

{3,5}

{1,3}

{1,2}

{0,4}

644

{1,5}

645

{1,5}

{1,2}

{1,2}

{2,3}

{0,3}

{1,5}

{0,2}

{1,5}

{2,3}

{1,3}

{2,3}

{1,3}

{1,2}

{1,2}

569

{0,3}

{2,3}

{2,3}

{2,5}

560
{0,3}

{2,3}

{2,3}

{2,5}

{0,3}

{1,5}

{3,5}

{2,3}
{2,3}

{2,5}

{2,3}

{0,4}

585

{1,5}

{2,3}

{3,5}

586
{1,5}

596

{2,3}

{0,2}

{2,3}

{2,5}

{1,3}

{2,3}

{1,3}

{2,3}

{1,3}

{2,3}

{1,3}

{2,3}

{0,3}

{1,5}

{3,5}

{2,3}

{2,3}

{0,4}

{2,5}

578

{1,5} {2,3}

{3,5}

579

{1,5}

605

{2,3}

{2,3}

{0,2}

{2,3}

{2,5}

{2,3}

{2,3}

{0,3}

{2,3}

{2,3}

{2,5}

{0,2}

{2,3}

{3,5}

{2,3}

{0,4}

{3,5}

614

{2,3}

615

{2,3}

{2,5}

{1,3}

{2,3}

{1,3}

{2,3}

{0,3}

{2,3}

{2,3}

{2,5}

{0,2}

{2,3}

{0,4}

621
{2,3}

622

{2,3}

{2,5}

{2,3}

{0,2}

{3,5}

{0,2}

{3,5}

{0,2}

{1,5}

{2,5}

{3,5}

{0,4}

{1,5}

{2,5}

{1,5}

{0,3}

{3,5}

{1,2}

{1,2}

{1,2}

{1,2}

{0,2}

{1,5}

{2,5}
{0,4}

{3,5}

{1,5}

{2,5}

{1,5}

{0,3}

{3,5}

{0,2}

{3,5}

{0,3}

{2,5}

{0,4}

{2,5}

{3,5}

{1,2}

{1,2}

{0,2}

{3,5}

{0,3}

{0,4}

{3,5}

{2,3}

{0,2}

{0,3}

{2,3}

{0,2}

{0,3}

{2,3}

{1,3}

{2,3}

{1,3}

{1,2}

{1,2}

{1,3}

{2,3}

{1,3}

{2,3}

{0,3}

{2,3}

{0,2}

{2,3}

{0,4}

{2,3}

{2,3}

{2,3}

{2,3}

{1,2}

{1,2}

{0,2}

{0,3}

{0,4}

{2,3}

680

{0,3}

{0,4}

664

{0,2}

{0,4}

{2,3}

688

{0,3}

{0,4}

672

{0,2}

{0,4}

{2,3}

657

{0,3}

{0,4}

655

{0,2}

{0,4}

{2,3}

661

{2,4} 684

{1,3}

{2,3}

{2,4}

{1,3}

663

{3,4}

668

{1,2}

{3,4}
{1,2}{2,3}

{0,2}

{0,3}

{2,3}

692
{1,3}

{2,3}

{1,3}

676

{1,2}

{1,2}

{1,3}

{2,3}

{2,4}

671

{1,3}

{2,3}

700
{2,4}

{0,3}

{0,4}

{2,3}

{2,3}

715 {2,4}

{3,4}

{2,3}

{0,2}

{2,3}

{3,4}

{2,3}

687

{2,3}

{2,4}

{1,3}

{2,3}

{2,4}

678

{1,3}

{2,3}

704

{2,4}

{0,3}

{0,4}{2,3}

{2,3}

709

{2,4}

{2,3}

{0,2}

{2,3}

694
{2,3}

{2,4}

{2,3}

{1,2}

{3,4}

{1,2}

703

{3,4}

{0,2}

{0,4}

707
{3,4}

{2,4}

{0,3}

{2,4}

{3,4}

{1,2}

{3,4}

{1,2}

713

{3,4}

{0,2}

{0,4}

717

{3,4}

{0,3}

{3,4}

{2,3}
{0,2}

{0,3}

{2,3}

{0,2}

{0,3}

{2,3}

