
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 21, no. 4, pp. 687–708 (2017)
DOI: 10.7155/jgaa.00435

Egalitarian Graph Orientations

Glencora Borradaile 1 Jennifer Iglesias 1 Theresa Migler 1 Antonio

Ochoa 1 Gordon Wilfong 2 Lisa Zhang 2

1Oregon State University, Corvallis, OR
2Nokia Bell Labs, Murray Hill, NJ

Abstract

Given an undirected graph, one can assign directions to each of the
edges of the graph, thus orienting the graph. To be as egalitarian as pos-
sible, one may wish to find an orientation such that no vertex is unfairly
hit with too many arcs directed into it. We discuss how this objective
arises in problems resulting from telecommunications. We give optimal,
polynomial-time algorithms for: finding an orientation that minimizes the
lexicographic order of the indegrees and finding a strongly-connected ori-
entation that minimizes the maximum indegree. We show that minimiz-
ing the lexicographic order of the indegrees is NP-hard when the resulting
orientation is required to be acyclic.
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1 Introduction

We consider problems of orienting the edges of an undirected graph so that no
vertex is unfairly hit with too many arcs directed into it. We refer to such
orientations as egalitarian: the total available indegree is shared among the
vertices as equally as allowed by the topology of the graph. This objective
arises in various telecommunications problems. Depending on the requirements
of the problem, the orientation may be unconstrained or need to be strongly
connected or acyclic. We start by describing these motivating applications and
related work.

Unconstrained orientations Venkateswaran introduced the problem of di-
recting the edges of an undirected graph so as to minimize the maximum inde-
gree [19]. The problem arises from a telecommunications network design prob-
lem in which source-sink pairs (si, ti) are linked by a directed si-to-ti path ci
(called a circuit). When an edge of the network fails, all circuits using that edge
fail and must be rerouted. For each failed circuit, the responsibility for finding
an alternate path is assigned to either the source or sink corresponding to that
circuit. To limit the rerouting load of any vertex, it is desirable to minimize the
maximum number of circuits for which any vertex is responsible.

Venkateswaran models this problem with an undirected graph whose vertices
are the sources and sinks and whose edges are the circuits. He assigns the
responsibility of a circuit’s potential failure by orienting the edge to either the
source or the sink of this circuit. Minimizing the maximum number of circuits for
which any vertex is responsible can thus be achieved by finding an orientation
that minimizes the maximum indegree of any vertex. Venkateswaran shows
how to find such an orientation [19]. Asahiro, Miyano, Ono, and Zenmyo give
a simpler analysis [5]. Asahiro et al show further that for any w ≥ dmaxdegree

2 e
the Path Reversal algorithm maximizes the number of vertices with indegree
at most w and consequently minimizes the number of vertices with indegree at
least w + 1 [3].

However, there may be multiple orientations that have the same minimized
maximum indegree. The orientation that has the minimum number of vertices
with maximum indegree is preferable since it minimizes the number of vertices
that have the maximum rerouting load. Among the orientations that minimize
the number of vertices with maximum indegree, the one that minimizes the
number of second largest indegree is preferable for the same reason of rerouting
load. Continuing this reasoning, we can formalize this notion in the following
way: given two orientations GA and GB , we prefer GA to GB if the sequence
of indegrees of GA (in non-increasing order) is lexicographically before the se-
quence of indegrees of GB (in non-increasing order). We refer to finding the
best orientation with respect to this measure as the minimum lexicographic ori-
entation. In Section 2.1, we show that a natural greedy algorithm finds the
minimum lexicographic orientation: start with an arbitrary orientation and re-
peatedly reverse the orientation of a directed path while doing so improves the
objective.
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Strongly-connected orientations Networks that are used to route messages
should, naturally, be strongly connected: one should be able to send a packet
along a directed path from any vertex to any other vertex. A destination-based
routing protocol chooses the next arc along which to send a message based only
on the destination of the message. Such a protocol can be implemented with an
interval routing scheme [16]. An interval routing scheme for a directed graph is
defined by a cyclic numbering of the vertices and a labeling of each arc with an
interval of the vertex numbers. (More generally, each edge can be labelled with
multiple intervals. We will show that one interval is sufficient and therefore the
best possible.) For each vertex u, the disjoint union of the intervals labeling the
outgoing arcs from u cover all but u’s vertex numbers. When a packet destined
for vertex v reaches a vertex u 6= v it is forwarded from u along the outgoing arc
from u whose label contains the interval containing v’s number. Such a scheme,
in order to be feasible, must be such that a packet originating at any vertex
destined for any other vertex will reach the destination vertex when routing is
done as described above.

In Section 3, we show that for any strongly connected graph there is an
interval routing scheme such that each outgoing arc is labelled with at most
one interval. This is the most compact routing scheme possible and allows
the routing decision at a given vertex to be made in time proportional to the
outdegree of that vertex. Thus, to minimize the routing time at each vertex,
we would like to find a strongly-connected orientation of G, the underlying
physical network, which minimizes the maximum number of outgoing arcs from
any vertex. To keep the notation the same between sections of this paper, we
instead minimize the maximum indegree; this is equivalent by way of reversing
all the edges of the graph. We give an algorithm to find such an orientation
in Section 3.2. We conjecture that the natural generalization of this algorithm
also finds the minimum lexicographic order of the indegrees of the graph.

