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1Tübingen University, Germany
2University of California, Irvine, CA

3Roma Tre University, Italy
4TU Eindhoven, The Netherlands

Abstract

We consider drawings of graphs that contain dense subgraphs. We
introduce intersection-link representations for such graphs, in which each
vertex u is represented by a geometric object R(u) and each edge (u, v) is
represented by the intersection between R(u) and R(v), if it belongs to a
dense subgraph, or by a curve connecting the boundaries ofR(u) andR(v),
otherwise. We study a notion of planarity, called Clique Planarity, for
intersection-link representations of graphs in which the dense subgraphs
are cliques.
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1 Introduction

In several applications there is the need to represent graphs that are globally
sparse but contain dense subgraphs. As an example, a social network is often
composed of communities, whose members are closely interlinked, connected by
a network of relationships that is much less dense. The visualization of such
networks poses challenges that are attracting the study of several researchers
(see, e.g., [8, 14]). One frequent approach is to rely on clustering techniques
to collapse dense subgraphs and then represent only the links between clusters.
However, this has the drawback of hiding part of the graph structure. Another
approach that has been explored is the use of hybrid drawing standards, where
different conventions are used to represent the dense and the sparse portions
of the graph: In the drawing standard introduced in [6, 15] each dense part
is represented by an adjacency matrix while two adjacent dense parts are con-
nected by a curve. The complexity of constructing such representations without
crossings has been recently studied [12].

In this paper we study intersection-link representations, which are hybrid
representations where in the dense parts of the graph the edges are represented
by the intersection of geometric objects (intersection representation) and in the
sparse parts the edges are represented by curves (link representation).

More formally, we introduce the following problem. Suppose that a pair
(G,S) is given where G is a graph and S is a set of cliques that partition the
vertex set of G. In an intersection-link representation, vertices are represented
by geometric objects that are translates of the same rectangle. Consider an edge
(u, v) and let R(u) and R(v) be the rectangles representing u and v, respectively.
If (u, v) is part of a clique (intersection-edge) we represent it by drawing R(u)
and R(v) so that they intersect, otherwise (link-edge) we represent it by a curve
connecting R(u) and R(v). An example is provided in Fig. 1.

Figure 1: Intersection-link representation of a graph with five cliques.

We introduce and study the Clique Planarity problem, which asks whether
a pair (G,S) has an intersection-link representation such that link-edges do not
cross each other and do not intersect the interior of any rectangle. The main
challenge of the problem lies in the interplay between the geometric constraints
imposed by the rectangle arrangements and the topological constraints imposed
by the link edges.

Several problems are related to Clique Planarity; here we mention two
notable ones. The problem of recognizing intersection graphs of translates of the
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Figure 2: A graph (a) that is both a map graph (b) and a clique-planar graph (c).

same rectangle is NP-complete [9]. Note that this does not imply NP-hardness
for our problem, since cliques always have such a representation. Maps consist
of internally-disjoint connected regions of the plane, representing the vertices
of a graph whose edges correspond to contacts between adjacent regions. Since
each contact can even be a single point, maps allow to represent graphs con-
taining large cliques in a readable way. The class of graphs that admit such
representations are the map graphs; see Fig. 2 for an example of a graph that is
both clique planar and a map graph. The recognition of map graphs has been
studied in [10, 18, 19].

We now describe our contribution. Our study includes several interesting
and, at a first glance, seemingly unrelated theoretical problems.

• In Section 3 we establish that the clique-planar graphs and the map graphs
are different graph classes. Namely, we show that there are graphs that
admit a clique-planar representation, while not admitting any representa-
tion as a map, and vice versa.

• In Section 4 we show that Clique Planarity is NP-complete even if
S contains just one clique with more than one vertex. This result is es-
tablished by observing a relationship between Clique Planarity and a
natural constrained version of the Clustered Planarity problem, in
which we ask whether a path (rather than a tree as in the usual Clus-
tered Planarity problem) can be added to each cluster to make it
connected while preserving clustered planarity; we prove this problem to
be NP-complete, a result that might be interesting in its own right.

• In Section 5, we show how to decide Clique Planarity in polynomial
time if each clique has a prescribed geometric representation, via a reduc-
tion to testing planarity for a graph with a given partial representation [5].

• In Section 6, we concentrate on instances of Clique Planarity com-
posed of two cliques. While we are unable to settle the complexity of
this case, we show that the problem becomes equivalent to an interesting
variant of the 2-Page Book Embedding problem, in which the graph is
bipartite and the vertex ordering in the book embedding has to respect
the vertex partition of the graph. This problem is in our opinion worthy
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of future research efforts. For now, we use this equivalence to establish
a polynomial-time algorithm for the case in which the link-edges are as-
signed to the pages of the book embedding.

• In Section 7, we study a Sugiyama-style problem where the cliques are
arranged on levels according to a hierarchy. In this practical setting we
show that Clique Planarity is solvable in polynomial time. This is
achieved via a reduction to the T -Level Planarity problem [3].

Conclusions and open problems are presented in Section 8.

2 The intersection-link model

Let G be a graph and S be a set of cliques inducing a partition of the vertex
set of G. In an intersection-link representation of (G,S):

• each vertex u is a geometric object R(u), which is a translate of an axis-
aligned rectangle R;

• two rectangles R(u) and R(v) intersect if and only if edge (u, v) is an
intersection-edge, that is, if and only if (u, v) belongs to a clique in S; and

• if (u, v) is a link-edge, then it is represented by a curve connecting the
boundaries of R(u) and R(v).

To avoid degenerate intersections we assume that no two rectangles have
their sides on the same horizontal or vertical line. The Clique Planarity
problem asks whether an intersection-link representation of a pair (G,S) exists
such that: (i) no two curves intersect; and (ii) no curve intersects the interior
of a rectangle. Such a representation is called clique-planar. A pair (G,S) is
clique-planar if it admits a clique-planar representation.

We now present two simple, yet important, combinatorial properties of
intersection-link representations. Let Γ be an intersection-link representation
of (Kn, {Kn}) and let B be the outer boundary of Γ. We have the following.

Lemma 1 Traversing B clockwise, the sequence of encountered rectangles is
not of the form ..., R(u), ..., R(v), ..., R(u), ..., R(v), for any u, v ∈ G.

Proof: The statement follows from the fact that the outer boundary of the
union of R(u) and R(v) consists of two maximal portions, one belonging to
R(u) and one to R(v). �

Lemma 2 Traversing B clockwise, the sequence of encountered rectangles is a
subsequence of R(u1), R(u2), ..., R(un), R(un−1), ..., R(u2), for some permuta-
tion u1, ..., un of the vertices of Kn.

Proof: We prove a sequence of claims.
(Claim A): Every maximal portion of B belonging to a single rectangle R(u)

contains (at least) one corner ofR(u). Namely, if part of a side ofR(u) belongs to
B, while its corners do not, then two distinct rectangles R(v) and R(z) enclose



JGAA, 21(4) 731–755 (2017) 735

Pss

(a)

Pss

45◦

(b)

Figure 3: Illustration for the proof of Lemma 3. (a) Clique-planar representation
of a clique s. (b) Representation of s by axis-aligned unit squares with their
upper-left corners along a common line with slope 1.

those corners. However, this implies that R(v) and R(z) do not intersect, a
contradiction to the fact that Γ is a representation of (Kn, {Kn}).