{1,3}

{2,3}

{1,3}

{1,2}

{1,2}

{1,3}

{2,3}

{1,3}

{2,3}

{0,3}

{0,4}

{2,3}

{2,3}

{0,2}

{2,3}

{2,3}

{2,3}

{2,3}

{1,2}

{1,2}

{0,2}

{0,4}

{0,3}

2

3

{2,5}

7

{3,4}

5
{1,5}

4
{3,5}

8

{2,3}

0

6

{3,4}

9

{2,3}

12 14
{0,2} 13{1,5}

15
16{3,5}

10
11{2,3}

1

17

0

4

{2,3}

9

{2,4} 8

{3,4}

{2,3}

10

{2,5}

11

{3,5}

{2,3}

1

2
{2,5}

3
{3,4}

5

{2,3}

6

{2,3}

7

{2,3}

{3,5}

{2,4}

12

16

{2,3}

21

{2,4} 20

{3,4}

{2,3}

22

{2,5}

23

{3,5}

{2,3}

13

14
{2,5}

15
{3,4}

17

{2,3}

18

{2,3}

19

{2,3}

{3,5}

{2,4}

0 3{2,3}

4

{1,2}

23

{0,3}

6

{1,3}

19

{0,2}

{2,3}

{2,3}

1

2

{2,3}

7
{1,3}

18{0,2}

5
{1,2}

22

{0,3}

{2,3}

{2,3}

8

11

{2,3}

15
{0,3}

16{1,2}

13
{0,2}

20

{1,3}

{2,3}

{2,3}

9 10{2,3}

12

{0,2}

21

{1,3}

14

{0,3}

17

{1,2}

{2,3}

{2,3}

0

2
{0,3}

8

{2,3}

1
{1,5}

5

{0,4}

9

{2,3}

6

{0,4}

10

{2,3}

4

{0,2}12

{2,3}

{1,5}

13

{2,3}14
{2,3}

{0,2}

{1,5}

{0,4}

{0,4}

{0,3}

{1,5}

81

82
{0,4}

83

{2,5}

85

{1,5}

89

{2,3}

86

{1,5}

90

{2,3}

91

{2,3}

{0,4}

87
{3,5}

93

{2,3}

94

{2,3}95

{2,3}

{0,4}

{3,5}

{1,5}
{1,5}

{0,4}

{2,5}

41
42{2,5}

43

{0,4}

45
{1,5}

73

{2,3}

74

{2,3}

46

{1,5}

75 {2,3}

{0,4}

47

{3,5}

77
{2,3}

78
{2,3}

79 {2,3}

{3,5}{0,4}

{1,5}

{1,5}

{0,4}

{2,5}

16
18

{0,3}

48

{2,3}

17{1,5}

20

{0,4}

49

{2,3}

22

{0,4}

50

{2,3}

{1,5}

52

{2,3}

21

{0,2}53

{2,3}

54
{2,3}

{0,2}
{1,5}

{0,4}

{0,4}

{1,5}

{0,3}

26

27

{2,5}

28

{1,5}

30 {0,4}

58

{2,3}

59

{2,3}

29

{3,5}

31
{0,4}

60

{2,3}

61

{2,3}

{1,5}

62

{2,3}

63

{2,3}

{3,5}

{1,5}

{0,4}

{2,5}

{0,4}

{1,5}

32

33

{0,4}

35

{1,5}

64{2,3}

37

{1,5}

65{2,3}

34
{0,3}

66
{2,3}

{0,4}

67
{2,3}

36

{0,2}
68{2,3}

69{2,3}

{0,4}

{1,5}

{1,5}

{0,2}

{0,4}

{0,3}

24
56{2,3}

25
57{2,3}

23
55{2,3}

19
51{2,3}

38
70{2,3}

39
71{2,3}

40
72{2,3}

7
15{2,3}

44
76{2,3}

80
88{2,3}

3
11{2,3}

84
92{2,3}

720 18 24 24 96

Figure 12: Optimal solution spaces Halg(G2) for G2.

