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Abstract

A graph is called a bar 1-visibility graph if its vertices can be represented
as horizontal segments, called bars, and each edge corresponds to a vertical
line of sight which can traverse another bar. If all bars are aligned at one
side, then the graph is an aligned bar 1-visibility graph, AB1V graph for
short.

We consider AB1V graphs from different angles. First, we study
combinatorial properties and K5 subgraphs. Then, we establish a difference
between maximal and optimal AB1V graphs, where optimal AB1V graphs
have the maximum of 4n− 10 edges. We show that optimal AB1V graphs
can be recognized in O(n2) time and prove that an AB1V representation is
determined by an ordering of the bars either from left to right or by length.
Finally, we introduce a new operation, called path-addition, that admits
the addition of vertex-disjoint paths to a given graph and show that AB1V
graphs are closed under path-addition. This distinguishes AB1V graphs
from other classes of graphs. In particular, we explore the relationship to
other classes of beyond-planar graphs and show that every outer 1-planar
graph is an AB1V graph, whereas AB1V graphs are incomparable, e.g.,
to planar, k-planar, outer fan-planar, outer fan-crossing free, fan-crossing
free, bar (1, j)-visibility, and RAC graphs.
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1 Introduction

There is recent interest in beyond-planar graphs, which comprise classes of
graphs that extend the planar graphs and are defined by restrictions on crossings.
Particular examples are 1-planar graphs [33, 32], fan-planar [6, 5] and fan-crossing
free graphs [16], quasi-planar graphs [2], right angle crossing (RAC) graphs [20],
bar visibility graphs [18], bar (1, j)-visibility graphs [13], rectangle visibility
graphs [27], and map graphs [14, 38]. Besides, there are specializations, such
as outer 1-planar graphs [4, 26], outer fan-planar graphs [5], outer fan-crossing
free graphs, and AB1V graphs. The latter were introduced by Felsner and
Massow [25] who called them semi bar 1-visibility graphs, since the bars are
semi transparent. However, the alignment of the bars is the typical feature of
AB1V representations.

Visibility is a major topic in computational geometry [31] and graph drawing
[19]. A bar visibility representation displays each vertex as a horizontal bar and
each edge as a vertical line of sight between the bars of the endvertices, which,
in case of k-visibility, traverses up to k other bars. Bars are non-intersecting
segments. There are several versions of visibility including distinct, strong and
weak. In the distinct case, the endpoints of the bars must have different x-
coordinates [29, 25]. In the distinct and strong versions there is an edge if and
only if there is a visibility, whereas in the weak version there is a visibility if
there is an edge. Thus edges can be omitted. Clearly, graphs in the weak version
are exactly the subgraphs of graphs in the other versions. This assumption is
relevant for a comparison with other classes of graphs which are generally closed
under taking subgraphs.

Every weak visibility graph is planar and vice versa. Hence, weak visibility
graphs can be recognized in linear time. Some planar graphs do not have a
strong visibility representation, including K2,3 [18] and some 3-connected graphs
[3]. The recognition problem for strong visibility graphs is NP-complete [3] and
there is a characterization of strong visibility graphs [34, 37, 39].

In the non-planar case with k-visibility, a line of sight for an edge can traverse
up to k other bars. Simply speaking, an edge can cross up to k vertices. The
planar case corresponds to k = 0. Bar 1-visibility graphs were introduced by
Dean et al. [18] and further investigated by Sultana et al. [35] and by Evans et
al. [22], who also compared them with other classes of beyond-planar graphs and
considered the strong and weak versions of 1-visibility. Bar 1-visibility graphs
are specialized to bar (1, j)-visibility [13] and bar (1, 1)-visibility graphs [9] by
restricting the number of edges that may traverse a bar to j > 0 and j = 1,
respectively. In particular, bar 1-visibility graphs of size n have up to 6n− 20
edges and an NP-hard recognition problem. However, 1-planar graphs are a
proper subclass of bar (1, 1)-visibility [9] and bar 1-visibility graphs [21]. Hence,
in contrast to the planar case, bar 1-visibility is stronger than 1-planarity.

An outer planar graph has a drawing with all vertices in the outer face. In
particular, all vertices can be placed on a line with edges as circular arcs above
this line. Outer planar graphs are an important subclass of the planar graphs.
Each outer planar graph has at least one vertex of degree at most two. The
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graphs have book-thickness one and treewidth two, and K4 and K2,3 are the
forbidden minors. The restriction from planar to outer planar transfers a general
to an aligned bar visibility representation, where all bars start at a common
line, e.g., at the bottom or at the left. In the planar case, outer planar and
weak aligned bar visibility graphs coincide [17], whereas aligned bar 1-visibility
is stronger than outer 1-planarity, as we shall show.

Aligned bar 1-visibility representations and graphs were introduced by Felsner
and Massow [25] who used the distinct version of visibility and allow a line of
sight to traverse up to k bars. A distinct AB1V representation, dAB1V for
short, is characterized by two permutations, the t- and r-orders. The t-order
is the left-to-right (or top-down) ordering of the bars of the vertices and the
r-order is an ordering of the bars by length. Felsner and Massow established
important properties of dAB1V graphs. For example, they showed that every
dAB1V graph has a vertex of degree four and has at most 4n− 10 edges. This
bound is tight for all n ≥ 4. Moreover, they established that AB1V graphs
are 5-colorable, have clique number five and geometric thickness two, and they
showed that an r-order can be computed from a t-order of a dAB1V graph.