(Claim B): If two adjacent corners of the same rectangle R(u) both belong
to B, then the entire side of R(u) between them belongs to B. Namely, if a
rectangle R(v) 6= R(u) intersects a side of R(u), then at least one of the two
corners of that side lies in the interior of R(v), given that R(u) and R(v) are
translates of the same rectangle; hence that corner does not belong to B.

(Claim C): No rectangle defines three distinct maximal portions of B. Sup-
pose, for a contradiction, that a rectangle R(u) defines three distinct maximal
portions of B. By Claim A, each maximal portion of B belonging to R(u)
contains a corner of R(u). This implies the existence of two adjacent corners
belonging to two distinct maximal portions of B. However, by Claim B the side
of R(u) between those corners belongs to B, hence those corners belong to the
same maximal portion of B, a contradiction.

Claim C and Lemma 1 imply the statement of the lemma. �

The following lemma allows us to focus, without loss of generality, on special
clique-planar representations, which we call canonical.

Lemma 3 Let (G,S) admit a clique-planar representation Γ. There exists a
clique-planar representation Γ′ of (G,S) such that:

• each vertex is represented by an axis-aligned unit square; and

• for each clique s ∈ S, all the squares representing vertices in s have their
upper-left corner along a common line with slope 1.

Proof: Initialize Γ′ = Γ. Rescale Γ′ in such a way that the unit distance is very
small with respect to the size of the rectangles representing vertices in Γ.
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Figure 4: (a) A graph that does not admit a representation as a map, but admits
a clique-planar representation (b).

For each clique s ∈ S, consider a closed polyline Ps “very close” to the
representation of s, so that it contains all and only the rectangles represent-
ing the vertices of s and it crosses at most once each curve representing a
link-edge of G; refer to Fig. 3. Traverse Ps clockwise. By Lemma 2 and by
the clique planarity of Γ, the circular sequence of encountered curves repre-
senting link-edges and crossing Ps contains edges incident to a subsequence of
R(u1), R(u2), ..., R(u|s|), R(u|s|−1), ..., R(u2), for some permutation u1, ..., u|s| of
the vertices of s. Remove the interior of Ps. Put in the interior of Ps unit squares
Q(u1), Q(u2), ..., Q(u|s|) representing u1, u2, ..., u|s| as required by the lemma
and such that they all share a common point of the plane. Reroute the curves
representing link-edges from the border of Ps to the suitable ending squares.
This can be done without introducing any crossings, because the circular se-
quence of the squares encountered when traversing the boundary of the square
arrangement clockwise is Q(u1), Q(u2), ..., Q(u|s|), Q(u|s|−1), ..., Q(u2). �

3 Relationship with Map Graphs

As shown in Fig. 2 there are graphs that are both map graphs and clique-planar
graphs. However, in this section we show that neither of the classes is contained
into the other.

Lemma 4 There exists a clique-planar graph that is not a map graph.

Proof: Consider the graph G of Fig. 4(a). As shown in Fig. 4(b) graph G is
clique-planar. Suppose, for a contradiction, that G admits a representation as
a map Γ. Let R1, R2, and R3 be the pairwise-touching regions representing the
vertices of triangle 41, 2, 3 in Γ. Without loss of generality, we can assume that
the region R1 ∩R2 ∩R3 is empty; indeed, since no vertex of G is adjacent to all
the vertices of the triangle 41, 2, 3, a local deformation can get rid of any point
of R1 ∩R2 ∩R3 while preserving the pairwise adjacencies between the regions.
The same argument holds for triangle44, 5, 6. Also, G\{1, 2, 3, 4, 5, 6} does not
contain any clique of size larger than 2. Thus, one could obtain a planar drawing
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of G by placing each vertex u in the interior of the region Ru representing it in
Γ and by drawing each edge (u, v) as a curve entirely contained in the interior
of Ru∪Rv. This is a contradiction, since graph G is not planar. In fact, vertices
1, 3, 4, 5, and 6 (filled red in Fig. 4(a)) form a K5 subdivision. This concludes
the proof of the lemma. �

Lemma 5 There exists a map graph that is not a clique-planar graph.

Proof: Consider a graph Gh = (V,E) composed by three sets V1, V2, and V3 of
h vertices each, where the graph induced by V1 ∪ V2 is a clique and the graph
induced by V2 ∪ V3 is a clique; see Fig. 5(a). We have that Gh is a map graph;
see Fig. 5(b). Observe that in any partition S of V into vertex-disjoint cliques
there are at least h/2 vertices in V2 that do not fall into the same clique with
the vertices of V1 or V3. The link edges among such vertices induce a Kh

2 ,h
.

Therefore, for h ≥ 6 the clique planarity of Gh would imply the planarity of
K3,3. �

4 Hardness Results on Clique Planarity

In this section we prove that the Clique Planarity problem is not solvable
in polynomial time, unless P=NP. In fact, we have the following.

Theorem 1 It is NP-complete to decide whether a pair (G,S) is clique-planar,
even if S contains just one clique with more than one vertex.

We prove Theorem 1 by showing a polynomial-time reduction from a con-
strained clustered planarity problem, which we prove to be NP-complete, to
the Clique Planarity problem.

A clustered graph (G,T ) is a pair such that G is a graph and T is a rooted tree
whose leaves are the vertices of G. The internal nodes of T different from the
root are the clusters of G. Each cluster µ ∈ T is associated with a set containing
all and only the vertices of G that are the leaves of the subtree of T rooted at
µ. We call cluster also this set. A clustered graph is flat if every cluster is a

(a) (b)

Figure 5: (a) Graph G10 and (b) a corresponding map.
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child of the root. The Clustered Planarity problem asks whether a given
clustered graph (G,T ) admits a c-planar drawing, i.e., a planar drawing of G,
together with a representation of each cluster µ in T as a simple region Rµ of
the plane such that: (i) every region Rµ contains all and only the vertices in µ;
(ii) every two regions Rµ and Rν are either disjoint or one contains the other;
and (iii) every edge intersects the boundary of each region Rµ at most once.

Polynomial-time algorithms for testing the existence of a c-planar drawing
of a clustered graph are known only in special cases, most notably, if it is
c-connected, i.e., each cluster induces a connected subgraph [11, 13]. It has
long been known [13] that a clustered graph (G,T ) is c-planar if and only if
a set of edges can be added to G so that the resulting graph is c-planar and
c-connected. Any such set of edges is called a saturator, and the subset of a
saturator composed of those edges between vertices of the same cluster µ defines
a saturator for µ. A saturator is linear if the saturator for each cluster is a path.

The Clustered Planarity with Linear Saturators (CPLS) problem
takes as input a flat clustered graph (G,T ) such that each cluster in T induces an
independent set of vertices, and asks whether (G,T ) admits a linear saturator.

