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Abstract

An octilinear drawing of a planar graph is one in which each edge is drawn
as a sequence of horizontal, vertical and diagonal at 45◦ and −45◦ line-segments.
For such drawings to be readable, special care is needed in order to keep the num-
ber of bends small. Since the problem of finding planar octilinear drawings with
minimum number of bends is NP-hard, in this paper we focus on upper and lower
bounds. From a recent result of Keszegh et al. on the slope number of planar
graphs, we can derive an upper bound of 4n− 10 bends for planar graphs with
n vertices and maximum degree 8. We considerably improve this general bound
and corresponding previous ones for triconnected planar graphs of maximum de-
gree 4, 5 and 6. We also derive non-trivial lower bounds for these three classes of
graphs by a technique inspired by the network flow formulation of Tamassia for
computing bend optimal orthogonal drawings.
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1 Motivation and Background

Octilinear drawings of graphs have a long history of research, which dates back to the
early thirties of the last century, when an English technical draftsman, Henry Charles
Beck (also known as Harry Beck), designed the first schematic map of London Under-
ground. His map, the so-called Tube map, looked more like an electrical circuit diagram
(consisting of horizontal, vertical and diagonal line segments) rather than a true map, as
the underlying geographic accuracy was neglected. Laying out networks in such a way
is called octilinear graph drawing and plays an important role in map-schematization
and the design of metro-maps. In particular, an octilinear drawing Γ(G) of a graph
G = (V,E) is one in which each vertex occupies a point on an integer grid and each
edge is drawn as a sequence of horizontal, vertical and diagonal at 45◦ line-segments.
As a result, every vertex has eight available so-called ports, where its incident edges
can be connected to. When G is planar, usually Γ(G) is required to be planar.

Figure 1: Henry Beck Tube Map (first edition), 1933. Printed at Waterlow & Sons Ltd., London.

In planar octilinear graph drawing, an important goal is to keep the number of
bends small, so that the produced drawings can be understood easily. One can derive
a non-trivial upper bound on the required number of bends from a result on the planar
slope number of graphs by Keszegh et al. [15], who proved that every planar graph of
maximum degree k has a planar drawing with at most d k

2e different slopes in which each
edge has at most two bends. For 3 ≤ k ≤ 8, the drawings produced by the algorithm
of Keszegh et al. are octilinear, which yields an upper bound of 6n− 12 on the total
number of bends, where n is the number of vertices of the graph. This bound can be
reduced to 4n−10 with some effort; see Section 1.1.
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Table 1: A short summary of our results.

Upper bounds

Graph class (planar) Lower bound Ref. Previous Ref. New Ref.

3-con. max.deg-4 n/3−1 Th. 4 2n [2] n+5 Th. 1
3-con. max.deg-5 2n/3−2 Th. 4 5n/2 [2] 2n−2 Th. 2
3-con. max.deg-6 4n/3−6 Th. 4 4n−10 [15] 3n−8 Th. 3

On the other hand, it is known that every planar graph of maximum degree 3 with
five or more vertices admits a planar octilinear drawing in which all edges are bend-
less [14, 8]. So, a natural question to ask is whether a planar graph of maximum degree
3+k can be drawn with kn+O(1) bends. Recently, it was proved that all planar graphs
of maximum degree 4 and 5 admit planar octilinear drawings with at most one bend per
edge [2]. This result along with the degree sum formula implies that the total number
of bends for such graphs can be upper bounded by 2n and 5n/2, respectively. Note
that the problem of determining whether a given embedded planar graph of maximum
degree 8 admits a bend-less planar octilinear drawing is NP-complete [17].

The remainder of this paper is organized as follows. In Section 2, we considerably
improve all aforementioned bounds for the classes of triconnected planar graphs of
maximum degree 4, 5 and 6. In Section 3, we present corresponding lower bounds for
these three classes of planar graphs. We conclude in Section 4 with open problems and
future work. For a summary of our results also refer to Table 1.

1.1 Related work

As already stated, Keszegh et al. [15] have proved that every planar graph of maximum
degree k admits a planar drawing with at most d k

2e different slopes in which each edge
has at most two bends. If one appropriately adjusts the slopes of all edge segments
incident to a vertex, then one can show that any planar graph of maximum degree k,
with 3 ≤ k ≤ 8, admits a planar octilinear drawing in which each edge has at most
two bends. This implies that any planar graph of maximum degree k on n vertices can
have at most 6n− 12 bends, where 3 ≤ k ≤ 8. One can easily improve this bound to
4n−10 as follows. The edge that “enters” a vertex from its south port and the edge that
“leaves” each vertex from its top port in the s-t ordering of the algorithm of Keszegh et
al. can both be drawn with only one bend each. Since each vertex is incident to exactly
two such edges (except for the first and last ones in the s-t ordering which are only
incident to one such edge each), it follows that 2n−2 edges can be drawn with at most
one bend. Hence, the bound of 4n−10 follows.

Octilinear drawings form a natural extension of the so-called orthogonal drawings,
which allow for horizontal and vertical edge segments only. For such drawings, Tamas-
sia [20] showed that the bend minimization problem can be solved efficiently, assuming
that the input is an embedded graph. However, the corresponding minimization prob-
lem over all embeddings of the input graph is NP-hard [11]. Tamassia’s algorithm [20]
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Figure 2: An octilinear drawing of a planar graph of maximum degree 4. The two intersections
marked by gray circles are unavoidable when drawing the graph with the given angles. Note that
these angles can be specified by a bend-optimal octilinear representation; refer also to [17].

consists of two main phases. In the first phase, a so-called orthogonal representation is
computed, which in a sense captures the “shape” of the drawing, neglecting the exact
geometry underneath. Formally, an orthogonal representation describes the sequence
of bends along each edge and the angles (as multiples of 90◦) between edges incident
to a common vertex. In the second phase, based on the computed representation the
actual coordinates for the vertices and edge-bends are computed. Note that, given an
embedded planar graph of maximum degree 8, Tamassia [20] describes how one can
extend his approach, so to compute a bend-optimal octilinear representation (in which
the angles are multiples of 45◦). However, such a representation may not be realizable
by a corresponding planar octilinear drawing [6]; see Figure 2 for an example.