212 S. Altinakar et al. Symmetry Breaking for the Minimum Deficiency

none G{C,N}col G{C,N}min G{C,N}max G{C,N}def

0

5

{2,4}

17

{0,1}

1

6
{3,4}

41

{0,2}

{0,4}

20

{0,1}

43

{0,2}

8

13

{2,4}

24
{0,1}

9

14

{3,4}

34

{0,2}

{0,4}

28
{0,1}

35

{0,2}

16

18

{3,4}

25
{0,2}

{0,4}

{2,4}

26
{0,2}

{0,4}

{2,4}

{3,4}

32
33

{2,4}

40 {0,1}

{0,4}

42
{0,1}

{3,4}

{0,4}

{2,4}

{3,4}

2

3
{1,4}

4{4,5}

10
{1,2}

7

{3,4}19
{0,1}

11
{1,2}

22
{0,1}

{4,5}

12
{1,4}

15

{3,4}

27

{0,1}

30

{0,1}

{3,4}

21

{1,4}

23

{4,5}

36

{1,2}

37
{1,2}

{3,4}

29

{1,4}

31

{4,5}
44

{1,2}

46
{1,2}

{4,5}

38

{1,4}

39

{3,4}

45{0,1}

47{0,1}

{4,5}

{3,4}

{1,4}

48

50
{0,1}

76

{2,4}

49

51
{0,2}

54

{3,4}

{0,4}

78
{2,4}

55

{3,4}

52

53

{0,1}

72

{2,4}

{0,4}

74

{2,4}

{0,2}

56

59
{0,2}

73

{3,4}

57

58
{0,1}

61

{2,4}

{0,4}

63

{2,4}

75 {3,4}

60

62

{0,2}

77
{3,4}

{0,4}

{0,1}

79

{3,4}

{0,4}

{0,1}

{0,2}

{0,4}

{0,1}

{0,2}

64

65
{1,4}

66{1,2}

68
{4,5}

67

{0,1}80
{3,4}

69
{4,5}

82
{3,4}

{1,2}

70
{1,4}

71

{0,1}

84

{3,4}

86

{3,4}

{0,1}

81

{1,4}

83

{1,2}

88

{4,5}

89
{4,5}

{0,1}

85

{1,4}

87

{1,2}
92

{4,5}

94
{4,5}

{1,2}

90

{1,4}

91

{0,1}

93{3,4}

95{3,4}

{1,2}

{0,1}

{1,4}

0
5{2,4}

1
6 {3,4}

{0,4}

2

3

{1,4}

4

{4,5}

7

{3,4}

0

5

{2,4}

14 {0,1}

1

6
{3,4}

{0,4}

15 {0,1}

{2,4}

2

3

{1,4}

4 {4,5}

10

{1,2}

7

{3,4}

11

{1,2}

{4,5}

8

12

{2,4}

16 {0,1}

9

13
{3,4}

{0,4}

17 {0,1}

{2,4}

18
19{2,4}

20

{0,1}

21
{0,1}

{2,4}

0

3

{3,4}

20

{0,2}

21
{0,2}

16 19
{0,1}

{0,4}

{3,4}

1

2

{1,4}

7

{1,2}

4

{3,4}

11{0,1}

12{0,1}

{3,4}

5

13
{0,1}

9

10

{3,4}

14 {0,2}

15
{0,2}

{0,4}

{3,4}

6
8{3,4}

17

{0,2}

18
{0,2}

{3,4}

16

17

{0,1}

18

{0,4}

19

{3,4}

1

4

{0,1}

5

{0,4}

6

{3,4}

20

21

{0,1}

22

{0,4}

26

{3,4}

9

11

{0,1}

12

{0,4}

13

{3,4}

0
2{1,2}

14
15{3,4}

7
8{3,4}

3
10{1,2}

23
24{1,2}

25
29{3,4}

27
28{1,2}

30
31{3,4}

96 8 22 22 32

Figure 13: Optimal solution spaces Halg(G3) for G3.