Lemma 6 Let (G,T ) be an instance of CPLS with G = (V,E) and let E? ⊆(
V
2

)
\E be such that in G? = (V,E ∪E?) every cluster induces a path. Then E?

is a linear saturator for (G,T ) if and only if G? is planar.

Proof: Clearly, if E? is a linear saturator, then (G?, T ) is c-planar and thus G∗

is planar. Conversely, assume that G? is planar and let Γ? be a planar drawing
of it. Since the vertices of each cluster are isolated in G, the region Rµ for
each cluster µ can be represented by a sufficiently narrow region around the
corresponding path in G? yielding a c-planar drawing of G?. It follows that E?

is a linear saturator. �

The following lemma connects the problem Clique Planarity with the
problem Clustered Planarity with Linear Saturators.

Lemma 7 Given an instance (G,T ) of the CPLS problem, an equivalent in-
stance (G′, S) of the Clique Planarity problem can be constructed in quadratic
time.

Proof: Instance (G′, S) is defined as follows. Initialize G′ = G. For each cluster
µ ∈ T , add edges to G′ such that µ forms a clique and add this clique to S.
Clearly, instance (G′, S) can be constructed in quadratic time. We prove that
(G,T ) admits a linear saturator if and only if (G′, S) is clique-planar.

Suppose that (G,T ) admits a linear saturator. This implies that there exists
a c-planar drawing Γ? of (G?, T ), where G? is obtained by adding the saturator
to G. We construct a clique-planar representation Γ of (G′, S) starting from Γ?

as follows.
Consider any cluster µ of T represented by region Rµ, let Bµ be the boundary

of Rµ, and let u1, ..., uk be the vertices of µ ordered as they appear along the
saturator for µ. For each edge (u, v) of G? crossing Bµ, subdivide (u, v) with
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a dummy vertex at this crossing point. Note that the order of the vertices
of µ, corresponding to the order in which their incident edges cross Bµ, is a
subsequence of u1, ..., uk−1, uk, uk−1, ..., u2.

Remove from Γ? all the vertices and (part of the) edges contained in the inte-
rior ofRµ. Represent u1, ..., uk by pairwise-intersecting rectanglesR(u1), ..., R(uk)
that are translates of each other and whose upper-left corners touch a common
line in this order. Scale Γ? such that the arrangement can be placed in the
interior of Rµ. Then connect the subdivision vertices on Bµ with the suit-
able rectangles. This is possible without introducing crossings since the or-
der of the subdivision vertices on Bµ defines an order of their end-vertices in
µ which is a subsequence of u1, ..., uk−1, uk, uk−1, ..., u2, while the circular or-
der in which the rectangles occur along the boundary of their arrangement is
R(u1), ..., R(uk), R(uk−1), ..., R(u2). By treating every other cluster of T analo-
gously, we get a clique-planar representation of (G′, S).

Conversely, suppose that (G′, S) has a clique-planar representation Γ, which
we can assume to be canonical by Lemma 3. We define a set E? as follows.
For each clique s ∈ S, let R(u1), ..., R(uk) be the order in which the rectangles
corresponding to s touch the line with slope 1 through their upper-left corners
in Γ; add to E? all the edges (ui, ui+1), for i = 1, ..., k − 1. We claim that E?

is a linear saturator for (G,T ). Indeed, by Lemma 6, it suffices to show that
G+ E? admits a planar drawing.

u

v

R(u)

R(v)

(a)

R(u)

R(v) R(w)

u

vw

(b)

Figure 6: Construction of a linear saturator from a clique-planar representation.

Initialize Γ? = Γ. We place each vertex v at the center of the square R(v)
and remove R(v) from Γ?. We extend each edge (u, v) with two straight-line
segments from the boundaries of R(u) and R(v) to u and v, respectively. This
does not produce crossings; in fact, only the segments of two vertices u and v
such that R(u) and R(v) intersect might cross. However, such segments are
separated by the line through the intersection points of the boundaries of R(u)
and R(v); see Fig. 6(a). We now draw the edges in E? as straight-line segments.
As before, this may not introduce a crossing with any other segment or edge.
In fact consider an edge (u, v) in E? and any segment ew incident to a vertex
w 6= u, v in the same clique. Assume u, v, w are in this order along the line with
slope 1 through them. Then (u, v) is separated from ew by the line through the
two intersection points of the boundaries of R(v) and R(w); see Fig. 6(b). This
concludes the proof. �

Next, we prove that the CPLS problem is NP-complete.
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Theorem 2 The CPLS problem is NP-complete, even if the underlying graph
is a subdivision of a triangulated planar graph and there is just one cluster
containing more than one vertex.

Proof: The problem clearly lies in NP. We give a polynomial-time reduction
from the Hamiltonian Path problem in biconnected planar graphs [17].

P

(a) (b)

Figure 7: (a) A biconnected planar graph G with a Hamiltonian path P . (b)
The clustered graph (G′, T ) obtained from G and the linear saturator for (G′, T )
corresponding to P .

Given a biconnected planar graph G we construct an instance (G′, T ) of
CPLS that admits a linear saturator if and only if G has a Hamiltonian path.
Initialize G′ = G. Let E be a planar embedding of G′, as in Fig. 7(a). For each
face f , add a vertex vf inside f and connect it to all the vertices incident to
f . Since G is biconnected, each face f of E is bounded by a simple cycle, hence
G′ is a triangulated planar graph. Subdivide with a dummy vertex each edge
of G′ that is not incident to a vertex vf , for any face f of E , as in Fig. 7(b).
Finally, add a cluster µ to T containing all the vertices of G and, for each of the
remaining vertices, add to T a cluster containing only that vertex. Note that
each cluster of (G′, T ) induces an independent set.

Suppose that G admits a Hamiltonian path P = v1, ..., vn and let E? =
{(vi, vi+1) | 1 ≤ i ≤ n − 1}. Since P is Hamiltonian, E? is a path connecting
µ. Let G? = G′ + E?. Since every cluster different from µ contains only one
vertex, all the clusters of (G?, T ) induce paths. A planar drawing of G? can
be obtained from a planar drawing Γ of G′ as follows. Note that, for each
edge (vi, vi+1) ∈ E?, vertices vi and vi+1 share two faces in Γ since the dummy
vertex added to subdivide edge (vi, vi+1) has degree 2. Hence, each saturator
edge (vi, vi+1) can be routed inside one of these faces arbitrarily close to the
length-2 path between vi and vi+1 neither crossing an edge of G′ nor another
saturator edge. Thus G? is planar, and by Lemma 6 the set E? is a linear
saturator for (G′, T ).

Conversely, suppose that (G′, T ) admits a linear saturator E?. We claim
that E? is a Hamiltonian path of G. By construction, the vertices of µ are
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exactly the vertices of G; also, each edge of E? corresponds to an edge of G,
due to the fact that two vertices of µ are incident to a common face in any
planar drawing of G′ if and only if they are adjacent in G. Hence, the path of
G corresponding to E? is Hamiltonian. This concludes the proof. �

The NP-completeness of the CPLS problem proved in Theorem 2, together
with the reduction from the CPLS problem to the Clique Planarity problem
proved in Lemma 7, implies Theorem 1.