For orthogonal drawings, several bounds on the total number of bends are known.
Biedl [4] presents lower bounds for graphs of maximum degree 4 based on their con-
nectivity (i.e., simply connected, biconnected or triconnected), planarity (i.e., planar or
not) and simplicity (i.e., simple or non-simple with multiedges or selfloops). It is also
known that any planar graph of maximum degree 4 (except for the octahedron graph)
admits a planar orthogonal drawing with at most two bends per edge [5, 16]. Trivially,
this yields an upper bound of 4n bends, which can be improved to 2n+2 [5]. Note that
the best known lower bound is due to Tamassia et al. [21], who presented planar graphs
of maximum degree 4 requiring 2n−2 bends.

Finally, in metro-map visualization many approaches have been proposed that re-
sult in (nearly-)octilinear drawings (see, e.g., [12, 17, 18, 19]). However, most of them
are heuristics and therefore do not focus on the bend-minimization problem explicitly.

1.2 Preliminaries
Central in our approach is the canonical order [7], which exists for any triconnected
planar graph and it can be computed in linear time [13]. Since we assume familiarity
with this concept, we describe only the parts of the concept which are most essential
for our work. Let G = (V,E) be a triconnected planar graph and let Π = (P0, . . . ,Pm) be
a partition of V into paths, such that P0 = {v1,v2}, Pm = {vn} and vertices v2, v1 and vn
form a path on the outerface of G. For k = 0,1, . . . ,m, let Gk be the subgraph induced
by ∪k

i=0Pi and denote by Ck the outer face of Gk. Partition Π is a canonical order of G
if for each k = 1, . . . ,m−1 the following hold (see Figure 3):

(i) Gk is biconnected,

(ii) all neighbors of Pk ⊂Ck in Gk−1 are on the outer face of Gk−1
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Figure 3: An example illustrating a canonical order and the corresponding direction and coloring
of the edges. The graph is of maximum degree 5 (see vertex v13). The canonical order consists of
the following partitions: P0 = {v1,v2}, P1 = {v3,v4,v5}, P2 = {v6}, P3 = {v7,v8}, P4 = {v9,v10},
P5 = {v11}, P6 = {v12}, P7 = {v13}, P8 = {v14} and P9 = {v15}.

(iii) |Pk|= 1 or the degree of each vertex v ∈ Pk is two in Gk and

(iv) all vertices of Pk, 0≤ k < m have at least one neighbor in Pj for some j > k.

Path Pk is called singleton if |Pk| = 1 and chain otherwise. Note that if Pk is a chain,
then each of the two endpoints of Pk are adjacent to Gk−1 by only one edge.

To simplify the description of our algorithms, we direct and color the edges of G
based on partition Π (similar to Schnyder colorings [9]) as follows. The first partition
P0 of Π exclusively defines one edge (that is, edge (v1,v2)), which we color blue and
direct towards vertex v1. For each partition Pk = {vi, . . . ,vi+ j} ∈ Π later in the order,
let v1 = c1,c2, . . . ,cq = v2 be the vertices on Ck−1 as they appear from left to right and
let v` and vr be the leftmost and rightmost neighbors of Pk in Gk−1, respectively. In the
case where Pk is a chain (that is, j > 0), we color edge (vi,v`) and all edges between
vertices of Pk blue and direct them towards v`, i.e., each edge (vi+p−1,vi+p) of Pk,
p = 1, . . . , j, is directed from vi+p to vi+p−1. The edge (vi+ j,vr) is colored green and
is directed from vi+ j to vr. In the case where Pk is a singleton (that is, j = 0), we color
the edges (vi,v`) and (vi,vr) blue and green, respectively and we direct them towards
v` and vr. We color the remaining edges incident to Pk towards Gk−1 (if any) red and
we direct them towards vi.

Given a vertex v ∈ V of G, we denote by indegx(v) (outdegx(v), respectively) the
in-degree (out-degree, respectively) of vertex v in color x ∈ {r,b,g}. Observe that
for a vertex v ∈ V \ {v1}, outdegb(v) = 1, which implies that the blue subgraph is a
spanning tree of G. Similarly 0 ≤ outdegg(v), outdegr(v) ≤ 1. Hence the green and
the red subgraphs form two forests of G. It also holds that 0 ≤ indegb(v), indegg(v),
indegr(v)≤ d(G)−1, where d(G) is the maximum vertex-degree of G.

2 Upper Bounds

In this section, we present upper bounds on the total number of bends for the classes of
triconnected planar graphs of maximum degree 4, 5 and 6.
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Figure 4: Illustration of the reference edge (bold) in the case of: (a-b) a chain, (c-d) a singleton
of degree 2 in Gk and (e) a singleton of degree 3 in Gk.

2.1 Triconnected Planar Graphs of Maximum Degree 4

Let G = (V,E) be a triconnected planar graph of maximum degree 4. Before we pro-
ceed with the description of our approach, we need to define the notions of vertical and
horizontal cuts; e.g., see [10]. A vertical cut is a y-monotone continuous curve that
crosses only horizontal line-segments of a drawing and splits it into a left and a right
part (refer to the dotted curve in Figure 5f). Such a cut makes a drawing horizontally
stretchable in the following sense: One can shift the right part of the drawing that is
defined by the vertical cut further to the right, while keeping the left part of the draw-
ing in place and the result is a valid octilinear drawing. Similarly, one can define a
horizontal cut.