none G col G min G max G def

C

0

1
{2,3}

18
{0,2}

8

19
{1,2}

17

{1,4}

22

{0,3}

{2,4}

23

{0,3}

21
{0,2}

33
{2,3}

{1,4}

44
{2,4}

45
{1,2}

2

3

{2,3}

25

{0,2}

14

26

{1,2}

24

{0,3}

29

{1,4}

{2,4}

30

{1,4}

28

{0,2}

39

{2,3}

{0,3}

47

{2,4}

46

{1,2}

4

5

{2,3}

7

{0,2}

6

{1,4}

11 {0,3}

9

{2,4}
12 {0,3}

20{1,2}

10
{0,2}

13
{2,3}

{1,4}

15

{2,4}

31

{1,2}

16

32
{2,3}

27

38
{2,3}

36

{0,2}

34

37

{1,2}

35
{0,3}

40

{1,4}

{2,4}

41
{1,4}

{0,2}

{0,3}

43

{2,4}

42

{1,2}

4
5{1,4}

8

{0,3}

7

{2,4}

9

{0,3}

{1,4}

11

{2,4}

0
1{2,3}

2
3{2,3}

6

10

4
5{1,4}

8

{0,3}

7

{2,4}

9

{0,3}

{1,4}

11

{2,4}

2

3

{2,3}

14

{0,2}

10

15

{1,2}

{2,4}

0

1
{2,3}

12

{0,2}

6

13

{1,2}

{2,4}

4

6

{0,2}

5
{1,4}

9

{0,3}
10

{0,3}

8

{0,2}

{1,4}

2

3

{2,3}

14

{0,2}

11

15

{1,2}

{2,4}

0

1
{2,3}

12

{0,2}

7

13

{1,2}

{2,4}

7
18{1,2}

16

17

{0,3}

21
{1,4}

{2,4}

22
{1,4}

20{0,2}

28{2,3}
{0,3}

3
11{1,2}

9

10

{1,4}

14
{0,3}

{2,4}

15
{0,3}

13{0,2}

24{2,3}
{1,4}

0

2

{0,2}

1
{1,4}

5

{0,3}
6

{0,3}

4

{0,2}

{1,4}

25
26{0,3}

29

{1,4}

27

{2,4}

30

{1,4}

{0,3}

31

{2,4}

8

19

23

12

16 12 16 32

N

2

3
{1,4}

6

{0,3}

5

{2,4}

7

{0,3}

{1,4}

0
1

{2,3}

4

0

1
{2,3}

8
{0,2}

6

9

{1,2}

{2,4}

4

5

{1,4}

7

{2,4}

2
3

{2,3}

0
6{0,2}

5
7 {1,2}

{2,4}

2 4{0,2}

3{1,4}

1

7
18{1,2}

16

17

{0,3}

21
{1,4}

{2,4}

22
{1,4}

20{0,2}

28{2,3}
{0,3}

3
11{1,2}

9

10

{1,4}

14
{0,3}

{2,4}

15
{0,3}

13{0,2}

24{2,3}
{1,4}

0

2

{0,2}

1
{1,4}

5

{0,3}
6

{0,3}

4

{0,2}

{1,4}

25
26{0,3}

29

{1,4}

27

{2,4}

30

{1,4}

{0,3}

31

{2,4}

8

19

23

12

48 8 10 8 32

Figure 14: Optimal solution spaces Halg(G4) for G4.

For the first graph G1 = K2,3, the 12 original optimal solutions are all
permutations of the same one, and G{C,N}col, G{C,N}min and G{C,N}max are

able to break all symmetries, as reaching the bound |Lnone(G1)|
|Aut(G1)| = 12

12 = 1 gives us

JGAA, 21(2) 195–218 (2017) 213

that guarantee. This can be observed in Figure 11 where three optimal solution
spaces contain only one solution.

The best illustration of the decrease of the size of the optimal solution space
is given by G2. The optimal solution space Hnone(G2) at the leftside of Figure 12
clearly shows that many of the 720 optimal solutions are linked with each other.
For comparison, HGNcol(G2) and HGCcol(G2) contain only 18 vertices grouped
into 7 connected components.

Graphs G2, G3 and G4, help to illustrate how the removal of an edge can
change the landscape of the solution space dramatically. Note that the bound
|Lnone(G3)|
|Aut(G3)| = 96

12 = 8 is reached for G3 with G{C,N}col. The fourth graph G4

illustrates a case where 1 < |AutC(G)| < |Aut(G)|. Predictably, the nauty
method gives a smaller set of optimal solutions than clusters.

The col family of permutable variables is clearly the most efficient one for
breaking symmetries. This is probably because it is the only one constraining
the variables representing the color on an edge (the key decision variables of
our problem), as well as the only one that has sometimes strengthened con-
straints. On the opposite end, using the def family of permutable variables
has a much smaller impact on the reduction of the optimal solution space. The
other two families min and max seem to have comparable performances, between
the aforementioned two extremes.

6.4 Decrease of the computing time

We now consider six larger graphs for comparing the computing times needed to
solve the constrained programming model with or without the extra constraints.
The six graphs G5, . . . , G10 are shown in Figure 15. G5 and G6 are cliques with
6 and 7 vertices, respectively. G7 is obtained from G6 by removing one edge. G8

(respectively G9) is obtained from G6 by removing two incident (respectively
disjoint) edges, while G10 is obtained from G6 by removing 3 disjoint edges.
These graphs contain cliques of twins shown using boxes with dashed lines, and
stable sets of twins shown using boxes with plain lines.