Santoro and Khatib introduced interval routing [18], and Van Leeuwen and
Tan extended the idea [16]. Since then, there has been a large body of work
on the topic. For a comprehensive survey, please see [13]. This survey presents
various algorithms for the problems, depending on whether linear or cyclic in-
tervals are used, how well the algorithms approximate shortest path routing
and the level of compactness which is the maximum number of intervals on an
edge. The work discussed in the survey focuses on undirected graphs, and as
far as we know our work on directed graphs is new. Unfortunately, in the case
we consider, the paths produced by interval routing can be a factor of n longer
than the shortest paths in general directed graphs such as a ring with n vertices.

Acyclic orientations Consider a packet network with input buffers. A vertex
can forward a packet from its input buffer to the next-hop (the next vertex in
the packet’s route) if the input buffer of the next-hop is not already full. Such
networks can suffer from deadlock. For example, consider a ring network in
which all input buffers are full: no vertex can forward a packet to its next-hop
because the next-hop’s input buffer is full. If no packet is allowed to go along
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certain length-two paths then deadlock is prevented. In particular, Wittorff
shows how to find such a collection of forbidden length-two paths by orienting
the edges of the network so that the resulting graph is acyclic with a single source
and making every pair of edges oriented into the same vertex a forbidden length-
two path [22]. Then a path between every pair of vertices avoiding forbidden
paths can be found that avoids any transition from travelling along an arc to
travelling along the reverse of another arc (and hence avoids a pair of edges
that get directed into the same vertex). Minimizing the maximum indegree
minimizes the number of forbidden pairs at any vertex and hence minimizes the
number of routing constraints at any vertex.

In Section 4 we present a simple algorithm to find an acyclic orientation for
the objective of minimizing the maximum indegree. On the other hand, we also
show that minimizing the lexicographic order of the indegrees is NP-hard when
the resulting orientation must be acyclic.

1.1 Related work

Asahiro et al. consider the edge-weighted version of the unconstrained
problem [5]. They build on the work of Venkateswaran and give a 2 − 1/k-
approximation algorithm where k is the maximum weight of any edge in the
graph. They further show that the weighted version of the problem is strongly
NP-hard even if all edge weights belong to the set {1, k} where k ≥ 2 is an
integer [4]. Klostermeyer considers the problem of reorienting edges (rather
than whole paths) so as to create graphs with given properties, such as strongly
connected graphs and acyclic graphs [15]. De Fraysseix and de Mendez show
that they can find an indegree assignment of the vertices given a particular
property [11]. In our work we are searching for a particular degree assignment
not known a priori.

Biedl, Chan, Ganjali, Hajiaghayi, and Wood give a 13
8 -approximation algo-

rithm for finding an ordering of the vertices such that for each vertex v, the
neighbors of v are as evenly distributed to the right and left of v as possible [6].
For the purpose of a deadlock prevention problem described by Wimmer in [21],
Wittorff describes a heuristic for finding an acyclic orientation that minimizes
the sum over all vertices of the function δ(v) choose 2, where δ(v) is the indegree
of vertex v [22].

1.2 Notation

We use basic notation for graph theoretic concepts for graphs G = (V,E) with
n vertices and m edges. A directed edge or arc, a, is oriented from the vertex
tail(a) to the vertex head(a). For a directed graph, the indegree of a vertex
v, denoted δ(v), is the number of arcs for which v is the head. We may use a
subscript to denote the graph with respect to which we measure the degree. A
directed path is a sequence of arcs a1, a2, . . . , ak with head(ai) = tail(ai+1) for
1 ≤ i < k. We add trivial paths to this definition which are identified by a
single vertex. A cycle is a path such that head(ak) = tail(a1). An orientation of
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an undirected graph is an assignment of directions to each edge in the graph. A
directed graph is strongly connected if for every pair of vertices, u, v ∈ V , there
are directed paths from u to v and from v to u. A directed graph is acyclic if
there are no directed cycles in the graph. For a subset of vertices X, G[X] is
the subgraph induced by X and m(X) is the number of edges in G[X].

2 Unconstrained orientations

We will show that a simple, greedy algorithm, first given by de Fraysseix and
de Mendez [11], finds an orientation of an undirected graph that minimizes the
lexicographic order of the indegrees. We say that a directed path from u to v is
reversible if δ(u) < δ(v)− 1. The greedy algorithm, given an undirected graph,
is:

Path-Reversal
arbitrarily orient every edge
while there is a reversible path

let P be any reversible path whose last vertex is of highest indegree
reverse the orientation of each arc of P

This algorithm can be implemented in quadratic time by arguing that the
algorithm proceeds in k phases where k is the maximum indegree in the initial
orientation (below). Therefore, there are at most m iterations of the algorithm
and each iteration can be implemented in linear time using, for example, depth-
first search.

Consider any integer ` ≤ k. Consider an iteration in which we reverse a
u-to-v path where δ(v) = `. Let Q be the set of vertices of indegree > ` just
before this reversal and let Q′ be the set of vertices that have paths to a vertex
in Q. (Note: Q ⊆ Q′.) By definition neither u nor v is in Q′, for otherwise,
we would reverse a path ending in a vertex of indegree > `. Further, after this
reversal, Q is still the set of vertices of indegree > ` and Q′ is still the set of
vertices that have paths to a vertex in Q. It follows that there is a well-defined
phase `, a contiguous subset of iterations that reverse paths ending in vertices of
indegree `: after reversing a path ending in a vertex of indegree `, the algorithm
does not reverse a path ending in a vertex of higher indegree.

2.1 Minimizing the lexicographic order

Path-Reversal finds an orientation that minimizes the maximum indegree.
This observation was made by Venkateswaran with a rather involved proof [19];
a simpler analysis was given by Asahiro et al. [5]. This observation is also
implied by de Fraysseix and de Mendez, Lemma 1 [11].