Since G has maximum degree 4, it has at most 2n edges. By Euler’s formula,
it follows that G has at most n+ 2 faces. In order to construct a drawing Γ(G) of
G, which has roughly at most n + 2 bends, we also need to associate to each face
of G a so-called reference edge. The reference edge of a face is defined as follows.
Let Π = {P0, . . . ,Pm} be a canonical order of G and assume that Γ(G) is constructed
incrementally by placing a new partition of Π each time, so that the upper envelope of
the drawing constructed so far is an x-monotone path. When placing a new partition
Pk ∈ Π, k = 1, . . . ,m− 1, one or two bounded faces of G are formed (note that we
treat the last partition Pm of Π, which might introduce three bounded faces, separately).
More precisely, if Pk is a chain or a singleton of degree 2 in Gk, then only one bounded
face is formed. Otherwise (that is, Pk is a singleton of degree 3 in Gk), two new bounded
faces are formed. In both cases, each newly-formed bounded face consists of at least
two edges incident to vertices of Pk and at least one edge of Gk−1. In the former case,
the reference edge of the newly-formed bounded face, say f , is defined as follows. If f
contains at least one green edge that belongs to Gk−1, then the reference edge of f is the
leftmost such edge (see Figures 4a and 4c). Otherwise, the reference edge of f is the
leftmost blue edge of f that belongs to Gk−1 (see Figure 4b and 4d). In the case where
Pk is a singleton of degree 3 in Gk, the reference edge of each of the newly formed faces
is the edge of Gk−1 that is incident to the endpoint of the red edge involved. Observe
that, by definition, a red edge cannot be a reference edge.

As already stated, we will construct Γ(G) in an incremental manner by placing
one partition of Π at a time (refer to Figure 5 for an example). For the base case,
we momentarily neglect the edge (v1,v2) of the first partition P0 of Π and we start by
placing the second partition, say a chain P1 = {v3, . . . ,v|P1|+2}, on a horizontal line from
left to right. Since by definition of Π, v3 and v|P1|+2 are adjacent to the two vertices,
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v1 and v2, of the first partition P0 of Π, we place v1 to the left of v3 and v2 to the right
of v|P1|+2. So, from left to right they form a path where all edges are drawn using
horizontal line-segments that are attached to the east and west ports at their endpoints.
The case where P1 is a singleton is analogous (assuming that P1 is a chain of zero
length). Assume now that we have already constructed a drawing for Gk−1, which has
the following invariant properties:

IP-1: The number of edges of Gk−1 with a bend is at most equal to the number of
reference edges in Gk−1.

IP-2: The north-west, north and north-east ports of each vertex are occupied by incom-
ing blue/green edges and by outgoing red edges. Accordingly, the south-west,
south and south-east ports of each vertex are occupied by outgoing blue and
green edges and by incoming red edges. Additionally, each vertex that lies on
the outerface of Gk−1 has at least two consecutive northern ports unoccupied.

IP-3: If a horizontal port of a vertex v is occupied, then it is occupied either by an edge
with a bend (to support vertical cuts) or by an edge of a chain containing v.

IP-4: A red edge is not on the outerface of Gk−1.

IP-5: A blue (green, respectively) edge of Gk−1 is never incident to the north-west
(north-east, respectively) port of a vertex of Gk−1.

IP-6: From each reference edge on the outerface of Gk−1 one can devise a vertical cut
through the drawing of Gk−1, i.e., each reference edge on the outerface of Gk−1
has a horizontal segment.

The base case of our algorithm conforms with the aforementioned invariant prop-
erties. In the following, we will show how to add the next partition Pk with k < m, so
that all aforementioned invariant properties are fulfilled. In our description, we will
mainly describe the port assignment at each vertex that will always conform to IP-2–5,
which fully specifies how each edge must be drawn (in other words, we describe the
relative coordinates of the vertices). The exact coordinates can then be computed by
adopting an approach similar to the one of Bekos et al. [2], since the base of each newly
formed face (i.e., the part of the face that is not formed by newly introduced edges) is
horizontally stretchable (follows from IP-6). Next, we consider the three main cases.

C.1: Pk = {vi} is a singleton of degree 2 in Gk; see Figures 6a and 6b. Let v` and vr
be the leftmost and rightmost neighbors of vi in Gk−1 (note that v` and vr are not
necessarily neighboring). We claim that the north-east port of v` and the north-
west port of vr cannot be simultaneously occupied. For a proof by contradiction,
assume that the claim does not hold. Denote by v`  vr the path from v` to vr
at the outerface of Gk−1 (neglecting the direction of the edges implied by the
canonical order Π). By IP-5, v` vr starts as blue from the north-east port of v`
and ends as green at the north-west port of vr. So, in between there is a vertex
of the path v`  vr, which is incident to both a blue outgoing edge and a green
outgoing edge. So, this vertex must have a neighbor in Pj for some j ≥ k; a
contradiction to the degree of vi.
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Figure 5: An illustration of our algorithm for triconnected planar graphs of maximum degree 4
by an example: the octahedron graph. The underlying canonical order consists of the following
partitions: P0 = {v1,v2}, P1 = {v3}, P2 = {v4}, P3 = {v5} and P4 = {v6}. (a) The direction and
the coloring of the edges. (b) The corresponding reference edges (bold); the edge (v1,v2) of the
first partition and the edge (v1,v6) incident to the last (degree 4) partition are ignored. (c) The
placement of the first two partitions. (d) The placement of a singleton of degree 2 incident to
reference edge (v4,v3) that is drawn bent. (e) The placement of a singleton of degree 3 incident to
reference edges (v5,v4) and (v5,v2) that are drawn bent. (f) The last singleton v6 is not incident
to reference edges. So, (v6,v4), (v5,v6) and (v6,v2) must be drawn bend-less. (g) Vertex v5 is
translated upwards until one of the horizontal line-segments incident to v5 is eliminated. (h) The
final layout containing (v2,v1) and (v6,v1); the dotted edge can be drawn with a single bend.