In this work, we extend the research on AB1V graphs. There are two main
features in AB1V graphs: clusters and paths. A cluster is a K5 subgraph, i.e.,
the maximum complete AB1V graph. First, we show that every cluster has
a special AB1V representation and can uniquely be associated with a vertex.
Thereafter, we prove that maximal AB1V graphs have at least 3.5n− 9 edges
and that there are sparse maximal AB1V graphs with 3.5n− 1 edges for every
n ≥ 21. Then we establish a quadratic-time recognition algorithm for optimal
AB1V graphs. Complementary to a result by Felsner and Massow, we show
that the t-order can be computed from the r-order of a dAB1V graph in linear
time. Given an AB1V representation, one can easily introduce a vertex-disjoint
path between two vertices. This observation has led to the introduction of
path-addition, which is a new operation on graphs and is further studied in
[12]. Finally, we explore the relationship of weak AB1V and other classes of
beyond-planar graphs. First, there is a proper hierarchy for the versions of
visibility and AB1V graphs. Then we show that every outer 1-planar graph
is an AB1V graph but not conversely. An AB1V representation of an outer
1-planar graph can be constructed in linear time. However, AB1V graphs are
incomparable, e.g., to planar, k-planar, outer fan-planar, outer fan-crossing free,
fan-crossing free, bar (1, j)-visibility, and RAC graphs.

The paper is organized as follows. In Section 2 we introduce basic concepts.
Structural properties and maximal graphs are studied in Section 3 and path-
additions in Section 4. In Section 5 we investigate recognition problems. The
relationship to other graph classes is discussed in Section 6 and we conclude
with some open problems.
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2 Preliminaries

We consider simple, undirected graphs G = (V,E) with vertices listed in some
arbitrary order. Let N(v) denote the set of neighbors of a vertex v including v
and G[U ] the subgraph induced by U ⊆ V .

Graphs are defined by aligned bar 1-visibility representations, AB1V for
short. As suggested by Felsner and Massow [25], we rotate the drawings, which,
due to the alignment, are more intuitive and compact than ordinary visibility
representations. Vertical bars were also used by Wismath [39]. In an AB1V
representation, each vertex is represented by a vertical bar, which is a closed
interval with bottom at y = 0 and top at some y > 0. Each edge e = (u, v)
corresponds to a horizontal line of sight between the bars of u and v, which can
traverse another bar. Thus, there is a 1-visibility between the bars of u and v.

We distinguish between distinct, strong and weak visibility [19] and denote
the respective classes of aligned bar 1-visibility graphs by dAB1V , sAB1V and
wAB1V , respectively. In addition, we use mAB1V for maximal AB1V graphs,
which cannot be extended by adding a further edge, and oAB1V for optimal
AB1V graphs with the maximum of 4n− 10 edges for graphs of size n. Recall
that there is an edge if and only if there is a visibility in the distinct and strong
versions, where in the distinct case all bars have a different length. The weak
version admits the omission of edges.

A partial AB1V representation is the AB1V representation of an induced
subgraph G[U ]. An extension of a partial AB1V representation is an AB1V
representation of G[U ∪W ] for sets of vertices U and W so that the restriction
to U is the AB1V representation of G[U ].

From Felsner and Massow [25] we adopt the t- and r-orders for the description
of AB1V representations, which are the orderings of the bars from left to right
and by length, respectively. Then a partial AB1V representation is the restriction
of the t- and r-orders to the vertices of U . For convenience, we say that vertex
u is left of vertex v if the left to right ordering holds for their bars in an AB1V
representation. Accordingly, we say that a vertex is between other vertices. Note
that each AB1V representation has a reflection with an ordering from right to
left representing the same graph.

We denote the t- and r-orders of two vertices by u <t v and u <r v,
respectively, and we extend these relations to sets of vertices and bucket orders
[24]. For disjoint sets of vertices X and Y we write X <t Y if x <t y for every
x ∈ X and y ∈ Y , however, the ordering of the vertices of X and Y is still unclear
or may be exchanged. The sets X and Y are called buckets. A bucket order is
extended to an order by ordering the elements in each bucket [24]. The notation
X <t Y is also used for induced subgraphs, and X <r Y is used accordingly.
For convenience, we omit braces for singleton sets and inside brackets.

Aligned visibility representations were introduced by Cobos et al. [17]. They
considered the planar case with non-transparent bars and implicitly use the t-
and r-orders by assigning an n-tuple to an aligned bar visibility representation
of a graph of size n, where the ith entry is the length of the ith bar from the left.

In general, we shall consider distinct AB1V representations with all bars of
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Figure 1: AB1V representation of a K5 with planar and 1-visibility lines of sight
drawn as bold and dotted horizontal lines in (b)

different length, that are represented by the t- and r-orders. For convenience, we
omit the prefix d and explicitly refer to the other versions of visibility if this is
relevant. For a comparison with other classes of graphs we use wAB1V graphs,
since they are closed under taking subgraphs.