G5 G8G7G6 G9 G10

Figure 15: Six graphs with 6 and 7 vertices.

All our previous general observations on the relative performance of the
algorithms for the size of the optimal solution space remain true in the case
of computing times, except that the methods based on the min family of per-
mutable variables are slightly superior to those with the max family. Again,

214 S. Altinakar et al. Symmetry Breaking for the Minimum Deficiency

graph class |AutC(Gi)| |Aut(Gi)| d(Gi) none G col G min G max G def
C N C N C N C N

G5 A2 720 720 0 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
G6 A2 5040 5040 3 >7200 11.5 11.5 415.0 415.0 791.3 791.3 1631.0 1631.0
G7 A2 240 240 2 298.3 2.8 2.8 91.2 91.2 93.1 93.1 177.5 177.5
G8 A2 48 48 1 7.2 0.2 0.2 3.6 3.6 3.6 3.6 10.0 10.0
G9 A4 24 48 1 11.5 0.5 0.3 8.8 7.6 8.9 6.4 12.2 12.9
G10 A4 8 48 2 34.6 7.9 2.6 21.1 5.2 18.7 7.7 31.3 30.5

Table 4: Computing times (in seconds) for six graphs.

col gives the best results, with computing times reduced by at least one or-
der of magnitude. Also, nauty consistently outperforms clusters, but within
the same order of magnitude. Thus, GNcol clearly emerges as the best algo-
rithm, combining successfully two ideas, the choice of the family of permutable
variables and the method for finding a set of generators for the automorphism
group. The graph with larger automorphism group is the clique G6 on seven
vertices with |Aut(G6)| = 5040. While the original constrained programming
model does not find a proven optimal solution in 2 hours of computation, GNcol
solves the problem in 11 seconds.

The impact of the various methods on the computing time is also shown in
Table 5 where we analyze the total time needed to solve the minimum deficiency
problem for all graphs with n = 4, 5, 6, 7, 8 vertices. We do not report the results
for n = 9 since among the 261084 graphs with 9 vertices, the cp solver has not
produced proven optimal solutions within 2 hours of computation for about 100
of them.

n none G col G min G max G def
C N C N C N C N

4 <0.01 <0.01 0.01 0.02 0.01 0.03 0.03 0.03 0.02
5 0.12 0.06 0.06 0.07 0.08 0.1 0.1 0.12 0.12
6 0.3 0.34 0.35 0.42 0.5 0.48 0.47 0.43 0.43
7 4403.9 22.1 17.2 327.8 314.42 541.0 530.8 1092.3 1092.7
8 4702.9 249.4 203.4 1406.6 1290.8 1529.9 1415.3 4526.6 4546.8

Table 5: Total computing times (in seconds) to solve all the graphs with 4, 5, 6, 7 and
8 vertices

The orientation of the less than or equal (≤) inequality constraints used in
section 5 to generate gamblle constraints has an impact on the performance
of the algorithms, as it interacts with both the constraint that forces the usage
of color 0, and the rule to choose the variable with the smallest index. Also, as
already mentioned, the smallest index rule makes the gamblle constraints very
sensitive to the labelling of the edges for the algorithms based on the col family
of permutable variables. This is shown in Table 6 where we compare three
different settings for graph G9. The first case (called G9(≤)) is the original one,
where the vertices are labelled as shown at the leftside of Figure 16, the edges
are labelled according to the lexicographical ordering of their pair of endvertices,

JGAA, 21(2) 195–218 (2017) 215

and a cyclic permutation C with smallest indexed variable ui leads to inequalities
ui ≤ uj or ui < uj for all uj in C with j 6= i. The second test (called G9(≥))
uses inequalities ui ≥ uj or ui > uj instead of the ≤ or < orignal ones. The
third test (called G9(REV)) uses the ≤ or < inequalities, but considers the
reverse labelling of the vertices with the corresponding labelling of the edges
(according to the lexicographical ordering of their pair of endvertices) as shown
at the rightside of Figure 16. While the models remain valid with these changes,
we observe that the performance may significantly drop when we do not use the
original setting. For example, the problem is solved in 7 seconds with the original
settings, while the use of the ≥ or > inequalities increases the computing time
to 100 seconds.