Without loss of generality, assume that the north-east port of v` is unoccupied.
In order to draw the edge (vi,v`), we distinguish two cases. If edge (vi,v`) is
the reference edge of a face, then we draw edge (vi,v`) as a horizontal-diagonal
combination from the west port of vi towards the north-east port of v`. Otherwise,
edge (vi,v`) is drawn bend-less from the south-west port of vi towards the north-
east port of v`. To draw the second edge incident to vi (that is, the edge (vi,vr)),
again we distinguish two cases. If the north-west port at vr is unoccupied, then
edge (vi,vr) will use this port at vr. Otherwise, edge (vi,vr) will use the north port
at vr. In addition, if edge (vi,vr) is the reference edge of a face, then edge (vi,vr)
will use the east port at vi. Otherwise, edge (vi,vr) will use either the south or
the south-east port at vi depending on whether edge (vi,vr) uses the north or the
north-west port at vr, respectively.

The port assignment described above conforms to IP-2–5. Clearly, IP-1 also
holds. IP-6 holds because the newly introduced edges that are reference edges
have a horizontal line-segment, which inductively implies that vertical cuts
through them are possible.
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Figure 6: Illustration of: (a-b) the case of a degree-2 singleton in Gk, (c) the case of a chain,
(d-m) the case of a singleton of degree 3 in Gk (dotted line-segments can have zero length).

C.2: Pk = {vi, . . .vi+ j} with j≥ 1 is a chain; see Figure 6c. This case is similar to case
C.1, as Pk has also exactly two neighbors in Gk−1 (which we again denote by v`
and vr). The edges between vi, . . . ,vi+ j will be drawn as horizontal line-segments
connecting the west and east ports of the respective vertices. The edges (vi,v`)
and (vi+ j,vr) are drawn based on the rules of the case C.1 (e.g., in Figure 6c
edge (vi,v`) is a reference edge, while the edge (vi+ j,vr) is not). Hence, the port
assignment still conforms to IP-2–5. In addition, IP-1 and IP-6 hold, since all
edges of the chain are horizontal.

C.3: Pk = {vi} is a singleton of degree 3 in Gk. Let v` and vr be the leftmost and
rightmost neighbors of vi in Gk−1 and let vm be the third neighbor of vi in Gk−1.
By IP-2 and the degree restriction, the north port of vm is unoccupied. If the
north-east port of v` and the north-west port of vr are simultaneously unoccupied,
we proceed analogously to case C.1; see Figure 6d. Clearly, IP-1 and IP-6 hold.
Consider now the more involved case, where the north-east port of v` is occupied
and simultaneously (vi,v`) is not a reference edge, that is, (vi,v`) must be drawn
bend-less (the case where the north-west port of vr is occupied and simultaneously
(vi,vr) is not a reference edge is analogous; we will only detail the deferences in
the following). Since the north-east port at v` is occupied, by IP-4 it follows that
the edge at the north-east port of v` is not red. Therefore, by IP-2 and IP-5, the
edge at the north-east port of v` is blue. This implies that the path v` vm at the
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outerface of Gk−1 consists of exclusively blue edges pointing towards v`. Hence,
by IP-5 the north-west port at vm is unoccupied. Edge (vi,v`) can be drawn bend-
less if the edge (vi,vr) is a reference edge (that is, by IP-6 (vi,vr) has a bend);
see Figure 6e. In the case where the edge (vi,vr) is not a reference edge (that is,
none of (vi,v`) and (vi,vr) is a reference edge), we need a different argument. We
further distinguish two sub-cases.

C.3.1: The edge incident to vm on the path vm  vr on the outerface of Gk−1
is green. By definition, the blue (green) edge of v`  vm (vm  vr) incident to
vm is a reference edge and by IP-6 has a bend. Our aim is to “eliminate” one
of these bends and draw one of the edges (vi,v`) or (vi,vr) with a bend and the
other one bend-less, such that IP-1 holds. In this case, vm may or may not be
incident to another red edge in Gk−1 (equivalently, vm is either of degree 4 or 3,
respectively). Without loss of generality, we assume that vm is incident to another
red edge, say (vm,v′m), in Gk−1, that is, vm is of degree 4. In this case, we translate
vm upwards in the direction implied by the slope of the edge (vm,v′m), until one of
the horizontal line-segments of the edges incident to vm on the outerface of Gk−1
is completely eliminated; see Figure 6f. The only case, where the aforementioned
segment elimination is not possible, is when (vm,v′m) is vertical and the edges
incident to vm at the outerface of Gk−1 are both horizontal-vertical combinations;
see Figure 6g. In this particular case, however, by IP-2 it follows that either the
north-west or the north-east port at v′m is free. Since both edges incident to vm at
the outerface of Gk−1 are bent, by IP-3 we can redraw (v′m,vm) so to be diagonal
and then we proceed similarly to the previous case; see Figure 6h. Note that this
is a local modification, which is not propagated any further. Also, observe that
the port assignment still conforms to IP-2–IP-5.

C.3.2: The edge incident to vm on the path vm  vr on the outerface of Gk−1 is
blue. In this case, vm cannot be incident to another red edge. In the case where
vm is of degree 3, we proceed similar to the case C.3.1, where vm was of degree 3.
So, we now focus on the case where vm is of degree 4. In this case, the fourth
edge attached to vm can be either green outgoing or blue incoming. In the former
case, this edge is a reference edge. In the latter case, it is part of a chain. In both
cases, however, this edge has a horizontal line-segment; see Figure 6i. Hence,
we can translate vm horizontally to the left so to eliminate the bend of the edge
incident to vm on the path v` vm; see Figure 6j. Clearly, all invariant properties
are fulfilled once vi is drawn.

Now, recall that in the case where the fourth edge attached to vm was green out-
going, we could guarantee horizontal stretchability, because this edge was a ref-
erence edge. This leaves one case that due to symmetry cannot be covered. More
precisely, when both edges incident to vm on the outerface of Gk−1 are green, the
north-west port at vr is occupied and the fourth edge attached to vm is blue, we
can no longer guarantee that the later edge is reference (see Figure 6k). Hence,
if both edges (vi,v`) and (vi,vr) are not reference (that is, bend-less), then we
need a different argument. Recall that both green edges that are incident to vm
on the outerface of Gk−1 are reference edges. Therefore, each one must have a
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bend. We horizontally stretch the drawing such that the length of the horizontal
line-segment of the green edge attached to the west port of vm is greater than the
vertical distance between v` and vm; see Figure 6l. This allows us to translate
vm diagonally-up, so to eliminate the diagonal line-segment of the green edge
incident to the west port of vm; see Figure 6m. So, IP-1 still holds.