3 Combinatorial Properties

In their introductory paper on AB1V graphs, Felsner and Massow [25] observed
that each AB1V graph has a vertex of degree at most four and that the clique
number is five, i.e., K5 is the largest complete AB1V (sub-) graph. We call a
K5-subgraph a cluster. In fact, clusters and their AB1V representation play a
prominent role in AB1V graphs.

3.1 Clusters

Forthcoming, we shall often consider K5-subgraphs and subgraphs that are
induced by vertices with long bars in an AB1V representation, i.e., we consider
the top-k vertices in r-order and a 1-visibility above a certain level. Two long
bars prevent a 1-visibility between two short bars to their left and right.

Definition 1 A subgraph G[X] of an AB1V graph G is called a cluster if
G[X] = K5. Let C(G) denote the set of clusters of G. The w-clustered graph
CGw(G) = (C(G), Fw) of G has a vertex for each cluster of G and there is an
edge between two clusters G[X] and G[Y ] if and only if |X ∩ Y | ≥ w, i.e., G[X]
and G[Y ] have at least w vertices in common, where 1 ≤ w ≤ 4.

For AB1V graphs the following is immediate:

Lemma 1 A subgraph G[v1, . . . , v5] of an AB1V graph G is a cluster if and
only if v1 <t . . . <t v5 in t-order implies v3 <r {v1, v2, v4, v5}, v2 or v4 has the
second shortest bar, and there is no other vertex u of G with v1 <t u <t v5 and
v3 <r u.

An AB1V representation of K5 is depicted in Fig. 1.
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Figure 2: An AB1V representation of two clusters with four vertices in common

The bars of the vertices of a cluster C are U -shaped with the shortest bar in
the middle and the second shortest bar next to it. The top-3 vertices of C in
r-order can be permuted and the longest bar may be next to the bar in the middle.
This is excluded in a V -shape. Hence, a K5 has six AB1V representations up
to reflection, some of which may be excluded if more vertices are taken into
account. The left to right order it tight in the sense that no other vertex u can
be placed between the vertices of C if the bar of u is longer than the shortest
bar of the vertices of C. In reverse, if u must be placed between the vertices of a
cluster, then u has a short bar. In particular, if u is a neighbor of the vertex in
the middle of C, then u is placed between the vertices of C and has a bar that
is shorter than the bars of the vertices of C.

Lemma 2 If G[x, v2, v3, v4, v5] and G[y, v2, v3, v4, v5] are two clusters of an
AB1V graph G which differ in one vertex, namely x and y, then in any AB1V
representation, either x is extreme in t-order and y is minimum in r-order, or
conversely, see Fig. 2.

Proof: Suppose that v2 < v3 < v4 < v5 in t-order. Then v2 <t {x, y} <t v5
implies that one of G[x, v2, v3, v4, v5] and G[y, v2, v3, v4, v5] is not a cluster by
Lemma 1, since the longer bar of x and y is between the bars of the vertices of
the other cluster. If x is to the left of v2, v3, v4, v5, then v3 <r {x, v2, v4, v5} by
Lemma 1 and v3 <r y implies that there is no 1-visibility between v3 and an
extreme vertex. The case with x at the right is similar. �

A cluster C may be associated with its vertex with the shortest bar, which
may be taken as a representative of C.

Lemma 3 For an AB1V graph G = (V,E), there is a one-to-one mapping
κ : C(G)→ V assigning each cluster to a vertex.

Proof: Given an AB1V representation, let κ(G[X]) = v3 if G[X] is a cluster
with vertices v1 <t . . . <t v5 in t-order. By Lemma 1, the bar of v3 is the shortest
of the bars of the vertices of X and v3 is placed in the middle of the bars of the
vertices of X. If two (or more) clusters X and Y were assigned to v3, then a
long bar from a vertex of Y must be placed between the bars of X or vice versa,
contradicting Lemma 1. �

The assignment of clusters to vertices implies an upper bound on the number
of clusters and all clusters can be computed in linear time from a given AB1V
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representation. Note that a subgraph induced by a vertex v and four neighbors
of v with longer bars than v do not necessarily induce a cluster. The condition
on the vertex with the second shortest bar from Lemma 1 must be satisfied.

Corollary 1 An AB1V graph of size n has at most n− 4 clusters, which, given
an AB1V representation, can be listed in linear time.

Proof: A cluster can be assigned to all but the two vertices at the left and right
ends in an AB1V representation, such that n− 4 vertices remain. The bound
is achieved if the AB1V representation has a V -shape with a monotone t-order
and a bitonic r-order.

For the computation, consider the vertices in decreasing r-order and check
that κ−1(vi) is a cluster. �

We can also consider clusters in decreasing r-order of their representatives.

Lemma 4 Let v1 <r . . . <r vn be the r-order of the vertices of an AB1V
graph. For i = 1, . . . , n − 4, there is a cluster κ−1(vi) if and only if vi has
four neighbors with longer bars wi, xi, yi, zi in G[vi+1, . . . , vn] which induce K4,
i.e., if wi <r {xi, yi, zi}, then there is no vertex vj with i + 1 ≤ j ≤ n and
wi <t vj <t vi or vi <t vj <t wi.