Path-Reversal is more powerful than simply minimizing the maximum
indegree. We show that the resulting orientation, in fact, minimizes the lexico-
graphic order of the indegrees.
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We define a cycle reversal to be the reversal of every edge in a cycle. Notice
that performing a cycle reversal will not change the number of vertices of any
particular indegree.

Lemma 1 Let O1 and O2 be orientations such that δO1
(v) = δO2

(v) for all v.
Then O1 can be transformed into O2 by a sequence of cycle reversals.

Proof: Let ER be the set of arcs in O1 that have an opposite orientation in O2.
Notice that for all vertices v in the graph induced by ER, the indegree of v equals
the outdegree of v. For otherwise, there is some v such that δO1

(v) 6= δO2
(v).

It follows that each connected component of the graph induced by these edges
has an Euler tour [14]. Reversing these tours gives the lemma. 2

We define a weak reversal to be the reversal of a path from a vertex u to a
vertex v where δ(u) = δ(v)− 1. Notice that performing a weak reversal will not
change the number of vertices of any particular indegree.

Theorem 1 Any orientation that minimizes the lexicographic order of the in-
degrees of the vertices can be transformed into an orientation induced by Path-
Reversal via a sequence of weak reversals or cycle reversals.

Proof: Let Dlex denote an orientation that minimizes the lexicographic order
of the indegrees of the vertices, and let DPR denote an orientation given by
Path-Reversal. Let δlex(v) and δPR(v) be the indegree of a vertex v in Dlex

and DPR respectively.
We will use induction on S :=

∑
v∈V |δlex(v) − δPR(v)|. If |S| = 0 then by

Lemma 1, the theorem holds. Now suppose that S > 0. Let S6= = {v : δlex(v) 6=
δPR(v)}. Let v be a vertex in S6= that maximizes δlex(v) and if there is a choice
among many such vertices, then maximizes δPR(v). Then we have the following
two cases:

1. δlex(v) > δPR(v). Let U be the set of all vertices that can reach v in Dlex.
Notice that

∑
u∈U

δlex(u) ≤
∑
u∈U

δPR(u) (1)

This is because
∑

u∈U δlex(u) is the number of edges in G[U ],∑
u∈U δPR(u) also includes the indegree from edges in U and may addi-

tionally include the indegree from edges directed into U . δlex(v) > δPR(v)
and v ∈ U , so there must be some u ∈ U with δlex(u) < δPR(u).
Because we chose v to maximize δlex(v), δlex(u) ≤ δlex(v). Fur-
thermore, δlex(u) 6= δlex(v) because if δlex(u) = δlex(v) then
δPR(u) > δlex(u) = δlex(v) > δPR(v), but we chose v to maxi-
mize δPR(v). Therefore δlex(u) < δlex(v). It is not possible for
δlex(u) < δlex(v) − 1 for otherwise reversing a u to v path would give
an orientation with a smaller lexicographic order than Dlex. Therefore
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we have that δlex(u) = δlex(v) − 1 and there is a weakly reversible path
from u to v in the directed graph defined by Dlex. Reversing this path
decreases S by 2.

2. δlex(v) < δPR(v). Let U be the set of vertices that reach v in DPR.
Notice that

∑
u∈U δlex(u) ≥

∑
u∈U δPR(u). δlex(v) < δPR(v) and v ∈ U ,

so there must be some u ∈ U with δlex(u) > δPR(u). We chose v to
be a vertex that maximizes δlex(v), so δlex(u) ≤ δlex(v). So we have
δPR(u) < δlex(u) ≤ δlex(v) < δPR(v). This means that there is a reversible
path from u to v, a contradiction because DPR has no reversible paths.

2

Corollary 2 The algorithm Path-Reversal finds an orientation that mini-
mizes the lexicographic order of the indegrees.

Remarks Let us revisit the motivating problem of failure recovery in network
design, for which a failed circuit notifies either its source vertex or its sink vertex.
We argued that minimizing the maximum indegree or the lexicographic order
of the indegrees minimizes effort in failure recovery. We could also measure
the recovery effort per vertex as a function f(·) of the number of circuits this
vertex is responsible for. The total effort for error recovery is then

∑
v f(δ(v)).

The shape of f(·), convex or concave or other more complex nature, can be
debated. However, if f(·) is increasing and strictly convex, we remark that
the algorithm Path-Reversal as we have seen also minimizes the total effort.
Asahiro et al. [2] present a network flow algorithm that also gives an orientation
that minimizes

∑
v f(δ+(v)) where δ+(v) denotes the outdegree of a vertex v

when f is convex.

Theorem 3 The algorithm Path-Reversal finds an orientation G that min-
imizes F (G) =

∑
v f(δG(v)) for any increasing and strictly convex function f .

Proof: Let αi(G) denote the number of vertices of indegree i in G. We rewrite
the objective to be F (G) =

∑
i αi(G) · f(i).

Let Ga be an orientation of the graph that minimizes the given objective.
Let Gb be the result of the algorithm Path-Reversal using Ga as the ini-
tial orientation. By Theorem 2, Gb minimizes the lexicographic order of the
indegrees. Since the non-increasing sequence of indegrees that corresponds to
such an orientation is unique, it follows that any orientation Gc that minimizes
the lexicographic order of the indegrees satisfies αi(Gc) = αi(Gb) for all i. It
further follows that all orientations that minimize the lexicographic order of the
indegrees achieve the same objective: F (Gc) = F (Gb).