graph none G col G min G max G def

C N C N C N C N

G9 (≤) 11.58 0.58 0.37 8.82 7.63 8.90 6.48 12.20 12.94
G9 (≥) 11.58 6.48 4.04 116.18 100.15 94.93 51.41 14.13 12.77
G9 REV 17.20 2.75 1.24 12.33 10.96 11.45 10.28 39.52 40.28

Table 6: Computing times for three variants of the proposed algorithms applied to G9.

v5

v1

v6 v2

v3

v4

v7

e5

e19

e10

e13

e18

e16

e17

e4
e3 e2

e1

e14

e15

e12

e7

e6

e9

e11

e8

v3

v7

v2 v6

v5

v4

v1

e6

e1

e5

e4

e2

e3

e7

e11
e15 e17

e19

e12

e8

e9

e16

e18

e10

e13

e14

Figure 16: Two labellings of the vertices and of the edges of G9.

216 S. Altinakar et al. Symmetry Breaking for the Minimum Deficiency

7 Conclusion

The generation of gamblle constraints is a general technique to help solving
cp models of graph optimization problems. In the present paper, its potency is
demonstrated through an application to the minimum deficiency problem.

A straightforward cp model to find the exact deficiency is hindered by an
overwhelming number of equivalent optimal colorings, in part due to the auto-
morphisms of the considered graph. When included in the model, the gamblle
constraints help to cut down the solution space by forbidding some equivalent
optimal solutions, and thus improve the time performance of the solver. The
total number of extra constraints generated remains very small, since it only
depends on the number of generators found for the automorphism group, which
is in the order of n in the worst case. These generators can be obtained using the
famous nauty library created by Brendan McKay[16, 17], which possibly re-
quires an exponential computing time. Another possibility is to use the proposed
procedure clusters, which generates in polynomial time a set of generators for
a subgroup AutC(G) of the automorphism group Aut(G).

Experiments have shown that most graphs have AutC(G) = Aut(G), which
means that most symmetries are due to cliques and stable sets of twins, and
justifies the use of clusters. Also, four families of permutable variables have
been considered, and we have noticed that the best results are obtained with
gamblle constraints based on the color of the edges (col). We have shown
that the GNcol and GCcol algorithms drastically decrease the size of the optimal
solution space, and improve by at least one order of magnitude the basic model.
The proposed algorithms are particularly efficient for graphs that have a lot of
symmetries.

As last comment, we mentioned in Section 2 the conjecture that the min-
imum deficiency d(G) of a graph G with n vertices is always at most equal
to n. No counterexample was found during our experiments, and the question
therefore remains open.

JGAA, 21(2) 195–218 (2017) 217

References

[1] S. Altinakar, G. Caporossi, and A. Hertz. A comparison of integer and
constraint programming models for the deficiency problem. Computers &
Operations Research, 68:89–96, 2016. doi:10.1016/j.cor.2015.10.016.

[2] A. Asratian and C. Casselgren. On interval edge colorings of (α, β)-
biregular bipartite graphs. Discrete Mathematics, 307:1951–1956, 2006.
doi:10.1016/j.disc.2006.11.001.

[3] A. Asratian and R. Kamalian. Interval colorings of the edges of a multi-
graph. Applied Mathematics, 5:25–34, 1987. (in Russian).

[4] M. Bouchard, A. Hertz, and G. Desaulniers. Lower bounds and a tabu
search algorithm for the minimum deficiency problem. Journal of Combina-
torial Optimization, 17:168–191, 2009. doi:10.1007/s10878-007-9106-0.

[5] D. Cohen, P. Jeavons, C. Jefferson, K. Petrie, and B. Smith. Symmetry
definitions for constraint satisfaction problems constraints. Constraints,
11:115–137, 2006. doi:10.1007/s10601-006-80.

[6] J. Crawford, M. Ginsberg, E. Luks, and A. Roy. Symmetry-breaking pred-
icates for search problems. In KR’96: Principles of Knowledge Represen-
tation and Reasoning, pages 148–159. Morgan Kaufmann, California, 1996.

[7] I. Gent, K. Petrie, and J.-F. Puget. Symmetry in constraint programming.
In F. Rossi, P. van Beek, and W. T., editors, Handbook of Constraint
Programming, pages 329–376. Elsevier, Amsterdam, 2006.