Proof: The “only-if” direction follows from Lemma 1 and for the “if-direction”
observe that a vertex vj as specified hinders wi or vi to be 1-visible from xi, yi,
and zi. �

Once we know the clusters, we would like to know how they are interrelated.
This is expressed by the clustered graphs CGw(G) that are parameterized by the
number of common vertices.

A stripe is an outer planar graph with vertices of degree at most four that
consists of two parallel paths with spokes as depicted in Fig. 3(b).

Lemma 5 The 4-clustered graph CG4(G) of an AB1V graph G consists of a
set of paths and the 3-clustered graph CG3(G) is a subgraph of a stripe.

Proof: Consider a cluster κ−1(x1) = G[X] with vertices x1 <r . . . <r x5 in
r-order. If there is a cluster G[Y ] with four vertices in common with X and a
further vertex x6 ∈ Y −X with a longer bar than the bar of x1, then Lemma 2
implies that x6 must be placed to the left or to the right of the vertices of X,
x2 <r x6 in r-order, Y = {x2, . . . , x6}, and κ(G[Y ]) = x2. Hence, there is an
edge in CG4(G) from κ−1(x1) to κ−1(x2), where x2 is the neighbor of x1 with
the next longer bar. If x6 <r x1, then κ(G[Y ]) = x6, and the roles of X and Y
are exchanged. Thus, there may be an (incoming) edge to G[X] from a cluster
whose representative has a shorter bar. Hence, a vertex of CG4(G) has degree
at most two. Cycles are excluded by the increasing length of the bars of the
assigned vertices. A path is interrupted at G[X] if there is no cluster that is
assigned to vertex y, where y has the second longest bar of the vertices of X.
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Figure 3: A V -shaped AB1V representation of a graph G and the 3-clustered
graph CG3(G)

Accordingly, if clusters G[X] with X = {x1, . . . , x5} and x1 <r {x2, . . . , x5}
and G[Y ] have at least three common vertices, and the new vertices of Y −X
have longer bars than those of X, then Y = {x2, . . . , x6} for some x6 as stated
in Lemma 2 or Y = {x3, x4, x5, y1, y2}, x3 <r {y1, y2}, y1 and y2 are placed to
the left or to the right of the vertices of X, and X ∩ Y = {x3, x4, x5}. Hence,
there are at most two (outgoing) edges in CG3(G) from a cluster κ−1(x1) to
the clusters of the two next neighbors of x1 in r-order κ−1(x2) and κ−1(x3),
provided these clusters exist. If they do, then there is an edge from κ−1(x1) to
κ−1(x2) and to κ−1(x3) in CG3(G). Accordingly, there are edges in CG3(G) from
clusters with representatives with shorter bars.

If x1 <r . . . <r xn is the r-order of the vertices of G, then there are edges
(κ−1(xi), κ

−1(xi+j)) for j = −2,−1, 1, 2 in CG3(G), provided there are clusters.
Hence, CG3(G) is a subgraph of a stripe, which is an outer planar graph as
depicted in Fig. 3(b). �

If the AB1V representation of G has a monotone t-order and a bitonic r-
order, then CG4(G) and CG3(G) have n− 4 vertices and are a path and a stripe,
respectively, see Fig. 3. On the contrary, there are AB1V graphs such that the
clustered graphs CG1(G) and CG2(G) are complete graphs on n− 4 vertices. If
v1 <t . . . <t vn and v3 <r . . . <r vn <r v2 <r v1 are the t- and r-orders, then
there are clusters κ−1(vi) for i = 3, . . . , n−2 which each contain the two leftmost
vertices with the longest bars v1 and v2, and therefore are mutually connected
in the clustered graphs.

Finally, we consider disjoint clusters. Two clusters G[X] and G[Y ] of an
AB1V graph G are disjoint if in any AB1V representation of G the vertices of X
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are to the left of the vertices of Y , i.e., X <t Y , or vice versa. We say that G[Y ]
nests in G[X] if there are two vertices x1 and x2 of X with x1 <t Y <t x2. Thus
(the bars of) the vertices of Y are placed between x1 and x2 and, by Lemma 1,
x1 and x2 can be chosen so that no other vertex of X is placed between them.

Lemma 6 If G[X] and G[Y ] are two vertex disjoint clusters of an AB1V graph
G, then in any AB1V representation, G[X] and G[Y ] are disjoint or nest, and
the bars of the nesting cluster are shorter than the bars of the other cluster.

Proof: Otherwise, there are vertices x1 < y1 < x2 < y2 in t-order with
x1, x2 ∈ X and y1, y2 ∈ Y , which contradicts Lemma 1. �

3.2 Maximality

Next, we consider extremal graphs and Turán-type theorems on the maximum
number of edges. An AB1V graph G is maximal if no further edge can be added
without violating aligned bar 1-visibility, and G is optimal if it has 4n− 10 edges.
Hence, a graph G is maximal if there is no AB1V supergraph with the same
set of vertices and more edges, and G is optimal if there is no AB1V graph of
the same size and more edges. These notions coincide for planar graphs and
maximal and optimal planar graphs of size n have exactly 3n− 6 edges and are
triangulated. However, for outer 1-planar [4], 1-planar [8], and (1, j)-visibility
graphs [13], there are maximal graphs that are not optimal. Surprisingly, there
are maximal 1-planar graphs with less than 2.65n edges.