5 Clique Planarity with Given Vertex Represen-
tations

In this section we show how to test Clique Planarity in polynomial time
for instances (G,S) with given vertex representations. That is, a clique-planar
representation Γ′ of (G′, S) is given, where G′ is obtained from G by removing
its link-edges, and the goal is to test whether the link-edges of (G,S) can be
drawn in Γ′ to obtain a clique-planar representation Γ of (G,S).

Let n be the number of vertices of G. First, in a preprocessing step, we
compute the boundary of the arrangement representing each clique s ∈ S in
Γ′. This can be performed in total O(n log n) time, since this boundary can be
easily computed once the rectangles have been sorted by the x-coordinates of
their left sides and by the y-coordinates of their bottom sides.

(a) (b) (c)

Figure 8: (a) An intersection-link representation Γ of (K7, {s = K7}). (b) A
simple cycle with a vertex for each maximal portion of the boundary of Γ be-
longing to a single rectangle. (c) Planar drawing H′s of graph H ′s corresponding
to Γ.

We then check whether all the rectangles representing the vertices of each
clique are pairwise intersecting. This can be done in total O(n) time by com-
puting the maximum x- and y-coordinates xM and yM among all bottom-left
corners, the minimum x- and y-coordinates xm and ym among all top-right
corners, and by checking whether xM<xm and yM<ym.

We next test in total O(n) time whether every vertex of G incident to a
link-edge is represented in Γ′ by a rectangle incident to the outer boundary of
the clique it belongs to. If the test fails, the instance is negative. Otherwise, we
proceed as follows.

We give a linear-time reduction to the Partial Embedding Planarity
problem [5], which asks whether a planar drawing of a graph H exists extending
a given drawing H′ of a subgraph H ′ of H.
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First, we define a connected component H ′s of H ′ corresponding to a clique
s ∈ S and its drawing H′s. We remark that H ′s is a cactus graph, that is a
connected graph that admits a planar embedding in which all the edges are
incident to the outer face. Denote by B the boundary of the representation of s
in Γ′ (see Fig. 8(a)). If s has one or two vertices, then H ′s is a vertex or an edge,
respectively (and H′s is any drawing of H ′s). Otherwise, initialize H ′s to a simple
cycle containing a vertex for each maximal portion of B belonging to a single
rectangle (see Fig. 8(b)). Let H′s be any planar drawing of H ′s with a suitable
orientation. Each rectangle in Γ′ may correspond to two vertices of H ′s, but no
more than two by Lemma 2. Insert an edge in H ′s between every two vertices
representing the same rectangle and draw it in the interior of H′s. By Lemma 1,
these edges do not alter the planarity of H′s. Contract the inserted edges in H ′s
and H′s (see Fig. 8(c)). This completes the construction of H ′s, together with
its planar drawing H′s.

Graph H ′ is the union of graphs H ′s, over all the cliques s ∈ S; the drawings
H′s of H ′s are in the outer face of each other in H′. Note that, because of the
initial test, the end-vertices of each link-edge of G are ensured to be vertices
of H ′; then we define H as the graph obtained from H ′ by adding, for each
link-edge (u, v) of G, an edge between the vertices of H ′ corresponding to u and
v. We have the following.

Lemma 8 There exists a planar drawing of H extending H′ if and only if there
exists a clique-planar representation of (G,S) coinciding with Γ′ when restricted
to (G′, S).

Proof: Let H be a planar drawing of H extending H′. We construct a clique-
planar representation Γ of (G,S) as follows. Initialize Γ = H. For each clique
s ∈ S, consider a closed polyline Ps close to H′s so that it contains all and only
the vertices and edges of H ′s in its interior and it crosses at most once every
other edge of H. Scale Γ up so that, for every clique s ∈ S, a rectangle which
is the bounding box of the representation of s in Γ′ fits in the interior of Ps.
Remove the interior of Ps and put in its place a copy of the representation of s
in Γ′. Reroute the curves representing link-edges from the border of Ps to the
suitable ending rectangles. This can be done without introducing any crossings,
because the vertices of H ′s appear along the walk delimiting the outer face of H′s
in the same order as the corresponding rectangles appear along the boundary B
of the representation of s in Γ′, by construction. Finally, a homeomorphism of
the plane can be exploited to translate the representation of each clique to the
position it has in Γ′, while maintaining the clique planarity of the representation.

Let Γ be a clique-planar representation of (G,S). We construct a planar
drawing H of H extending H′ as follows. Initialize H = Γ. For each clique
s ∈ S, consider a closed polyline Ps close to the representation of s in H so
that it contains all and only the rectangles representing vertices of s and it
crosses at most once each curve representing a link-edge of G. Remove the
interior of Ps and put in its place a scaled copy of H′s. Reroute the curves
representing link-edges from the border of Ps to the suitable end-vertices. As
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in the previous direction, this can be done without introducing any crossings.
Finally, a homeomorphism of the plane can be exploited to transform H into a
planar drawing that coincides with H′ when restricted to H.

This concludes the proof of the lemma. �

We get the following main theorem of this section.

Theorem 3 Clique Planarity can be decided in O(n log n) time for a pair
(G,S) if the rectangle representing each vertex of G is given as part of the input,
where n is the number of vertices of G.

Proof: The preprocessing step can be performed in O(n log n) time. The initial
tests can be performed in O(n) time. The described reduction to Partial
Embedding Planarity can be performed in O(n) time. Indeed, each graph
Hs is initialized to a simple cycle by traversing the boundary B of each clique s,
which takes O(|s|) time since B has O(n) complexity, by Lemma 2. Then edges
are added to Hs and contracted afterwards; each contraction requires merging
the adjacency lists of the end-vertices of the contracted edge, which can be done
in constant time since these vertices have constant degree, again by Lemma 2.
Finally, the Partial Embedding Planarity problem can be solved in O(n)
time [5]. �

6 Clique Planarity for Graphs with Two Cliques

In this section we study the Clique Planarity problem for pairs (G,S) such
that |S| = 2. Observe that, if |S| = 1, then the Clique Planarity problem
is trivial, since in this case G is a clique with no link-edge and a clique-planar
representation of (G,S) can be easily constructed. The case in which |S| = 2
is already surprisingly non-trivial. Indeed, we could not determine the compu-
tational complexity of Clique Planarity in this case. However, we establish
the equivalence between our problem and a book embedding problem whose
study might be interesting on its own; by means of this equivalence we show
a polynomial-time algorithm for a special version of the Clique Planarity
problem. This book embedding problem is defined as follows.

A 2-page book embedding is a plane drawing of a graph where the vertices
are cyclically arranged along a closed curve `, called the spine, and each edge
is entirely drawn in one of the two regions of the plane delimited by `. The
2-Page Book Embedding problem asks whether a 2-page book embedding
exists for a given graph. This problem is NP-complete [20].

Now consider a bipartite graph G(V1 ∪ V2, E). We define a bipartite 2-page
book embedding of G as a 2-page book embedding such that all the vertices in
V1 occur consecutively along the spine (and all the vertices in V2 occur con-
secutively, as well). We call the corresponding embedding problem Bipartite
2-Page Book Embedding.