[8] K. Giaro. The complexity of consecutive δ-coloring of bipartite graphs: 4
is easy, 5 is hard. Ars Combinatoria, 47:287–298, 1997.

[9] K. Giaro. Interval edge-coloring of graphs. In M. Kubale, editor, Graph
Colorings, pages 105–122. American Mathematical Society, 2004.

[10] K. Giaro, M. Kubale, and M. Malafiejski. On the deficiency of bipartite
graphs. Discrete Applied Mathematics, 94:193–203, 1999. doi:10.1016/

S0166-218X(99)00021-9.

[11] K. Giaro, M. Kubale, and M. Malafiejski. Consecutive colorings of the
edges of general graphs. Discrete Mathematics, 236:131–143, 2001. doi:

10.1016/S0012-365X(00)00437-4.

[12] D. Hanson and C. Loten. A lower bound for interval colouring of bi-regular
bipartite graphs. Bulletin of the Institute of Combinatorics and Applica-
tions, 18:69–74, 1996.

[13] D. Hanson, C. Loten, and B. Toft. On interval colorings of bi-regular
bipartite graphs. Ars Combinatoria, 50:23–32, 1998.

http://dx.doi.org/10.1016/j.cor.2015.10.016
http://dx.doi.org/10.1016/j.disc.2006.11.001
http://dx.doi.org/10.1007/s10878-007-9106-0
http://dx.doi.org/10.1007/s10601-006-80
http://dx.doi.org/10.1016/S0166-218X(99)00021-9
http://dx.doi.org/10.1016/S0166-218X(99)00021-9
http://dx.doi.org/10.1016/S0012-365X(00)00437-4
http://dx.doi.org/10.1016/S0012-365X(00)00437-4

218 S. Altinakar et al. Symmetry Breaking for the Minimum Deficiency

[14] E. Luks and A. Roy. The complexity of symmetry-breaking formulas.
Annals of Mathematics and Artificial Intelligence, 41:19–45, 2004. doi:

10.1023/B:AMAI.0000018578.92398.10.

[15] R. Mathon. A note on the graph isomorphism counting problem. Infor-
mation Processing Letters, 8:131–136, 1979. doi:10.1016/0020-0190(79)
90004-8.

[16] B. McKay. Practical graph isomorphism. Congressus Numerantium, 30:45–
87, 1981.

[17] B. McKay and P. A. Practical graph isomorphism, ii. Journal of Symbolic
Computation, 60:94–112, 2014. doi:10.1016/j.jsc.2013.09.003.

[18] T. Miyazaki. The complexity of McKay’s canonical labeling algorithm, vol-
ume 28 of DIMACS Series in Discrete Mathematics and Theoretical Com-
puter Science, pages 239–256. American Mathematical Society, Providence,
1997.

[19] J.-F. Pujet. Breaking symmetries in all different problems. In Proceedings
of the International Joint Conference on Artificial Intelligence, pages 272–
277, 2005.

[20] A. Pyatkin. Interval coloring of (3, 4)-biregular bipartite graphs having
large cubic subgraphs. Journal of Graph Theory, 47:122–128, 2004. doi:

10.1002/jgt.20021.

[21] J. Rotman. Advanced Modern Algebra. Prentice-Hall, 2002.

[22] A. Schwartz. The deficiency of a regular graph. Discrete Mathematics,
306:1947–1954, 2006. doi:10.1016/j.disc.2006.03.059.

[23] S. Sevastianov. On interval edge colouring of bipartite graphs. Metody
Diskretnowo Analiza, 50:61–72, 1990. (in Russian).

http://dx.doi.org/10.1023/B:AMAI.0000018578.92398.10
http://dx.doi.org/10.1023/B:AMAI.0000018578.92398.10
http://dx.doi.org/10.1016/0020-0190(79)90004-8
http://dx.doi.org/10.1016/0020-0190(79)90004-8
http://dx.doi.org/10.1016/j.jsc.2013.09.003
http://dx.doi.org/10.1002/jgt.20021
http://dx.doi.org/10.1002/jgt.20021
http://dx.doi.org/10.1016/j.disc.2006.03.059

	Introduction
	Model
	Graph automorphisms
	Methods for identifying automorphisms
	nauty
	clusters

	GAMBLLE constraints
	Computational experiments
	Experimental setup
	clusters versus nauty
	Impact on the size of the optimal solution space
	Decrease of the computing time

	Conclusion