Note that the coordinates of the newly introduced vertices are determined by the
shape of the edges connecting them to Gk−1. If there is not enough space between v`
and vr to accommodate the new vertices, IP-6 allows us to stretch the drawing horizon-
tally using the reference edge of the newly formed face.

To complete the description of our algorithm, it remains to cope with the last parti-
tion Pm = {vn} and describe how to draw the edge (v1,v2) of the first partition P0 of Π.
If vn is of degree 3, we cope with Pm as being an ordinary singleton. However, if vn is of
degree 4, then we momentarily ignore the edge (vn,v1) of Pm and proceed to draw the
remaining edges incident to vn, assuming that Pm is again an ordinary singleton. The
edge (vn,v1) can be drawn afterwards using two bends in total (see Figure 5h). Finally,
since by construction v1 and v2 are horizontally aligned, we can draw the edge (v1,v2)
with a single bend, emanating from the south-east port of v1 towards the south-west
port of v2.

Theorem 1 Let G be a triconnected planar graph of maximum degree 4 with n vertices.
A planar octilinear drawing Γ(G) of G with at most n+ 5 bends can be computed in
O(n) time.

Proof: By IP-1, all bends of Γ(G) are in correspondence with the reference edges of
G, except for the bends of (v1,v2) and (vn,v1). Since the number of reference edges
is at most n+2 and the edges (v1,v2) and (vn,v1) require 3 additional bends, the total
number of bends of Γ(G) does not exceed n+5. The linear running time follows from
the observation that we can use the shifting method of Kant [14] to compute the actual
coordinates of the vertices of G (assuming the real RAM model of computation). This
is because in the canonical order the y-coordinates of the vertices that have been placed
at some particular step do not change in subsequent steps. The only exceptional case is
the one of two green edges incident to a singleton of degree 4 (discussed in case C.3.2).
Note however that this particular case does not influence the overall running time, since
it can occur at most once per vertex. A similar approach is also discussed in [2]. 2

2.2 Triconnected Planar Graphs of Maximum Degree 5
Our algorithm for triconnected planar graphs of maximum degree 5 is an extension of
the corresponding algorithm of Bekos et al. [2], which computes for a given tricon-
nected planar graph G of maximum degree 5 on n vertices a planar octilinear drawing
Γ(G) of G with at most one bend per edge. Since G cannot have more than 5n/2 edges,
it follows that the total number of bends of Γ(G) is at most 5n/2. However, before we
proceed with the description of our extension, we first provide some insights into this
algorithm, which is based on a canonical order Π of G. In this algorithm central are IP-
2 and IP-4 of the previous section and the so-called stretchability invariant, which is a
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simpler version of IP-3 of the previous section. More precisely, according to this invari-
ant, all edges on the outerface of the drawing constructed at some step of the canonical
order have a horizontal line-segment and therefore one can devise corresponding verti-
cal cuts to horizontally stretch the drawing. We claim that we can appropriately modify
this algorithm, so that all red edges of G are bend-less.

Since we seek to draw all red edges of G bend-less, our modification is limited to
singletons. So, let Pk = {vi} be a singleton of Π. The degree restriction implies that
vi has at most two incoming red edges (we also assume that Pk is not the last partition
of Π, that is k 6= m). We first consider the case where vi has exactly one incoming red
edge, say e = (v j,vi), with j < i. By construction, e must be attached to one of the
northern ports of v j (that is, north-west, north or north-east). On the other hand, e can
be attached to any of the southern ports of vi, as e is its only incoming red edge [2].
This guarantees that e can be drawn bend-less.

Consider now the more involved case, where vi has exactly two incoming red edges,
say e = (v j,vi) and e′ = (v j′ ,vi) and assume without loss of generality that v j is to the
left of v j′ in the drawing of Gk−1. We distinguish three cases based on the available
ports of v j:

C.1: The north-east port of v j is unoccupied: In this case, e emanates from the north-
east port of v j and leads to the south-west port of vi (recall that all southern ports
of singleton vi are dedicated for incoming red edges; in this case e and e′). If
the north-west or the north port of v j′ is unoccupied, then e′ can be easily drawn
bend-less. In the former case, e′ emanates from the north-west port of v j′ and
leads to the south-east port of vi. In the latter case, e′ emanates from the north
port of v j′ and leads to the south port of vi. Hence, the aforementioned port
assignment fully specifies the position of vi. It remains to consider the case, where
neither the north-west nor the north port of v j′ is unoccupied, that is, the north-
east port of v j′ is unoccupied. By our coloring scheme and IP-2, v j′ has already
two incoming green edges, say eg and e′g, and e′ is the last edge to be attached to
v j′ ; see Figure 7a. Therefore, there is no other (bend-less) red edge involved. We
proceed by shifting v j′ up in a way that makes all northern ports of v j′ unoccupied;
see Figure 7b. Note that we may have to use a second bend on the outgoing blue
edge of v j′ (in order to maintain the stretchability invariant), but on the other hand
we can eliminate one bend from the second green edge e′g; see Figure 7b. So, the
total number of bends remains unchanged. In addition, the endpoints of both eg
and e′g that are opposite to v j′ may have to be moved horizontally to allow eg and
e′g to be drawn planar, but by the stretchability invariant we are guaranteed that
this is always possible. Finally, the stretchability invariant is maintained, since
each edge besides the red ones contains a horizontal line-segment.