Optimal AB1V graphs were characterized by Felsner and Massow [25], who
proved that a distinct AB1V representation results in an optimal graph if and
only if the top-4 vertices in r-order are placed in pairs at the left and right ends
and induce K4. In other words, the four longest bars are placed at the left and
right ends and the shortest of them is not the extreme left or right. Thereafter,
any other vertex has at least four neighbors and there are exactly four new
neighbors if the vertices are taken in decreasing r-order. In consequence, AB1V
graphs have a density of at most 4n− 10 [25], where the density is a function of
the maximal number of edges of graphs of size n. However, there are sparser
maximal AB1V graphs, and there are maximal AB1V representations with
graphs with only 2n− 3 edges, e.g., if the bars are placed from left to right in
increasing (or decreasing) r-order.

We aim at AB1V graphs with a unique AB1V representation. However, this
is impossible, since the t-order can be reversed and the vertices with the three
longest bars can be permuted in r-order.

Lemma 7 There is an AB1V graph B with a unique t-order of the vertices (up
to reflection), and there are AB1V graphs Gk for k ≥ 1 where the t-order is a
unique bucket order with buckets of size two (up to reflection).

Proof: Graph B has 15 vertices from the sets V = {v1, . . . , v10} and U =
{u1, . . . , u5}. For k ≥ 1, graph Gk extends B by adding vertices from k + 2
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Figure 4: An AB1V graph Gk consisting of six clusters with vertices v1, . . . , v10,
two paths with vertices u1, u2, u3 and u4, u5 and supplementary edges, and a
k + 1 pair sets (buckets) W0, . . . ,Wk. An r-order of the vertices of the clusters
is r1 <r . . . <r r10.

pair sets Z = {z1, z2} and Wi = {wi, w
′
i} for i = 0, . . . , k. The sets V,U, Z and

W0, . . . ,Wk are pairwise disjoint. For i = 0, . . . , k, the vertices of Wi are added
incrementally and are placed immediately to the right of v1 if v1 appears at the
left. The vertices wi and w′i of Wi cannot be distinguished and can be swapped
both with respect to their length and with respect to their position, except for
i = k − 1. Hence, there is a bucket order Wk < . . . < W0, both for the t-order
(up to reflection) and the r-order. Both vertices of Z are placed one bar apart
from the bar of v1.

An AB1V representation of Gk is given in Fig. 4.

The subgraph B[V ] consists of a sequence C1, . . . , C6 of six clusters with the
sets of vertices {v1, v2, v3, v9, v10}, {v2, v3, v8, v9, v10}, {v2, v3, v4, v8, v9}, {v3, v4, v7, v8, v9},
{v3, v4, v5, v7, v8}, and {v4, v5, v6, v7, v8}, respectively. The first and the last clus-
ters are disjoint, and two adjacent clusters Ci and Ci+1 with 1 ≤ i < 6 have four
common vertices. Note that C1, . . . , C6 forms a path-decomposition of width
four of B[V ] [7]. This graph shall be used later (Lemma 11) as an example of a
non-fan-crossing free graph.

The subgraph B[U ] adds two paths (v1, u1, u2, u3, v6) and (v6, u4, u5, u10)
from the central vertex v6 to the extreme ones. For a distinct AB1V repre-
sentation, we add the edges (u1, v1), (u1, v2), (u1, v3), (u1, u4), (u2, u1), (u2, v3),
(u2, v4), (u2, v5), (u3, u2), (u3, v4), (u3, v5), (u3, v6), (u4, v6), (u4, v7), (u4, v8), (u4, u5),
(u5, v7), (u5, v8), (u5, v9), (u5, v10). The edges can be retrieved from the AB1V
representation in Fig. 4. In total, the base B has 15 vertices and 50 edges, and
therefore is an optimal AB1V graph.

There is an edge between the vertices w0 and w′0 of W0 and both have v1, v2
and u1 as neighbors. For i = 1, . . . , k there is an edge between the vertices
of Wi and both have v1 and the vertices of Wi−1 as neighbors. Finally, each
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vertex z1, z2 ∈ Z adds four edges, namely (z1, v1), (z1, wk), (z1, w
′
k), (z1, z2) and

(z2, v1), (z2, wk), (z2, w
′
k), (z2, wk−1). The edge (z2, wk−1) distinguishes z1 from

z2 and wk−1 from w′k−1.

The r-order of the vertices of V in Fig. 4 is v1 > v10 > v2 > v9 > v3 > v8 >
v4 > v7 > v5 > v6 or r1 <r . . . <r r10. Moreover, u3 <r u2 <r u1, u4 <r u5 and
{u3, u4} <r v6, u1 <r v4, u2 <r v5 and u5 <r v7. The r-order of B is not unique,
since, e.g., the length of the top-4 bars can be exchanged and the length of the
bars of {u1, u2, u3} and {u4, u5} are not related. Apart from this, B has the
r-order from above. In addition, for Gk we have Wi <r Wi−1 for i = 1, . . . , k
and W0 <r u1, as we shall show. However, the vertices of Wi can be exchanged,
except for i = k − 1.