Suppose for a contradiction to the theorem that the degree distributions of
Gb and Ga differ. Therefore, the algorithm Path-Reversal performs at least
one path reversal. Let G1 be the graph obtained from Ga after reversing one
path, say from a vertex u to a vertex v.
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We compare F (Ga) to F (G1). Let δGa(u) = k and δGa(v) = `. Since this
path from u to v was a reversible path in Ga, k < ` − 1. By the path reversal
operation, we get δG1

(u) = k + 1 and δG1
(v) = `− 1. Then:

F (Ga)− F (G1) =
∑
x

f(δGa(x))−
∑
x

f(δG1(x))

= f(δGa
(v))− f(δG1

(v)) + f(δGa
(u))− f(δG1

(u))

= f(`)− f(`− 1)︸ ︷︷ ︸
A

− (f(k + 1)− f(k))︸ ︷︷ ︸
B

Since k < `− 1 and f is increasing and strictly convex, term A is greater than
term B, and so the above difference is positive. It follows that F (Ga) > F (G1),
contradicting the fact that Ga minimizes the objective F (G). Therefore, Ga

and G1 must have the same degree distribution. 2

3 Strongly connected orientations

In this section we will show how to find a strongly-connected orientation that
minimizes the maximum indegree (Section 3.2). We argue that this would enable
an interval routing scheme (as described in the introduction) with minimum
table sizes (Section 3.1). A routing table for a vertex v assigns intervals to each
outgoing arc that encodes how a message should leave v. The size of a table for
a given vertex v is the number of intervals summed over all outgoing arcs from
v. Our routing scheme assigns exactly one interval to each arc (Theorem 5),
therefore finding a strongly connected orientation of an undirected graph that
minimizes the maximum outdegree of the vertices enables interval routing with
minimum table sizes. Note that we can minimize the maximum outdegree by
taking the reverse of an orientation that minimizes the maximum indegree. (Our
orientation minimizes indegree rather than outdegree directly in keeping with
the notation of the rest of this paper and the literature on such orientation
problems.)

The construction in Figure 1 demonstrates that the maximum outdegree
can be reduced significantly while keeping the orientation strongly connected,
illustrating that minimizing the maximum outdegree can change the size of
routing tables significantly.

3.1 Minimum routing tables for strongly connected
graphs

It is well known, as a generalization of Whitney’s characterizations of 2-edge
connected, undirected graphs [20] and Robbins’ correspondence between strong
connectivity and 2-edge connectivity [17], that a directed graph is strongly con-
nected if and only if it has an ear-decomposition. An ear decomposition of a
directed graph is a partition of the edges into a simple directed cycle P0 and
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(a) (b)u u

Figure 1: Gk, k > 0, is a family of graphs composed of a perfect binary tree
Tk with k + 1 levels of vertices plus an additional vertex u that is connected
to the root and every leaf of Tk. Consider two strongly connected orientations
of Gk (illustrated for k = 3): (a) Edges of Tk are oriented from leaf-to-root.
Edges are oriented from the root of Tk to u and from u to the leaves of Tk. In
this orientation, every vertex has outdegree 1 except for u which has outdegree
2k, the number of leaves in Tk. (b) Edges of Tk are oriented from root-to-leaf.
Edges are oriented from u to the root of Tk and from the leaves of Tk to u. In
this orientation, the leaves of Tk and u have outdegree 1 and every other vertex
has outdegree 2.

simple directed paths (or cycles) P1, . . . , Pk such that for each i > 0, the inter-
section of Pi with ∪j<iPj are the endpoints of Pi (which may be coincident if
Pi is a cycle). Each Pi is called an ear.

An ear decomposition can be found in linear time [7]. Given an ear decom-
position of a strongly-connected graph, we can define the routing tables using
the procedure Routing below. We will define a cyclic ordering L of the ver-
tices. For each arc uv, we will define an interval [a, b], a, b ∈ L. Recall from
the introduction that this information can be used for routing: a message at
a vertex u with destination d will be forwarded along uv if d is in [a, b], that
is if d is (inclusively) between a and b in the cyclic ordering L. We say that
such a labeling is feasible if it allows a message to be routed between any pair
of vertices.

We assume, without loss of generality, that each ear in the ear decomposition
contains at least two edges: a single-edge ear could be removed while maintain-
ing strong connectivity and so will not be required for routing. We denote the
number of edges in P by |P |. See Figure 2 for a demonstration of this procedure.
It is convenient to use both open and closed endpoints for intervals of L. For
example, (a, b] contains all the vertices that are strictly after a and before (or
equal to) b in the ordering. We use (a, a) to represent all the vertices in the
cyclic ordering except a. Further, for the purposes of analysis, it is convenient
to think of the intervals as being continuous.

Routing (ear decomposition P0, P1, . . . , Pk)
Initialize L to contain all the vertices of P0 in their order around P0.
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Assign each arc ab of P0 the interval (a, a).
For i = 1, . . . , k:

Let v1 be the first vertex of Pi.
Let v2, . . . , vp be the second through penultimate vertices of Pi.
Insert v2, . . . , vp into L after v1.
For j = 2, . . . , p:

Assign the arc leaving vj the interval (vj , vj).
Let v1u be the arc leaving v1 that is assigned an interval (v1, a).
Let b be the vertex after vp in the cyclic ordering L.
Reassign v1u the interval [b, a).
Assign the arc v1v2 the interval (v1, b).