C.2: The north-east port of v j is occupied, while its north port is unoccupied: In this
case, e emanates from the north port of v j and leads to the south port of vi (that
is, vi and v j are vertically aligned). We now claim that the north-west port of v j′

is unoccupied. For the sake of contradiction, assume that the claim is not true.
By our coloring scheme, the edge attached to the north-west port of v j′ is green,
which implies that there must exist a path v j  v j′ at the outerface face of Gk−1
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Gk−1

vj′

vi

(a)

vi

Gk−1

vj′

(b)

Figure 7: (a) e′ = (v j′ ,vi) cannot be drawn bend-less. (b) Shifting v j′ up resolves the problem.

whose first edge is blue at the north-east port of v j and its last edge is green at the
north-west port of v j′ . So, path v j  v j′ has a vertex which has a neighbor in Pκ

for some κ ≥ k. Since vi is the only such candidate, the contradiction follows from
the degree of vi. Hence, the north-west port of v j′ is unoccupied and therefore we
can draw e′ without bends by using the south-east port of vi and the north-west
port of v j′ , as desired.

C.3: Only the north-west port of v j is unoccupied: We can reduce this case to case C.1
by applying an operation symmetric to the one of Figure 7a on vertex v j. This will
result in a configuration where all northern ports of v j (including the north-east)
are unoccupied.

Theorem 2 Let G be a triconnected planar graph of maximum degree 5 with n vertices.
A planar octilinear drawing Γ(G) of G with at most 2n−2 bends can be computed in
O(n) time.

Proof: From our extension, it follows that the only edges of Γ(G) that have a bend are
the blue and the green ones and possibly the third incoming red edge of vertex vn of
the last partition Pm of Π. Now, recall that the blue subgraph is a spanning tree of G,
while the green one is a forest on the vertices of G. So, in the worst case the green
subgraph is a tree on n− 1 vertices of G (by construction the green subgraph cannot
be incident to the first vertex v1 of Π). Therefore, at most 2n−2 edges of Γ(G) have a
bend. In addition, the running time remains linear since the shifting technique can still
be applied (again we assume the real RAM model of computation). This is because
once a vertex has been placed its y-coordinate does not change anymore, except for the
special case of two red edges (cases C.1 and C.3), which does not influence the overall
running time, since it can occur at most once per vertex. 2

2.3 Triconnected Planar Graphs of Maximum Degree 6
In this section, we present an algorithm that based on a canonical order Π of a given
triconnected planar graph G = (V,E) of maximum degree 6 results in a drawing Γ(G)
of G, in which each edge has at most two bends. Hence, in total Γ(G) has at most
6n−12 bends. Then, we show how one can appropriately adjust the produced drawing
to reduce the total number of bends.

Algorithm 1 describes rules R1 - R6 to assign the edges to the ports of the corre-
sponding vertices. It is not difficult to see that all port combinations implied by these
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Algorithm 1: PortAssignment(v)
input : A vertex v of a triconnected planar graph of maximum degree 6.
output: The port assignment of the edges around v, according to the following

rules.

R1: The incoming blue edges of v occupy consecutive ports in counterclockwise
order around v starting from:

a. the south-east port of v, if indegb(v)+outdegr(v) = 5; see Figure 8a.

b. the east port of v, if indegb(v)+outdegr(v) = 4; see Figure 8b.

c. the east port of v, if outdegg(v) = 0 and (a),(b) do not hold; see Figure 8c.

d. the north-east port of v, otherwise; see Figure 8d.

R2: The outgoing red edge occupies the counterclockwise next unoccupied port,
if v has at least one incoming blue edge. Otherwise, the north-east port of v.

R3: The incoming green edges of v occupy consecutive ports in clockwise order
around v starting from:

a. the west port of v, if indegg(v)+outdegr(v)+ indegb(v)≥ 4; see Figure 8e.

b. the north-west port of v, otherwise; see Figure 8f.

R4: The outgoing blue edge of v occupies the west port of v, if it is unoccupied;
otherwise, the south-west port of v.

R5: The outgoing green edge of v occupies the east port of v, if it is unoccupied;
otherwise, the south-east port of v.

R6: The incoming red edges of v occupy consecutively in counterclockwise
direction the south-west, south and south-east ports of v starting from the first
available.
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(a) (b)

7

(c) (d) (e) (f)

(g) (h) (i) (j) (k)

Figure 8: (a)-(f) Illustration of the port assignment computed by Algorithm 1. (g)-(k) Different
line-segment combinations with at most two bends (the horizontal ones are drawn dotted)

rules can be realized with at most two bends per edge, so that all edges have a horizon-
tal line-segment, which makes the drawing horizontally stretchable. This also fixes the
shape of each edge.

(i) A blue edge emanates from the west or south-west port of a vertex (by rule R4)
and leads to one of the south-east, east, north-east, north or north-west ports of
its other endvertex (by rule R1); see Figure 8g and 8h,

(ii) A green edge emanates from the east or south-east port of a vertex (by rule R5)
and leads to one of the west, north-west, north or north-east ports of its other
endvertex (by rule R3); see Figure 8i and 8j,

(iii) A red edge emanates from one of the north-west, north, north-east ports of a
vertex (by rule R2) and leads to one of the south-west, south, south-east ports of
its other endvertex (by rule R6); see Figure 8k.

To compute the actual drawing Γ(G) of G, we follow an incremental approach ac-
cording to which one partition (that is, a singleton or a chain) of Π is placed at a time,
similar to Kant’s approach [13] and the corresponding cases of planar graph of max-
imum degree 4 and 5. Each edge is drawn based on its shape, while the horizontal
stretchability ensures that potential crossings can always be eliminated. Note addi-
tionally that we adopt the leftist canonical order [1], according to which the leftmost
partition is chosen to be placed, when there exist two or more candidates. Since each
edge has at most two bends, Γ(G) has at most 6n−12 bends in total.