Finally, we define a bipartite 2-page book embedding with spine crossings
(B2PBESC), as a bipartite 2-page book embedding in which edges are not re-
stricted to lie in one of the two regions delimited by `, but each of them might
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cross ` once. These crossings are only allowed to happen in the two portions
of ` delimited by a vertex of V1 and a vertex of V2. We call the correspond-
ing embedding problem Bipartite 2-Page Book Embedding with Spine
Crossings.

We now prove that the B2PBESC problem is equivalent to Clique Pla-
narity for instances (G,S) such that |S| = 2. Consider any instance (G′, {s1, s2})
of the Clique Planarity problem. An instanceG(V1∪V2, E) of the B2PBESC
problem can be defined in which V1 is the vertex set of s1 and V2 is the ver-
tex set of s2; also, E consists of all the link-edges of G′. Conversely, given an
instance G(V1 ∪ V2, E) of the B2PBESC problem, an instance (G′, {s1, s2}) of
Clique Planarity can be constructed in which s1 is a clique on V1 and s2
is a clique on V2; the set of link-edges of G′ coincides with E. Observe that,
since link-edges only connect vertices of different cliques and since edges of E
only connect vertices of V1 to vertices of V2, each mapping generates a valid
instance for the other problem. Also, these mappings define a bijection, hence
the following lemma establishes the equivalence between the two problems.

Lemma 9 (G′, {s1, s2}) is clique-planar if and only if G(V1 ∪ V2, E) admits a
B2PBESC.

Proof: Suppose that there exists a B2PBESC B of G(V1∪V2, E). We construct
a clique-planar representation Γ of (G′, S) as follows. Initialize Γ = B. Relabel
the vertices in V1 (resp. in V2) as u1, ..., uk (resp. v1, ..., vh) according to the
order in which they appear along `. Draw a closed curve λ1 (λ2) enclosing
a portion of the spine ` containing all and only the vertices u1, ..., uk (resp.
v1, ..., vh). Scale Γ up so that λ1 and λ2 are large enough to contain a square of
size (1+ε)×(1+ε) in their interiors, with ε > 0. Remove the interior of λ1 and λ2.
Draw pairwise-intersecting unit squares Q(u1), ..., Q(uk) (resp. Q(v1), ..., Q(vh))
all in the interior of λ1 (resp. of λ2) with their upper-left corners in this order
along a common line l1 (resp. l2). Reroute the curves representing portions of
link-edges from the border of λ1 and λ2 to the suitable ending squares inside
them. This can be done without introducing any crossings, because the vertices
of V1 (V2) appear along ` in the same order as the corresponding squares touch
l1 (resp. l2); also, the portion of a link-edge connecting a point on λ1 with
a point on λ2 is contained in the original drawing of the edge of G, hence no
two such portions cross each other. Thus, Γ is a clique-planar representation of
(G′, S).

Suppose that there exists a clique-planar representation Γ of (G′, {s1, s2}).
We construct a B2PBESC B of G(V1 ∪ V2, E) as follows. Refer to Fig. 9.
Initialize B = Γ. By Lemma 2, there exists a labeling u1, ..., uk of the vertices
in s1 such that the order in which the rectangles representing these vertices are
encountered when traversing the boundary B1 of their arrangement clockwise is
a subsequence of R(u1), ..., R(uk), R(uk−1), ..., R(u2). Hence, for any two points
pa1 on R(u1) ∩ B1 and pb1 on R(uk) ∩ B1, there exists a curve `1 between pa1
and pb1 entering R(u1), ..., R(uk) in this order. Place vertex ui of V1 at the
point where `1 enters R(ui). Define `2, pa2 and pb2, and draw the vertices of
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Figure 9: Constructing a B2PBESC from a clique-planar representation.

V2 analogously. Further, add to B two curves `12 and `21, not intersecting
each other, not intersecting the same link-edge, each intersecting a link edge at
most once, and connecting pa1 to pb2, and pa2 to pb1, respectively. Reroute the
curves representing portions of the edges in E from B1 and B2 to the suitable
ending vertices inside them. This can be done without introducing any crossings,
because the vertices of V1 (V2) appear along `1 (along `2) in the same order as
the corresponding rectangles appear along B1 (along B2) in Γ, by construction.
Finally, consider the curve ` composed of `1, `12, `2, and `21. We have that all
the vertices of V1 (of V2) appear consecutively along `, since they all lie on `1
(on `2); also, each edge e ∈ E crosses ` at most once, either on `12 or on `21.
Hence, B is a B2PBESC of G(V1 ∪ V2, E). This concludes the proof of the
lemma. �

We now consider a variant of the Clique Planarity problem for two
cliques in which the link-edges incident to a clique are partitioned into two
sets, and the goal is to construct a clique-planar representation in which the
link-edges in different sets of the partition exit the clique on “different sides”.
This constraint finds a correspondence with the variant of the (non-bipartite)
2-Page Book Embedding problem, called the Partitioned 2-Page Book
Embedding problem, in which vertices are allowed to be arbitrarily permuted
along the spine, while the edges are pre-assigned to the pages of the book [4, 16].

pi
qi

Bai

Bbi

Eai

Ebi

Figure 10: An intersection-link representation Γi of si. The top side of Γi and
the link-edges in Eai are red, while the bottom side of Γi and the link-edges in
Ebi are black.

More formally, let (G,S = {s1, s2}) be an instance of Clique Planarity
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and let {Eai , Ebi } be a partition of the link-edges incident to si, with i ∈ {1, 2}.
Consider an intersection-link representation Γi of si with outer boundary Bi,
let pi be the bottom-left corner of the leftmost rectangle in Γi, and let qi be the
upper-right corner of the rightmost rectangle in Γi; see Fig. 10. Let Bai be the
part of Bi from pi to qi in clockwise direction (this is the top side of Γi) and let
Bbi be the part of Bi from qi to pi in clockwise direction (this is the bottom side
of Γi). We aim to construct a clique-planar representation of (G,S) in which
all the link-edges in Eai (resp. in Ebi ) intersect the arrangement Γi of rectangles
representing si on the top side (resp. on the bottom side) of Γi. We call the
problem of determining whether such a representation exists 2-Partitioned
Clique Planarity. We prove that 2-Partitioned Clique Planarity can
be solved in quadratic time.

The algorithm is based on a reduction to equivalent special instances of the
Simultaneous Embedding with Fixed Edges (SEFE) problem that can be
decided in quadratic time. Given two graphs G1 and G2 on the same vertex set
V , the SEFE problem asks to find planar drawings of G1 and G2 that coincide
on V and on the common edges of G1 and G2. We have the following.

Lemma 10 Let (G, {s1, s2}) and {Ea1 , Eb1, Ea2 , Eb2} be an instance of the 2-
Partitioned Clique Planarity problem. An equivalent instance 〈G1, G2〉
of SEFE such that G1 = (V,E1) and G2 = (V,E2) are 2-connected and such
that the common graph G∩ = (V,E1 ∩ E2) is connected can be constructed in
linear time.