G

C

B

A H
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E
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G

C

B

A H

D

E

F

(D,D)

(E,E)
(A,A)
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[E,D)
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(B,B)
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(F,F)

(G,G)

(H,H)

(D,E)

5

2

1

0 6

3

7

4

[7,2]

[0,6]
[1,7]

[2,0]

[3,1]

[5,3]

[6,4]

[7,5]

[4,6]

Figure 2: Top left: Input strongly connected component with symbolic vertex
labels and two ears, P0 = A,B,C,D,E and P1 = D,F,G,H,A. Top right: Arc
labeling of P0 with cyclic ordering L = {A,B,C,D,E}; (C,C) indicates the
range of L strictly after C and strictly before C (namely, D,E,A,B). Bottom
left: Arc labeling of P1, update of the label for the arc(s) (DE) leaving the
first vertex of P1 (D), and inserting the internal vertices F,G,H of P1 into
the cyclic ordering before the last vertex of P1; L = {A,B,C,D, F,G,H,E};
[E,D) indicates the range of L after and including E and strictly before D
(namely, E,A,B,C). Bottom right: conversion to a numerical scheme with
closed (cyclic) intervals by mapping the ith element of L to the number i.

The following invariant, among other things, shows that the arc v1u exists
and is unique.

Invariant 4 At any stage in the algorithm, the intervals assigned to the arcs
leaving a vertex v are disjoint and form a partition of (v, v).
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Proof: When a vertex is first introduced and there is only one arc leaving it,
this invariant is true by construction.

If we assume for an induction that the invariant holds prior to the introduc-
tion of a new arc v1v2 leaving v1, then there must be exactly one arc whose
assigned interval starts with (v1,. In fact, since a closed endpoint of an interval
is never introduced, this arc must be assigned an interval of the form (v1, a) for
some a. Since, prior to the insertion of v2, . . . , vp into L, b is the vertex after
v1 in the cycle ordering, (v1, b) ⊆ (v1, a) for all a. Therefore after the insertion
of v2, . . . , vp into L between v1 and b we still have that (v1, b) ⊆ (v1, a). Since
(v1, b), [b, a) is a partition of (v1, a), the invariant holds. 2

Theorem 5 Routing produces a feasible interval routing scheme with each arc
having exactly one interval.

Proof: As mentioned above, for convenience of analysis, we view the intervals
as continuous. Let Hi = ∪j≤iPj and let Li be the cyclic ordering of the vertices
of Hi at the end of iteration i. For a vertex v ∈ Hi, let ni(v) be the vertex
immediately after v in Li. We prove the following statement by induction: for
v ∈ Hi, at the end of iteration i , a message with destination in the (continuous)
interval [v, ni(v)) will reach vertex v; that is, at the end of iteration i the intervals
provide a feasible routing scheme for Hi. This statement is true for the base
case which corresponds to the interval assignment for P0.

Consider the intervals defined at the end of iteration i. We show that these
allow a message with destination in the interval [y, ni(y)) starting at vertex x
will reach vertex y (for x 6= y). The non-trivial cases are Cases 2, 3 and 4.

1. x and y are internal vertices of Pi and y is after x along Pi:
For every vertex v in Pi, a message will get routed on the arc leaving
v unless it is destined for v since the interval assigned to the unique arc
leaving v contains everything except v.

2. x = v1 and y is an internal vertex of Pi:
The internal vertices of Pi are in the interval [v2, vp]. By construction and

definition of b, this is the same as the interval (v1, b) since b is the vertex
after vp in Li and v1 is the vertex before v2 in Li. So [y, ni(y)) ⊂ (v1, b)
and a message at v1 going to a destination in [y, ni(y)) gets routed along
the arc v1v2. Correctness follows from Case 1.

3. x ∈ Hi−1 \ v1 and y and internal vertex of Pi:
We argue that the message will reach v1. By definition b = ni−1(v1)

and by construction [y, ni(y)) ⊂ [v1, b) = [v1, ni−1(v1)). Since v1 ∈ Hi−1,
by the inductive hypothesis, a message with destination in the interval
[v1, ni−1(v1)) will reach v1; we are done by Case 2.

4. x = v1 and y ∈ Hi−1:
Note that ni−1(y) = ni(y). Since y 6= x and b = ni−1(x), y ∈ [b, v1).

Therefore [y, ni(y))∩ (v1, b) is empty and the message does not get routed
along v1v2. Therefore a message in [y, ni(y)) reaches y by the inductive
hypothesis.
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5. x, y ∈ Hi−1:
If a message in [y, ni(y)) reaches v1, then the message reaches y by

Case 4. If a message in [y, ni(y)) does not reach v1, then we are done by
the inductive hypothesis because ni−1(y) = ni(y).

6. x is an internal vertex of Pi and y ∈ Hi−1:
Note that ni−1(y) = ni(y). Since v /∈ [y, ni(y)) for any internal vertex v
of Pi, a message in [y, ni(y)) will reach Hi−1. Then by Case 5, a message
in [y, ni(y)) will reach y.

7. x and y are internal vertices of Pi and y is before x along Pi:
Since v /∈ [y, ni(y)) for any internal vertex v of Pi after x because x is
after y in Pi, a message in [y, ni(y)) will reach Hi−1. By Cases 2 and 3, a
message in [y, ni(y)) will reach y.

2

It is non-standard to use open intervals for such a scheme. Given the final
interval assignment and cyclic ordering, numbers can be assigned to the vertices
based on the cyclic ordering and the intervals can be closed in the natural way.