In the following, we reduce the total number of bends. This is done in two steps.
In the first step, we observe that there is no reason to draw the red edges with two
bends each; we draw all red edges with at most one bend each. To see this, recall that
a red edge emanates from one of the north-west, north, north-east ports of a vertex
and leads to one of the south-west, south, south-east ports of its other-endvertex. So,
in order to prove that all red edges can be drawn with at most one bend each, we
consider in total nine cases, which are illustrated in Figure 9. It is not difficult to
see that in each of these cases, the red edge can be drawn with at most one bend.
Note that the absence of horizontal line-segments at the red edges does not affect the
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Figure 9: Red edges can be redrawn with one bend (in boxes we show their initial 2-bends
shapes)

stretchability of Γ(G), since each face of Γ(G) has at most two such edges (which
both “point upward” at a common vertex). Since a red edge cannot be incident to the
outerface of any intermediate drawing constructed during the incremental construction
of Γ(G), it follows that it is always possible to use only horizontal line-segments (of
blue and green edges) to define vertical cuts, thus, avoiding all red edges.

The second step of our bend reduction is more involved. Our claim is that we
can “save” two bends per vertex1, which yields a reduction by roughly 2n bends in
total. To prove the claim, consider an arbitrary vertex u ∈V . Our goal is to prove that
there always exist two edges incident to u, which can be drawn with only one bend
each. By rules R3 and R4, it follows that the west port of vertex u is always occupied,
either by an incoming green edge (by rule R3) or by a blue outgoing edge (by rule R4;
u 6= v1 ∈ P0). Analogously, the east port of vertex u is always occupied, either by a blue
incoming edge (by rules R1 and R2) or by an outgoing green edge (by rule R5). Let
(u,v) ∈ E be the edge attached to the west port of u (symmetrically we cope with the
edge that is attached to the east port of u). If edge (u,v) is attached to a non-horizontal
port at v, then (u,v) is by construction drawn with one bend (regardless of its color; see
Figures 8g and 8i) and our claim follows.

It remains to consider the case where edge (u,v) is attached to a horizontal port at v.
Assume first that edge (u,v) is blue (we will discuss the case where edge (u,v) is green
later). By Algorithm 1, it follows that edge (u,v) is either the first blue incoming edge
attached to v (by rules R1b and R1c) or the second one (by rule R1a). We consider each
of these cases separately. In rule R1c, observe that edge (u,v) is part of a chain (be-
cause outdegg(u) = 0). Hence, when placing this chain in the canonical order, we will
place u directly to the right of v. This implies that (u,v) will be drawn as a horizontal
line-segment (that is, bend-less). Similarly, we cope with rule R1b, when additionally
outdegg(u) = 0. So, there are still two cases to consider: rule R1a and rule R1b, when
additionally outdegg(u) = 1; see the left part of Figure 10. In both cases, the current
degree of vertex u is 3 and vertex v (and other vertices that are potentially horizontally-
aligned with v) must be shifted diagonally up, when u is placed based on the canonical
order, such that (u,v) is drawn as a horizontal line-segment (that is, bend-less; see the

1Except for vertex v1 of the first partition P0 of Π, which has no outgoing blue edge.
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u

v

uv

Figure 10: Aligning vertices u and v.

right part of Figure 10). Note that when v is shifted up, vertex v and all vertices that
are potentially horizontally-aligned with v are also of degree 3, since otherwise one of
these vertices would not have a neighbor in some later partition of Π, which contradicts
the definition of Π.

We complete our case analysis with the case where edge (u,v) is green. By rule
R3a, it follows that (u,v) is the first green incoming edge attached to u. In addition,
when (u,v) is placed based on the canonical order, there is no red outgoing edge at-
tached to u (otherwise u would not be at the outerface of the drawing constructed so
far). The leftist canonical order also ensures that there is no blue incoming edge at u
drawn before (u,v). Hence, vertex u is of degree 2, when edge (u,v) is placed. Hence,
it can be shifted up (potentially with other vertices that are horizontally-aligned with
u), such that (u,v) is drawn as a horizontal line-segment (that is, bend-less). We sum-
marize our approach in the following theorem.

Theorem 3 Let G be a triconnected planar graph of maximum degree 6 with n vertices.
A planar octilinear drawing Γ(G) of G with at most 3n−8 bends can be computed in
O(n2) time.

Proof: Before the two bend-reduction steps, Γ(G) contains at most 6n−12 bends. In
the first reduction step, all red edges are drawn with one bend. Hence, Γ(G) contains
at most 5n− 9 bends. In the second reduction step, we “save” two bends per vertex
(except for v1 ∈ P0, which has no outgoing blue edge), which yields a reduction by
2n−1 bends. Therefore, Γ(G) contains at most 3n−8 bends in total. On the negative
side, we cannot keep the running time of our algorithm linear. The reason is the second
reduction step, which yields changes in the y-coordinates of the vertices. In the worst
case, however, quadratic time suffices (under the real RAM model of computation). 2

Note that there exist planar graphs of maximum degree 6 that do not admit planar
octilinear drawings with at most one bend per edge [2]. Theorem 3 implies that on
average one bend per edge suffices.

3 Lower Bounds

In this section, we present lower bounds on the total number of bends for the classes of
triconected planar graphs of maximum degree 4, 5 and 6, assuming a fixed outerface in
their planar embeddings.
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(a) Maximum degree 4. (b) Maximum degree 5. (c) Maximum degree 6.

Figure 11: Planar graphs of different degrees that require (a) n/3−1, (b) 2n/3−2 and (c) 4n/3−
6 bends, when drawn in the octilinear model.

3.1 Triconected Planar Graphs of Maximum Degree 4
We start our study with the case of octilinear drawings of planar graphs of maximum
degree 4. Our main observation is that if a 3-cycle C3 of a graph has at least two
vertices, each of which has at least one neighbor in the interior of C3, then at least one
edge of C3 must contain a bend. This is because the sum of the interior angles at the
corners of C3 exceeds 180◦. In fact, elementary geometry implies that a k-cycle, say
Ck with k ≥ 3, whose vertices have σ ≥ 0 neighbors in the interior of Ck requires (at
least) max{0,d(σ −3k+8)/3e} bends. Therefore, a bend is necessary. Now, refer to
the planar graph of Figure 11a, which clearly has maximum degree 4 as it contains n/3
nested triangles, where n is the number of its vertices. It follows that this particular
graph requires at least n/3−1 bends in total.