Proof: By Lemma 9, we can describe (G, {s1, s2}) by its equivalent instance
G(V1 ∪V2, E) of the B2PBESC problem, where V1 is the vertex set of s1, V2 is
the vertex set of s2, and E is the set of link-edges of (G, {s1, s2}). The partition
{Eai , Ebi } of the edges incident to si translates to constraints on the side of the
spine ` of the B2PBESC each of these edges has to be incident to. Namely, for
each vertex u ∈ V1, all the edges in Ea1 (in Eb1) incident to u have to exit u from
the internal (resp. external) side of `; and analogously for the edges of Ea2 and
Eb2. This implies that edges in Ea1 ∩ Ea2 entirely lie inside `, edges in Eb1 ∩ Eb2
entirely lie outside `, while the other edges have to cross `.

We now describe how to construct 〈G1, G2〉. Refer to Fig. 11.
The common graph G∩ contains a cycle C = (t1, r1, t2, t3, r2, t4, q2, q1). Also,

G∩ contains two stars Q1 and Q2 centered at q1 and q2, respectively, where Q1

has a leaf w(u) for each vertex u ∈ V1 and a leaf w(e) for each edge e ∈ Ea1 ∩Eb2,
and where Q2 has a leaf w′(v) for each vertex v ∈ V2 and a leaf w′(e) for each
edge e ∈ Eb1 ∩ Ea2 . Further, G∩ contains trees Ti rooted at ti, for i = 1, ..., 4,
defined as follows.

Tree T1 contains a leaf z(e) adjacent to t1 for each edge e ∈ Ea1 ∩ Eb2; also,
it contains a vertex w1 adjacent to t1; finally, it contains a leaf z(u) adjacent to
w1 for each vertex u ∈ V1 that is incident to at least one edge in Eb1.

Tree T2 contains a leaf z′(e) adjacent to t2 for each edge e ∈ Ea1 ∩ Eb2; also,
it contains a vertex w2 adjacent to t2; finally, it contains a leaf z′(u) adjacent
to w2 for each vertex u ∈ V1 that is incident to at least one edge in Ea1 .
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Figure 11: The SEFE 〈Γ1,Γ2〉 of 〈G1, G2〉 corresponding to Γ from Fig. 9.

Tree T3 contains a leaf x(e) adjacent to t3 for each edge e ∈ Ea2 ∩ Eb1; also,
it contains a vertex w3 adjacent to t3; finally, it contains a leaf x(v) adjacent to
w3 for each vertex v ∈ V2 that is incident to at least one edge in Ea2 .

Tree T4 contains a leaf x′(e) adjacent to t4 for each edge e ∈ Ea2 ∩ Eb1; also,
it contains a vertex w4 adjacent to t4; finally, it contains a leaf x′(v) adjacent
to w4 for each vertex v ∈ V2 that is incident to at least one edge in Eb2.

Finally, G∩ contains two stars R1 and R2 centered at r1 and r2, respectively,
with the same number of leaves as T1. Namely, R1 (R2) contains a leaf r1(e)
(a leaf r2(e)) adjacent to r1 (to r2, resp.) for each edge e ∈ Ea1 ∩ Eb2; also, it
contains a leaf r1(u) (a leaf r2(u), resp.) for each vertex u ∈ V1 that is incident
to at least one edge in Eb1.

Graph G1 contains G∩ plus the following edges. Consider each edge e =
(u, v) with u ∈ V1 and v ∈ V2. If e ∈ Ea1 ∩Eb2, graph G1 has an edge (w(e), z(e))
and an edge (z′(u), z′(e)); if e ∈ Eb1 ∩ Ea2 , graph G1 has an edge (w′(e), x′(e))
and an edge (x(v), x(e)); if e ∈ Ea1 ∩Ea2 , graph G1 has an edge (z′(u), x(v)). For
each vertex u ∈ V1, if u is incident to at least one edge in Eb1, then G1 contains
edge (w(u), z(u)) and edge (r1(u), r2(u)), otherwise it contains edge (w(u), w1).
For each vertex v ∈ V2, if v is incident to at least one edge in Eb2, then G1

contains edge (w′(v), x′(v)), otherwise it contains edge (w′(v), w4).

Graph G2 contains G∩ plus the following edges. Consider each edge e =
(u, v) with u ∈ V1 and v ∈ V2. If e ∈ Ea1∩Eb2, graph G2 has an edge (w(e), z′(e)),
an edge (z(e), r1(e)), and an edge (r2(e), x′(v)). If e ∈ Ea2 ∩ Eb1, graph G2 has
an edge (r2(u), x′(e)) and an edge (w′(e), x(e)). If e ∈ Eb1 ∩ Eb2, graph G1

has an edge (r2(u), x′(v)). For each vertex u ∈ V1, if u is incident to at least
one edge in Ea1 , then G2 contains edge (w(u), z′(u)), otherwise it contains edge
(w(u), w2). Also, if u is incident to at least one edge in Eb1, then G2 contains
edge (w(u), r1(u)). For each vertex v ∈ V2, if v is incident to at least one edge in
Ea2 , then G2 contains edge (w′(v), x(v)), otherwise it contains edge (w′(v), w3).

The order of the leaves of Q1 represents the order in which the vertices of
s1 and the crossings between edges of Ea1 ∩Eb2 appear along `; analogously, the
order of the leaves of Q2 represents the order in which the vertices of s2 and
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the crossings between edges of Ea2 ∩ Eb1 appear along `. Hence, concatenating
these two orders yields a total order of the vertices and of the crossings along
`. In the following we prove that this correspondence determines a B2PBESC,
when starting from a SEFE, and vice versa.

Suppose that 〈G1, G2〉 admits a SEFE. Let O1 and O2 be the orders in
which the leaves of Q1 and of Q2 appear around q1 and q2, respectively. We
obtain a B2PBESC B by concatenating O1 and O2, where each vertex u ∈ V1
corresponds to leaf w(u) of Q1, each vertex v ∈ V2 corresponds to leaf w′(v)
of Q2, and the crossing between an edge e and the spine ` of B corresponds to
either leaf w(e) of Q1 or leaf w′(e) of Q2, depending on whether e ∈ Ea1 ∩Eb2 or
e ∈ Ea2 ∩ Eb1.

Since the leaves of Q1 corresponding to vertices of V1 are all connected to
vertex w1 by paths belonging to the same graph G1, they appear consecutively
around q1, and hence the corresponding vertices of V1 appear consecutively
along `. Analogously, all the vertices of V2 appear consecutively along `. These
two facts imply that all the edges cross the spine in a point lying between a
vertex of V1 and a vertex of V2. Hence, the order of the vertices along the spine
` of B is consistent with a valid B2PBESC. We now show that this order also
allows us to draw the edges without crossings.

The routing of each edge e = (u, v) is performed as follows. If e ∈ Ea1 ∩ Ea2 ,
then e is drawn as a curve on the internal side of `. If e ∈ Eb1 ∩ Eb2, then e is
drawn as a curve on the external side of `. If e ∈ Ea1 ∩ Eb2, then e is drawn as
a curve whose portion between u and the crossing point ye is on the internal
side of `, and whose portion between ye and v is on the external side of `. If
e ∈ Eb1 ∩ Ea2 , then e is drawn as a curve whose portion between u and ye is on
the external side of `, and whose portion between ye and v is on the internal
side of `.