3.2 Strongly-connected orientations that minimize the
maximum indegree

We will show that a modified version of Path-Reversal finds a strongly-
connected orientation of an undirected graph that minimizes the maximum
indegree. In this section we will assume that the given directed graph has a
strongly-connected orientation. Given a directed graph, we say that a path
from u to v is strongly reversible if δ(u) < δ(v) − 1 and reversing the path will
maintain strong connectivity. The greedy algorithm, given an undirected graph,
is:

SC-Path-Reversal
start with an arbitrary strongly-connected orientation
while there is a strongly reversible path starting with a max-indegree vertex

let P be such a path
reverse the orientation of each arc of P

One can find a strongly-connected orientation in linear time using depth-first
search: orient all edges in the depth-first search tree downward away from the
root and orient all the non-tree edges upward with respect to the tree, cross
edges may be oriented arbitrarily.

Strongly-reversible paths are characterized by the number of edge disjoint
paths between endpoints. We say that a vertex v two-reaches a vertex u if there
are two arc-disjoint paths from v to u. We say that a vertex v two-reaches a
vertex set U if there are paths from v to u1 and from v to u2 where u1, u2 ∈ U ,
and these paths are arc disjoint.
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In the following we will use network flow theory. Let N = (V,E) be a
directed network with s, t ∈ V being the source and the sink of N respectively.
The capacity of an edge is a mapping c : E → R+, denoted by cuv. This
is the maximum amount of flow that can pass through an edge. A flow is a
mapping f : E → R+, denoted by fuv, subject to the following two constraints:
fuv ≤ cuv, for each (u, v) ∈ E and

∑
u:(u,v)∈E fuv =

∑
u:(v,u)∈E fvu, for each

v ∈ V \ {s, t}. The value of flow is defined by |f | =
∑

v∈V fsv, where s is the
source of N . An s − t cut C = (S, T ) is a partition of V such that s ∈ S and
t ∈ T . The cut-set of C is the set {(u, v) ∈ E|u ∈ S, v ∈ T}. The max-flow,
min-cut theorem states that the value of the maximum flow is equal to the value
of the minimum cut [8].

A consequence of this theorem is that if the maximum flow is greater than
or equal to k in a unit-capacity network, then there are k arc disjoint s to t
paths [1].

Lemma 2 Reversing a u-to-v path maintains strong connectivity if and only if
u two-reaches v.

Proof: Suppose that when we reverse a u-to-v path P , the graph remains
strongly connected. Thus there must still be a u-to-v path when P is reversed,
so in the original graph the max u-to-v flow must have been at least 2. By the
max-flow, min-cut theorem, we know that there are 2 arc-disjoint paths from u
to v.

Now suppose that u two-reaches v in a strongly connected orientation. Re-
versing one of these paths will create a cycle. Any pair of vertices requiring one
of these paths for connectivity can be connected by way of the cycle, which will
maintain strong connectivity. 2

SC-Path-Reversal can be implemented to run in quadratic time: strong-
path reversibility can be detected in linear time by two iterations of the aug-
menting path algorithm for maximum flow [8]. There are a linear number of
iterations: we show, as in Section 2, that after reversing a strongly-reversible
path ending in a vertex of indegree `, the algorithm does not reverse a strongly-
reversible path ending in a vertex of higher indegree.

As for the algorithm Path-Reversal, we argue that the algorithm proceeds
in k phases where k is the maximum indegree of the initial strongly connected
orientation. In phase `, strongly-reversible paths ending in vertices of indegree
` are reversed. This reduces the indegree of these vertices by one, and does not
result in any extra vertices of indegree greater than `.

Let Q be the set of vertices of indegree > ` just before the start of phase `
and let Q′ be the set of vertices that have strongly-reversible paths to a vertex
in Q. (Note: Q ⊆ Q′.) If, in the first iteration of phase `, a strongly-reversible
path ending in a vertex v of indegree ` is reversed, then the indegrees of the
vertices in Q′ must be > ` and v /∈ Q. Therefore, after reversing a strongly-
reversible path ending in a vertex of indegree `, the algorithm does not reverse
a path ending in a vertex of higher indegree.
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3.2.1 Strongly connected structure

To prove that SC-Path-Reversal minimizes the maximum indegree, we will
use a transitivity-like property of arc-disjointness:

Lemma 3 Suppose vertices s and t each two-reach a vertex v. If there are
arc-disjoint u-to-s and u-to-t paths, then u two-reaches v.

Proof: We argue that the min u-v cut is at least 2, proving the lemma by the
max-flow-min-cut theorem. Consider any u-v cut (viewed as a bipartition of
the vertices), (A,B). If s ∈ A, then the min cut is at least 2 (because the min
sv-cut is at least 2). Likewise if t ∈ A. If both s and t are in B, then the min
u-v cut is at least 2, as witnessed by the arc-disjoint u-to-s and u-to-t paths. 2

In order to ensure strong connectivity, we get:

Corollary 6 Let U be a set of vertices. For each component C of G[U ], there
must be at least one arc from each component of G[V \ C] to C.

We can in fact meet the implied lower bound:

Lemma 4 Let v be a vertex of maximum indegree obtained by the SC-Path-
Reversal algorithm. Let U be the set of vertices that two-reach v. Each
component of G[V \ U ] has exactly one arc to U in the SC-Path-Reversal
orientation.

Proof: Let C be a component of G[V \U ] and suppose for a contradiction that
there are multiple arcs from C to U . Let v1, v2, v3, . . . , vp be vertices in C that
are tails of these arcs. Let Ci be the set of vertices in C that reach vi. We will
argue that all of the Cis are in fact the same, so there is only one vi that is the
tail of an arc from C into U .