3.2 Triconected Planar Graphs of Maximum Degree 5 and 6
For planar graphs of maximum degree 5 and 6, our proof becomes more complex and
it is actually based on an ILP formulation and a corresponding output obtained by a
solver. Our approach is inspired by Tamassia’s min-cost flow formulation [20] for com-
puting bend-minimum representations of embedded planar graphs of bounded degree.
Since it is rather difficult to implement this algorithm in the case where the underly-
ing drawing model is not the orthogonal model, we developed an ILP instead (refer to
Algorithm 2). Recall that a representation describes the “shape” of a drawing without
specifying its exact geometry. This is enough to determine a lower bound on the num-
ber of bends, even if a bend-optimal octilinear representation may not be realizable by
a corresponding (planar) octilinear drawing.

In our formulation, variable α(u,v) · 45◦ corresponds to the angle formed at ver-
tex u by edge (u,v) and its cyclic predecessor around vertex u. Hence, the following
inequalities must hold:

1≤ α(u,v)≤ 8

Since the sum of the angles around a vertex is 360◦, it follows that the correspond-
ing sum of the α-variables must be equal to 8, or equivalently:
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∑
v∈N(u)

α(u,v) = 8

Given an edge e = (u,v), variables `45(u,v), `90(u,v) and `135(u,v) correspond to
the number of left turns at 45◦, 90◦ and 135◦ when moving along (u,v) from vertex u
towards vertex v. Similarly, variables r45(u,v), r90(u,v) and r135(u,v) are defined for
right turns. All aforementioned variables are integers lower-bounded by zero. For a
face f , we assume that its edges are directed according to the clockwise traversal of f .
This implies that each (undirected) edge of the graph appears twice in our formulation.
For reasons of symmetry, we require:

`45(u,v) = r45(v,u)

`90(u,v) = r90(v,u)

`135(u,v) = r135(v,u)

Since the sum of the angles formed at the vertices and at the bends of a bounded
face f equals to 180◦ · (p( f )−2), where p( f ) denotes the total number of such angles,
it follows that:

∑(u,v)∈E( f ) α(u,v)+ (`45(u,v)+2`90(u,v)+3`135(u,v))

− (r45(u,v)+2r90(u,v)+3r135(u,v)) = 4a( f )−8,

where a( f ) denotes the total number of vertex angles in f , and, E( f ) the directed arcs
of f in its clockwise traversal. If f is unbounded, the respective sum is increased by 16.
Of course, the objective is to minimize the total number of bends over all edges, or:

min∑(u,v)∈E `45(u,v)+ `90(u,v)+ `135(u,v)+ r45(u,v)+ r90(u,v)+ r135(u,v)

Now, consider the planar graph of Figure 11b (which clearly has maximum de-
gree 5) and observe that each “layer” of this graph consist of six vertices that form an
octahedron (solid-drawn), while octahedrons of consecutive layers are connected with
three edges (dotted-drawn). Using our ILP formulation, we proved that each octahe-
dron subgraph requires at least 4 bends, when drawn in the octilinear model (except
for the innermost one for which we could guarantee only two bends). Note that in or-
der to prove so, we had to appropriately lower-bound the gray-colored angles of each
octahedron, as we know that there exist edges to be attached in between. This implies
that 2n/3− 2 bends are required in total to draw the graph of Figure 11b. For the
case of planar graphs of maximum degree 6, we applied our ILP approach to a similar
graph consisting of nested octahedrons that are connected by six edges each; see Fig-
ure 11c. This led to a lower bound of 4n/3− 6 bends, as each octahedron except for
the innermost one required 8 bends. Summarizing we obtain the following theorem.

Theorem 4 There exists a class Gn,k of triconnected embedded planar graphs of max-
imum degree k, with 4≤ k ≤ 6, whose octilinear drawings require at least: (i) n/3−1
bends, if k = 4, (ii) 2n/3−2 bends, if k = 5 and (iii) 4n/3−6 bends, if k = 6.
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Algorithm 2: ILP to compute bend-optimal octilinear representations.
Input : A planar embedded graph G = (V,E) with maximum degree 8.
Output: A bend-optimal octilinear representation of G.

min ∑(u,v)∈E `45(u,v)+ `90(u,v)+ `135(u,v)+ r45(u,v)+ r90(u,v)+ r135(u,v)

s.t:

1≤ a(u,v) ≤ 8, ∀(u,v) ∈ E
∑v∈N(u) a(u,v) = 8, ∀u ∈V

`45(u,v) = r45(v,u), ∀(u,v) ∈ E
`90(u,v) = r90(v,u), ∀(u,v) ∈ E
`135(u,v) = r135(v,u), ∀(u,v) ∈ E

∑(u,v)∈E( f ) α(u,v)+(`45(u,v)+2`90(u,v)+3`135(u,v))
−(r45(u,v)+2r90(u,v)+3r135(u,v)) = 4a( f )−8,∀ f ∈ F

4 Conclusions
In this paper, we studied bounds on the total number of bends of octilinear drawings of
triconnected planar graphs. We showed how one can adjust an algorithm of Keszegh
et al. [15] to derive an upper bound of 4n− 10 bends for general planar graphs of
maximum degree 8. Then, we adjusted this general bound and previously-known ones
for the classes of triconnected planar graphs of maximum degree 4, 5 and 6. For these
classes of graphs, we also presented corresponding (but not matching) lower bounds.

We mention two major open problems in this context. The first one is to extend
our results to biconnected and simply connected graphs and to further tighten the
bounds. Since our drawing algorithms might require super-polynomial area (cf. ar-
guments from [2]), the second problem is to study trade-offs between the total number
of bends and the required area.
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