First observe that, because of the edges connecting Q1 with T1 and T2, the
clockwise order of the leaves of Q1 coincides with the counterclockwise order
of the corresponding leaves of T1 and T2. The same holds for Q2 with respect
to T3 and T4. Also, because of the edges connecting R1 with T1 and R2, the
clockwise order of the leaves of R2 is the same as the one of the corresponding
leaves of T1.

We now prove that no two edges in the constructed book embedding cross
each other. Observe that each edge either entirely lies in one of the two sides of
`, or it crosses ` once, hence it is composed of two portions in different sides of
`. Clearly, it suffices to prove that no two edges (or portions) on the same side
of ` cross each other.

Consider the portions of the edges of G(V1∪V2, E) that lie on the same side
of `, say on the internal side of `: these are the edges e = (u, v) in Ea1 ∩Ea2 , the
portions of the edges e = (u, v) in Ea1 ∩ Eb2 between u and ye, and the portions
of the edges e = (u, v) in Eb1 ∩ Ea2 between ye and v. Every edge of the first
type corresponds to an edge (z′(u), x(v)) of G1; every portion of an edge of the
second type corresponds to an edge (z′(u), z′(e)) of G1; and every portion of an
edge of the third type corresponds to an edge (x(e), x(v)) of G1. Since all these
edges belong to G1, they do not cross in the given SEFE. By construction,
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for each vertex of G incident to at least one of the considered edges, there is a
corresponding leaf of either T2 or T3 in G∩; also, for each of these edges that
crosses `, there is a corresponding leaf of either T2 or T3 in G∩. Further, these
leaves appear, in the left-to-right order of the leaves of T2 and T3, in the same
order as they appear along `, by the previous observation that the order of the
leaves of T2 (of T3) coincides with the one of Q1 (of Q2, resp.). This implies
that the considered edges of G(V1 ∪ V2, E) do not cross in the internal side of
`. Analogous arguments can be used to prove that the portions of the edges
of G(V1 ∪ V2, E) lying in the external side of ` do not cross each other. In
this case, the edges of the SEFE that have to be considered are (r2(u), x′(v)),
(r2(u), x′(e)), and (r2(e), x′(v)), which all belong to G2.

We now prove the opposite direction. Suppose that G(V1 ∪ V2, E) admits a
B2PBESC B. We construct a SEFE of 〈G1, G2〉 as follows.

We define a linear ordering σ1 of the vertices of V1 and the crossings between
` and the edges in Ea1 ∩Eb2; σ1 is the clockwise order in which such vertices and
crossings appear along ` starting at any vertex of V2. Observe that, since B is
a B2PBESC, all the vertices in V1 appear consecutively in σ1. Analogously,
we define a linear ordering σ2 of the vertices of V2 and the crossings between `
and the edges in Ea2 ∩ Eb1; σ2 is the clockwise order in which such vertices and
crossings appear along ` starting at any vertex of V1. Observe that, since B is
a B2PBESC, all the vertices in V2 appear consecutively in σ2.

Recall that each leaf of Q1 either corresponds to a vertex in V1 or to an edge
in Ea1 ∩Eb2. Thus, we can define a clockwise linear ordering of the leaves of Q1

around q1 as the corresponding vertices and crossings appear in σ1; this linear
ordering starts after edge (q1, t1). A clockwise linear ordering of the leaves of
Q2 around q2 is defined analogously from σ2 starting from edge (q2, q1).

The order of the leaves of trees Ti, with i = 1, 2, 3, 4, and of stars R1 and
R2 is also decided based on σ1 and σ2. This allows us to draw all the edges
of G1 and G2 that are incident to stars Q1, Q2, R1, and R2 without crossings;
in particular, the paths connecting q1 to w1 and w2, and those connecting q2
to w3 and w4 can be drawn without crossings since the vertices of V1 (and the
vertices of V2) are consecutive along ` in B. The fact that the edges connecting
the leaves of T2 and T3, and the edges connecting the leaves of R2 and T4 can
be drawn without crossings is again due to the fact that, by construction, these
edges correspond to portions of edges of G lying on the same side of `.

Graph G∩ is connected, by construction. The fact that G1 and G2 are 2-
connected can be proved as follows. Graph G1 is composed of the outer cycle
C, plus a set of 2-connected components connecting pairs of vertices of C. One
component connects q1 to t1; one component connects r1 to r2; one connects q2
to t4; and another one connects t2 to t3. In particular, in order for this latter
component to actually exist, at least one edge in Ea1 ∩Ea2 must exist. However,
this fact can be assumed without loss of generality, as otherwise two dummy
vertices and an edge in Ea1 ∩ Ea2 between them could be added to the instance
without altering the possibility of finding a B2PBESC. As for G2, it is also
composed of the outer cycle C, plus a set of 2-connected components connecting
pairs of vertices of C. One component connects q1 to t2; one connects t1 to r1;
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one connects r2 to t4; and another one connects q2 to t3.
As 〈G1, G2〉 can be easily constructed in linear time, the lemma follows. �

Theorem 4 Problem 2-Partitioned Clique Planarity can be solved in
quadratic time for instances (G,S) in which |S| = 2.

Proof: Apply Lemma 10 to construct in linear time an instance 〈G1, G2〉 of
SEFE that is equivalent to (G,S) such that G1 and G2 are biconnected and
their intersection graph G∩ is connected. The statement follows since instances
of the SEFE problem with this property can be solved in quadratic time [7]. �

7 Hierarchical Clique Planarity

In this section we study a version of the Clique Planarity problem in which
the cliques are given together with a hierarchical relationship among them.
Namely, let (G,S) be an instance of Clique Planarity and let ψ : S →
{1, ..., k}, with k ≤ |S|, be an assignment of the cliques in S to k levels such
that, for each link-edge (u, v) of G connecting a vertex u of a clique s′ to a vertex
v of a clique s′′, we have ψ(s′) 6= ψ(s′′); an instance is proper if ψ(s′) = ψ(s′′)±1
for each link-edge.

We aim to construct canonical clique-planar representations of (G,S) such
that:

Property 1 For each clique s ∈ S, the top side of the bounding box of the
representation of s lies on the line y = 2ψ(s), while the bottom side lies
above the line y = 2ψ(s)− 2; and

Property 2 Each link-edge (u, v), with u ∈ s′, v ∈ s′′, ψ(s′) < ψ(s′′), is
drawn as a y-monotone curve from the top side of R(u) to the bottom
side of R(v).

We call the problem of testing whether such a representation exists Level
Clique Planarity.

We show how to test level clique planarity in quadratic time for proper
instances via a linear-time reduction to equivalent proper instances of T -Level
Planarity [3].