Since the graph is strongly connected, every vertex in C reaches U and so
must reach some vi. If x ∈ Ci ∩ Cj for some i 6= j, then by Lemma 3, x two-
reaches U , contradicting the definition of U . Therefore C1, . . . , Cp is a partition
of C. However, since C is connected, there must be an arc uv from, say, Ci to
Cj . In which case, u ∈ Cj , a contradiction by the above case. Therefore, the
partition cannot contain more than one set. So there is only one arc from C to
U . 2

3.2.2 Minimizing the maximum indegree

We show that the algorithm minimizes the maximum indegree by meeting the
following lower bound. For a set of vertices U , let c(U) be the number of
components of G[V \U ].

Lemma 5 The maximum indegree of any strongly connected orientation is at
least

max
U⊆V

⌈
m(U) + c(U)

|U |

⌉
.
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Proof: The total indegree that must be shared amongst U is at least the number
of edges in G[U ] + c(U), where the second term follows from Corollary 6. By an

averaging argument at least one vertex must have indegree at least
⌈
m(U)+c(U)
|U |

⌉
.
2

Theorem 7 The algorithm SC-Path-Reversal finds a strongly connected
orientation that minimizes the maximum indegree.

Proof: Let k be the maximum indegree resulting from SC-Path-Reversal.
Let v be a vertex of indegree k. Let U be the set of vertices that two-reach v.
By the termination criteria of the algorithm, all vertices in U have indegree k
or k − 1. By Lemma 4, the total indegree shared amongst U is m(U) + c(U).
We have that |U |k ≥ m(U) + c(U) > |U |(k − 1). Dividing by |U | yields k ≥
m(U)+c(U)
|U | > (k − 1). By Lemma 5, this is the best possible. 2

Theorem 7 has previously been proven in a non-constructive manner by
Frank [9, 10].

We conjecture that SC-Path-Reversal is indeed optimal for the “min-
imizing the lexicographic order” objective as well. Unfortunately our proof
technique from Section 2 for minimizing the lexicographic order of an arbitrary
orientation does not follow through. For example, we would need to consider
the set of vertices U that have at least two paths to a vertex of highest indegree,
but there could be a vertex x on a path from u ∈ U to v that is not in U . In
this case inequality (1) does not hold. For this, and other reasons, a different
technique will needed to obtain this result.

4 Acyclic orientations

We now examine the situation in which the resulting orientation needs to be
acyclic. Unlike what we have seen, minimizing the lexicographic order is no
longer polynomially solvable. However, a simple algorithm guarantees optimal-
ity of minimizing the maximum indegree.

4.1 Minimizing the maximum indegree

The following simple procedure minimizes the maximum indegree for an acyclic
orientation.
Stripping Procedure Choose a vertex with minimum degree. Orient all inci-
dent edges into that vertex. Remove that vertex and its adjacent edges. Repeat.

Theorem 8 Stripping finds an acyclic orientation with maximum indegree min-
imized.

Proof: Let k be the maximum indegree resulting from stripping and let v be
a vertex with indegree k. Thus at some iteration, v had the minimum degree
among the remaining vertices, U . Let H be the subgraph induced by U with
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orientation inherited from an optimal orientation of the original graph. H must
have a sink and since every vertex in H has degree at least k, this vertex must
have indegree at least k. 2

4.2 Acyclic minimum lexicographic orientation is NP-
hard

We will show that the problem of minimizing the lexicographic order of an
acyclic orientation is NP-hard. We will give a reduction from set cover to the
related problem of finding an acyclic orientation such that:

• the maximum indegree is minimized

• the number of vertices with this maximum indegree is also minimized

We refer to the above problem as Min-Leading-Degree (MLD). Note that MLD
is different from the problem of minimizing the lexicographic order. However,
any optimal solution of the latter is an optimal solution of the former. Therefore,
by proving MLD NP-hard, we can conclude that min lex is also NP-hard.

The Set Cover problem is defined as follows: Given a set of elements
{1, 2, . . . ,m} (called the universe) and n sets whose union comprises the
universe, the set cover problem is to identify the smallest number of sets whose
union contains all elements in the universe. Set cover is proven to be NP-hard
by a reduction from the vertex cover problem [12].

We say that a set of vertices is t-strippable if the stripping procedure results
in maximum indegree at most t among these vertices.

We will use the following k-gadget graph H` with 1 ≤ ` < k and k odd:

If ` is odd H` is composed of 2 copies of Kk, a clique on k vertices, and a root
vertex r. Connect r to (k − `)/2 of the vertices in each of the complete
graphs. Add a matching between the vertices of degree k − 1 of the Kk

subgraphs. (Figure 3(a))

If ` is even H` is composed of a left and right copy of Kk, a root vertex r, and
an extra vertex s. Connect r to k − ` vertices in the left Kk. Connect s
to `/2 vertices in the left Kk. Connect s to k − `/2 of the vertices in the
right Kk. Add a matching between the vertices of degree k− 1 of the left
and right Kk subgraphs. (Figures 3(b) and 3(c))

It is easy to verify that H` has the following properties:

1. All the vertices, except the root vertex r, have degree k.

2. The root vertex r has degree k − `.

3. H`\{r} is connected.

4. H` is (k − 1)-strippable.
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r

v

(a) k = 5, ` = 3

r

v

s

(b) k = 5, ` = 2 and v 6= s

r

v=s

(c) k = 5, ` = 2 and v = s

Figure 3: Above are examples for the gadgets when k = 5 and in the case of
Figure 3(a) ` = 3 or in Figures 3(b) and 3(c) ` = 2. The shading denotes the
stripping order as used in Lemma 6, we start by stripping the darkest vertex
and lastly strip the lightest vertex.