Obviously, B and Gk with k ≥ 0 are dAB1V graphs. The given visibility
representation of Gk is maximal, i.e., all edges are listed. The base B = Gk[V ∪U ]
is optimal and each set Wi for i = 0, . . . , k adds two vertices and seven edges,
since vertex wi has only vertex v1 as a left neighbor with a bar that is longer
than the one of wi for 0 = 1, . . . , k. Hence, one edge to a left neighbor is missing.
Finally, Z adds two vertices and eight edges.

It remains to show that the t-order of B and of Gk given in Fig. 4 is unique
up to reflection and an exchange of wi and w′i. Therefore, we use the properties
of AB1V representations of clusters and prove four claims.

Claim 1. The vertices of V admit two t-orders with a bucket, namely, v6 <r

v5 <r v7 <r v4 <r v8 <r {v1, v2, v3, v9, v10} or v1 <r v10 <r v2 <r v9 <r v3 <r

{v4, v5, v6, v7, v8}.

Proof: The clusters C1 = B[v1, v2, v3, v9, v10] and C10 = B[v2, v3, v8, v9, v10]
have four vertices in common. Then either v1 or v8 has the shortest bar among
these vertices by Lemma 2. First, assume v8 <r v1. Then v8 is in the middle of
v2, v3, v9, v10 and v8 <r {v1, v2, v3, v9, v10}, i.e., the bar of v8 is short. Since v4
is a neighbor of v8, it must be placed close to v8 and it is placed between the
extreme vertices of v2, v3, v9, v10. Then the bar of v4 is shorter than the bar of v8
by Lemma 1. By the same reasoning, the bars of v5, v6 and v7 are shorter than
the bar of v8 and are placed between the extreme bars of v2, v3, v9, v10. Next,
consider cluster C3 = B[v2, v3, v4, v8, v9]. Since v4 has the shortest bar among
these vertices, it is placed in the middle of them by Lemma 1. As before, the bar of
v7 (and also the bars of v5 an v6) must be shorter than the bar of v4. By the same
reasoning, we obtain v5 <r v7 and v6 <r v5 from C4, C5 and C6. Hence, assuming
v8 <r v1 implies the r-order v6 <r v5 <r v7 <r v4 <r v8 <r {v1, v2, v3, v9, v10}.

Otherwise, v1 <r v8 implies the r-order v1 <r v10 <r v2 <r v9 <r v3 <r

{v4, v5, v6, v7, v8}. This is shown as follows: For the clusters C1 and C2 and
v1 <r v8, Lemma 2 implies that v1 has the shortest bar and is placed in the
middle of v2, v3, v9, v10. Now, the assumption v4 <r v10 leads to a contradic-
tion. Then v4 has the shortest bar of the vertices of cluster B[v2, v3, v4, v8, v9].
Otherwise, if a vertex v ∈ {v2, v3, v8, v9} has the shortest bar, then the clusters
B[v2, v3, v8, v9, v10] and B[v2, v3, v4, v8, v9] are both assigned to v, contradicting
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Lemma 3. Now, v4 <r {v2, v3, v8, v9} implies v4 <r v1 by Lemma 1, since v4
must be placed between the extreme vertices of the cluster B[v1, v2, v3, v9, v10].
In consequence, we have v1 <r v10 <r v4. We can now proceed as before, and
from the sequence of clusters C1, . . . , C6 we obtain the r-order as claimed. �

Next, we determine the t-order of B.

Claim 2. The r-order v1 <r v10 <r v2 <r v9 <r v3 <r {v4, v5, v6, v7, v8} is
infeasible.

Proof: The clusters C1 and C6 are disjoint. Since v3 ∈ C1 has a shorter bar
than its four neighbors in C6, v3 must be placed between the vertices of C6 and
there are at least two vertices of C6 on either side of v3. Then C1 and C6 nest
by Lemmas 2 and 6 and the vertices of C1 are placed between two vertices vx
and vy of C6. Vertex v10 has the second longest bar of the vertices of C1 and
therefore it is placed next to the middle bar v1 in the U -shape of C1 by Lemma
1. By the edge (v8, v10) it must be placed close to v8, so that vx = v8 and v8
and v10 are on the same side of v1. Fig. 5 depicts the AB1V representation with
v10 left of v1. Otherwise, the t-order is reversed.

Consider u5 with neighbors v7, v8, v9, v10. Then u5 must be placed immedi-
ately to the left of v8 and it has a small bar that is shorter than the bar of v10.
To see this, first u5 must be placed between its four neighbors, since v10 is not
1-visible from a bar to the left of the bars of C6 that are long, or to the right of
C1, since C1 is U -shaped. Hence, u5 must be placed immediately to the right of
v8. Its bar must be shorter than the bar of v10, since the edge (v8, v10) intersects
the bar of vertex x1. Then x1 = v9 and y1 = v7. Vertex u4 cannot be placed
left of y1 = v7 because of the edge (u4, u5). Hence, u4 must be placed left of v8
and its bar is shorter than the bar of u5 because of the edge (u5, v7). Then u6
must be placed furthest to the left.