A T -level graph (V,E, γ, T ) consists of:
(i) a graph G = (V,E);

(ii) a function γ : V → {1, ..., k} such that γ(u) 6= γ(v) for each (u, v) ∈ E,
where the set Vi = {v | γ(v) = i} is the i-th level of G; and

(iii) a set T = {T1, ..., Tk} of rooted trees such that the leaves of Ti are the
vertices in Vi.

A T -level planar drawing of (V,E, γ, T ) is a planar drawing of G where the
edges are y-monotone curves and the vertices in Vi are placed along the line
y = i, denoted by `i, according to an order compatible with Ti; that is, for each
internal node µ of Ti, the leaves of the subtree of Ti rooted at µ are consecutive
along `i. A T -level graph is T -level planar if it admits a T -level planar drawing.



JGAA, 21(4) 731–755 (2017) 751

The T -Level Planarity problem asks to test whether a T -level graph is T -
level planar. We have the following.

Lemma 11 Given a proper instance of Level Clique Planarity, an equiva-
lent proper instance of T -Level Planarity can be constructed in linear time.

Proof: Given (G(V,E), S, ψ), an instance (V,E′, γ, T ) of T -Level Planarity
can be constructed as follows. The vertex sets of the graphs coincide and E′

coincides with the set of link-edges in E. For each vertex v in a clique s ∈ S
we have γ(v) = ψ(s). Finally, for i = 1, ..., k, where k is the number of levels
in (G,S, ψ), tree Ti ∈ T has root ri, a child ws of ri for each s ∈ S, and the
vertices of s as children of ws.

i

i+ 1

(a)

y = 2i

y = 2i+ 2

(b)

Figure 12: Construction of a clique-planar representation of (G(V,E), S, ψ) from
a T -level planar drawing Γ of (V,E′, γ, T ). (a) The part of Γ between two levels
i and i + 1. The edges and the internal nodes of trees Ti and Ti+1 are green,
while the vertices in V and the edges in E′ are black. (b) The corresponding
clique-planar representation between levels i and i + 1. The bounding box of
the representation of each clique is dotted.

Suppose that (V,E′, γ, T ) admits a T -level planar drawing Γ, as in Fig. 12(a).
We construct a clique-planar representation with the desired properties as fol-
lows; refer to Fig. 12(b). For each clique s ∈ S with ψ(s) = i, we construct a
canonical representation of s in a bounding box of size (1 + ε) × (1 + ε), with
0 < ε < 1, and plug it between lines y = 2ψ(s) and y = 2ψ(s) − 2 with the
top side of the bounding box lying on line y = 2ψ(s). Note that the bottom
side of the bounding box is above the line y = 2ψ(s)− 2. Cliques on the same
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level i are placed side-by-side, so that they do not touch each other, in the same
order as the corresponding children of ri appear around ri in Γ. Finally, for
each two consecutive levels Vi and Vi+1, consider the edges in E′ connecting a
vertex u ∈ Vi with a vertex v ∈ Vi+1 as they appear in Γ from left to right; we
draw the corresponding link-edge (u, v) ∈ E as a polyline, lying to the right of
any previously drawn edge between Vi and Vi+1, composed of three segments:
the first is a vertical segment connecting a point on the top side of R(u) with
a point pu on the top side of the bounding box of s′, the third is a vertical
segment connecting a point on the bottom side of R(v) with a point pv on the
bottom side of the bounding box of s′′, the middle one is a straight-line segment
connecting pu with pv.

The obtained representation satisfies Properties 1 and 2 by construction.
That the link-edges do not cross each other descends from the following three
facts. First, the order of the cliques along the same level i is the same as the
order of the corresponding children of the root of Ti. Second, the node ws in
Tψ(s) enforces vertices of the same clique s to be consecutive along `ψ(s) in Γ.
Third, for each clique s ∈ S, the squares representing the vertices of s are in
the same order as the corresponding vertices of s along `ψ(s). This implies that,
for any two cliques s′ ∈ Vi and s′′ ∈ Vi+1, the left-to-right order in which the
link-edges between s′ and s′′ intersect the line y = 2ψ(s′) is the same as the
one in which they intersect the line y = 2(ψ(s′′)) − (1 + ε), hence no two such
link-edges cross.

Suppose that (G(V,E), S, ψ) admits a clique-planar representation satisfying
Properties 1 and 2. We construct a T -level planar drawing Γ of (V,E′, γ, T ) as
follows. For i = 1, ..., k, consider a line `i defined as y = 2i−1. Place each vertex
v ∈ Vi at the intersection between `i and the left side of R(v). Note that such
an intersection exists since the clique-planar representation of (G(V,E), S, ψ)
satisfies Property 1. Draw each edge (u, v) with u ∈ Vi and v ∈ Vi+1 as a curve
composed of three parts: The middle part coincides with the drawing of the
corresponding link-edge, which connects a point pu on the top side of R(u) with
a point pv on the bottom side of R(v); the first part is a curve connecting u
with pu entirely contained inside R(u) not crossing any other edge (this can be
done by routing the curve first following the left side of R(u) and then following
the top side of R(u)); and the last part is a curve connecting v with pv entirely
contained inside R(v) not crossing any other edge (this can be done by routing
the curve first following the left side of R(v) and then following the bottom side
of R(v)).

We show that Γ is a T -level planar drawing of (V,E′, γ, T ). No two edges
cross in Γ since the middle parts of the edges in E′ have the same drawing as
the link-edges in E, which do not cross by hypothesis, while the first and the
last parts do not cross by construction. Finally, the fact that the ordering of
the vertices of Vi along `i is compatible with Ti descends from the fact that
`i intersects all the rectangles of each clique s with ψ(s) = i and that no two
rectangles representing vertices belonging to different cliques overlap. Hence,
vertices belonging to the same clique, and hence children of the same internal
node of Ti, are consecutive along `i. The construction can be performed in
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linear time, thus proving the lemma. �

We thus get the main result of this section.

Theorem 5 Level Clique Planarity is solvable in quadratic time for proper
instances and in quartic time for general instances.

Proof: Any instance (G,S, ψ) of Level Clique Planarity can be made
proper by introducing dummy cliques composed of single vertices to split link-
edges spanning more than one level. This does not alter the level clique planarity
of the instance and might introduce a quadratic number of vertices. Lemma 11
constructs in linear time an equivalent proper instance of T -Level Planarity.
The statement follows since T -Level Planarity can be solved in quadratic
time [3] for proper instances. �

8 Conclusions and Open Problems

We initiated the study of hybrid representations of graphs in which vertices are
geometric objects and edges are either represented by intersections (if part of
dense subgraphs) or by curves (otherwise). Several intriguing questions arise
from our research.

1. How about considering families of dense graphs richer than cliques? Other
natural families of dense graphs could be considered, say interval graphs,
complete bipartite graphs, or triangle-free graphs.

2. How about using different geometric objects for representing vertices?
Even simple objects like equilateral triangles or unit circles seem to pose
great challenges, as they give rise to arrangements with a complex com-
binatorial structure. For example, we have no counterpart of Lemma 2 in
those cases.

3. What is the complexity of the Bipartite 2-Page Book Embedding
problem? We remark that, in the version in which spine crossings are
allowed, this problem is equivalent to the clique planarity problem for
instances with two cliques.
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