Let S = {S1, S2, . . . Sm} be the instance of set cover. We wish to find ` sets
that cover all of the elements. Let fx denote the frequency of element x in S.
Let k be the smallest odd number which is greater than maxi,x{|Si|, fx}.

We construct a graph G as follows (See Figure 4):
For each Si ∈ S create a set k-gadget H1, with root vertex ri. For each

element x create an element k-gadget Hfx , with root vertex rx. For every
x ∈ Si connect ri to rx. G has the following properties:

1. All vertices in G have degree k except for the vertices ri of the set gadgets,
these have degree k + |Si| − 1.

2. All vertices have degree at least k, so the minimum possible maximum
indegree of any acyclic orientation of G is k.

3. G is k-strippable.

The first two properties are clear from construction. We will prove the third
property with the following two lemmata.
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r_a r_b r_d r_er_c

r_1 r_2
r_3

Figure 4: The following is an example of the graph corresponding to the Set
Cover instance: {a, b, c, d, e} with sets {S1, S2, S3}, S1 = {a, b, d, e}, S2 =
{a, c, e}, S3 = {b, c, e}. Suppose that S1 and S3 are chosen for the cover, then
we see all edges from the element gadgets are directed toward S1 and S3.

Lemma 6 The vertices of a set gadget in G with any vertex v removed are
(k − 1)-strippable.

Proof: r is the only vertex in the set gadget that potentially has degree greater
than k.

If v = r then the vertices that were adjacent to r have degree k − 1 so we
can (k − 1)-strip the remaining vertices.

Suppose that v 6= r. The vertices of the set gadget can be (k − 1)-stripped
as illustrated in Figure 3.

If ` is odd, first strip all of the vertices of the clique containing v then strip
all of the vertices of the other clique. We know that r originally had degree
k + |Si| − 1 and we removed k − 1 of the vertices adjacent to it. Thus r has
degree |Si| which is at most k − 1, so we can strip r.

If ` is even, then either v ∈ Kk or v = s. If v ∈ Kk for either the left or
right clique, first strip all of the vertices in this clique, then strip s, then strip
the vertices in the other clique and finally strip r as in the odd case. If v = s
then we can strip both cliques, because both were connected to s, and finally
strip r. 2

A similar argument shows:

Lemma 7 Any element gadget with any vertex v removed is (k− 1)-strippable.

It follows that G is k-strippable: stripping one vertex of degree k from each
set and element gadget leaves (k − 1)-strippable subgraphs.
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Theorem 9 G has an acyclic orientation with at most ` vertices of indegree k
if and only if there is a covering subcollection of S of size at most `.

Proof: For the forward direction: Let X be the set of at most ` vertices which
have indegree k. G\X is (k − 1)-strippable. Let S ′ be the subcollection of S
containing

(i) all the sets whose gadgets have an indegree k vertex and
(ii) for each element gadget that has an indegree k vertex, one set that

contains this element.
Notice that |S ′| ≤ `. We will show that S ′ is a covering.
For any element x, let P be the element gadget corresponding to x. There

are two cases for P :
(a) P includes a vertex of indegree k.
In this case x is covered by a set of type (ii).
(b) P does not include a vertex of indegree k.
The degree of the root vertex rP of P is k. The assumption that P does not

have any vertices of indegree k implies that at least one edge is oriented away
from rP . If this edge is from rP to a set gadget, then at least one vertex of the
set gadget must have indegree k. The set corresponding to this set gadget must
be included in S ′, so x is covered. If the edge oriented away from rP is directed
to another vertex in P , then there must be a vertex of indegree k in P . By the
construction of the gadget and the acyclicity property of the orientation, this is
a contradiction to the fact that the edge oriented away from rP is directed into
another vertex in P . Thus in any case, element x is covered.

Therefore S ′ is a cover.
For the reverse direction: Let S ′ be the collection of at most ` sets from S

that form a cover. Take a non-root vertex from each set gadget corresponding
to a set in S ′ and orient all edges toward it. Each of these gadgets is now (k−1)-
strippable by Lemma 6. Each element x is covered, so stripping the set gadget
covering x directs the edge between the set gadget and the element gadget for x
away from the element gadget (see the orientation of Figure 4). The root of the
element gadget has degree k − 1, so each element gadget is (k − 1)-strippable
in G\X. Consider the set gadgets for the sets not in S ′. The roots of these
gadgets all have remaining degree k−1, because all of the element gadgets have
been stripped so these are also k− 1-strippable. This orientation has at most `
vertices of indegree k. 2

Corollary 10 The problem of MLD is NP-hard, which implies the problem of
minimizing the lexicographic order of indegrees is also NP-hard.

5 Closing

Graph orientation is a rich problem area. In this paper we have presented three
variants of the problem with their respective motivations. In one variant the
resulting graph has no structural constraints, in another strong connectivity is
required, and finally an acyclic orientation is required. For the first two variants
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the simple algorithm of path reversal proves to be powerful. We have shown the
optimality of the algorithm for the “minimizing the maximum indegree” objec-
tive in both variants and for the minimizing the lexicographic order objective
for the first variant. We conjecture that SC-path-reversal is indeed optimal for
the “minimizing the lexicographic order” objective as well. The third variant,
requiring the resulting graph to be acyclic introduced quite a different problem.
We have included an NP-hardness proof for acyclic minimizing the lexicographic
order to demonstrate the point. How to approximate the “minimizing the lex-
icographic order” objective and enforce the acyclicity constraint remains an
interesting open problem.
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