By the same reasoning, u1 must be placed between x2 and x3 and its bar is
shorter than the one of v1. It determines y2 = x4. Similarly, u2 must be placed
right of y2 = v4 and determines y3 = v5, and u3 must be placed right of y3 = v5
and determines y4 = v6. However, there is a contradiction, since v6 must be
placed furthest to the left and to the right. �

Claim 3. The r-order v6 <r v5 <r v7 <r v4 <r v8 <r {v1, v2, v3, v9, v10}
implies the t-order v1 <t . . . <t v10 or its reversal, and the vertices of U are
placed between vertices of V as shown in Fig. 4.

Proof: By the same reasoning as in the proof of Claim 2, cluster C6 must nest
in C1, since v8 has four neighbors in C1 with longer bars, and therefore must be
placed between the vertices of C1. Then all vertices of C1 are placed between
two vertices of C1 by Lemmas 2 and 6. Vertex v5 has the second longest bar
of the vertices of C6 and therefore must be placed next to the bar of v6 and on
the same side as v3. Assume that v3 and v5 are to the left of v6. Otherwise, the
t-order is reversed.

As a neighbor of v5, vertex u2 must be placed between v3 and v5 and its bar
must be shorter than the one of v5 because of the edge (v3, v5), which intersects



JGAA, 21(3) 281–312 (2017) 293

y
1

y
4

x
2

y
2 y

4
v
1
v
10

v
8
y
3

u
5

x
3

x
1
u
1

Figure 5: An AB1V representation of B[V ∪ {u1, u5}] with C1 <r C6,
{x1, x2, x3} = {v2, v2, v9}, and {y1, y2, y3, y4} = {v4, v5, v6, v7}. Vertex y4 can
be placed left or right.

the leftmost bar y1 of C6. Then y1 = v4 and u3 must be placed between v4 and
v5. As a neighbor of v4, vertex u1 cannot be placed to the far left. It is placed
left of v3 and enforces that v1 and v2 are to the left. The left to right order
v1 <t v2 is determined by C1 and C2, whose placement by Lemma 2 implies that
v1 is extreme for C2. Similarly, vertices u4 and u5 determine the t-order to the
right. The vertices of U are inserted at fixed positions. Hence, the left to right
order of the vertices of V ∪ U is as shown in Fig. 4, or its reversal. �

Finally, we consider the extension of B to Gk by the insertion of the pair
sets of vertices Wi = {wi, w

′
i} for i = 1, . . . , k, which are buckets for the t- and

r-orders. The ordering of the elements of a bucket is left open.

Claim 4. If the left to right order of the vertices of V ∪ U is as depicted in
Fig. 4 with v1 <t v2 <t u1 <t u3 at the left and u1 <r {v1, v2, v3}, then the left
to right order is v1 <t Wk <t . . . <t W0 <t v2 <t u1 and v1 <t wk <t z1 <t

z2 <t wk−1 <t w
′
k−1. The r-order is Wi <r Wi−1 for i = 0, . . . , k, Z <r Wk,

z1 <r z2, w′k−1 <r wk−1, and W0 <r u1.

Proof: We proceed by induction and first consider W0 = {w0, w
′
0}. Since both

vertices are neighbors of u1 and the bar of u1 is shorter than the bars of v1, v2,
w0 and w′0 must be placed between the extreme vertices of cluster C1. They are
placed either between v1 and v2 or between v2 and u1, and their bars must be
shorter than the bar of u1 because of the edge (v1, u1). Placing one of them at
either side of v2 leads to a contradiction, since an edge incident to v1 or to u1
cannot be realized in an AB1V representation.

If the base B is extended only by W0, then both placements are possible,
where an edge (w0, v3) or (w′0, v3) must be added depending on the vertex with
the longer bar.

The subgraphs Gk[Wi−1 ∪Wi] are a K4 for i = 1, . . . , k. First, consider
W0 ∪W1. If w0 and w′0 are placed between v2 and u1, then w1 and w′1 cannot
be placed at all. As the bars of w0 and w′0 are shorter than the ones of v1 and
v2, w1 and w′1 must be placed to the right of v1. Each vertex between v1 and
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Figure 6: The AB1V representation of Gk to the right of v1 if v1 is leftmost.
The dotted lines represent visibility lines that traverse another bar.

v2 must have a bar that is shorter than the shortest of the bars of w0 and w′0
because of the edges incident to v1. If a vertex from W1 were placed between v1
and v2, then an edge from the vertex of W1 with the shorter bar to v1 or to the
rightmost of the vertices of W1 cannot be realized in an AB1V representation.
If all of w0, w1, w

′
0, w

′
1 were placed to the right of v2, then the edge from the one

with the shortest bar to v1 cannot be realized.
Hence, both vertices of W0 must be placed between v1 and v2. Since u2 is a

neighbor of both, the leftmost of them must have the longer bar. Suppose that
wi is left of w′i for i = 1, . . . , k. The other case is symmetric and exchanges the
roles. Then w1 and w′1 cannot be placed to the left of v1, since the bar of w′0 is
not 1-visible from there. Then {w1, w

′
1} <r {w0, w

′
0} by the edges from w0 and

w′0 to v1 and u1. By the reasoning as before, w1 and w′1 must be placed between
v1 and w0 with bars that are shorter than the ones of W0 and with the leftmost
of the vertices of W1 having the longer bar.

The same arguments are used in the inductive step with wi−1 and w′i−1
taking the roles of v2 and u1, where wi−1 is to the left of w′i−1 and has the longer
bar.

Finally, consider the vertices on the left and z1, z2. As before, z1 and z2
must be placed to the right of v1 and their bars must be shorter than the ones
of wk and w′k. Then they must be placed between wk and w′k, as depicted in
Fig. 6. Now, the leftmost vertex vk−1 of Wk−1 is 1-visible from z2 and the edge
(z2, wk−1) determines the t- and r-orders of the vertices of Z and Wk−1. �

The proof of Lemma 7 now follows from Claims 1-4. �

Next we show that the graphs from Fig. 4 are almost best possible if we aim
at sparse maximal AB1V graphs.

Theorem 1 Every maximal AB1V graph of size n has at least 3.5n− 9 edges.

Proof: Consider an AB1V representation of a maximal AB1V graph G of size at
least 6. For n < 6 the bound obviously holds. Let X = {v1, v2, vp, vq, vn−1, vn}
consist of the four extreme and the top-4 vertices such that (v1, v2, . . . , vp, . . . , vq,
. . . , vn−1, vn) is the left to right order and v1, vp, vq, vn are the top-4 vertices in
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r-order. Here v2 = vp and vq = vn−1 are allowed. Clearly, the vertices at the
left and right are among the top-4 if G is maximal.

We count edges in decreasing r-order of the vertices and assign an edge (u, v)
to the vertex with the shorter bar.

Consider vertices v ∈ V −X. If v is placed between vp and vq, then it has
two neighbors with longer bars to the left and right, and therefore, v adds four
edges to G. Every v ∈ V −X between v1 and vp has at least v1 to the left and
two neighbors with longer bars to the right, and therefore adds at least three
edges to G. The right side is similar.

Suppose that v ∈ V −X has only v1 as a left neighbor with a longer bar.
We call v a leftish vertex and denote the set of leftish vertices by L. The set R
at the right is defined accordingly. By definition, all vertices u with u 6= v1 to
the left of a leftish vertex v in an AB1V representation of a maximal AB1V
graph have a shorter bar than the bar of v. In addition, if we aim at a maximum
number of leftish vertices, then the bar of u cannot be extended beyond the
bar of v. Otherwise, u were a neighbor to the left of v with a longer bar and
v were no longer a leftish vertex. Even more, if u is not a neighbor of v before
the extension of the bar, then (u, v) is a new edge by the extension and G is not
maximal. Hence, such extensions should be excluded.

A vertex u is called a left blocker of a leftish vertex v ∈ L in a given AB1V
representation if v1 <t v <t u <t vp in t-order, u <r v in r-order, and v1 is a
neighbor of both u and v. Thus, the blocker is to the right of v, it has a shorter
bar, and the bar of v is traversed by the line of sight of the edge (v1, u). We
denote the set of left blockers by B. Accordingly, consider right blockers and
denote the set of right blockers by B′.

For the lower bound on the number of edges, we show that we can assign
a blocker to each vertex v ∈ L ∪ R. To see this, first, consider an AB1V
representation with v1 <t v <t vp for a leftish vertex v ∈ L. Let w ∈ V −X be
the vertex between v1 and v and with the longest bar, which is shorter than the
bar of v. Then increase the length of the bar of w so that thereafter v <r w
and there is no other vertex between v and w in r-order. The modified AB1V
representation also represents G if v has no blocker, and v is no more a leftish
vertex. Second, a vertex w cannot be a blocker for more than one vertex, since
two or more vertices of L prevent the 1-visibility of the leftmost vertex v1 from
w.

Hence, |L| ≤ |B| and |R| ≤ |B′|, and these sets are pairwise disjoint. Since
|L|+|R|+|B|+|B′| ≤ |V −X| = n−6, we have |L|+|R| ≤ n/2−3. In consequence,
at least n/2−3 vertices each add at least four edges to G, each vertex of L and R
adds three edges, the vertices in second and next to last position add three and the
top-4 vertices add 6 edges to G. Hence, m ≥ 3(|L|+|R|)+4(n−6−|L|−|R|)+12 ≥
4n− 12− |L| − |R| ≥ 4n− 12− n/2 + 3 = 3.5n− 9, where m is the number m
of edges of G. �

The graphs from Fig. 4 are maximal but not optimal, since edges are missing
at the left, and they are close to sparsest maximal AB1V graphs.
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Theorem 2 There are maximal AB1V graphs of size n ≥ 21 with b3.5n− 1c
edges.

Proof: Consider the graphs Gk from Lemma 7. Since the left to right order
given in Fig. 4 is a unique bucket order with buckets Wi of size two (up to
reflection) it suffices to show that any t-order does not allow the addition of
further edge. The base B = Gk[V ∪ U ] has 15 vertices and 50 edges and is
optimal. Each bucket Wi adds 2 vertices and 7 edges. One edge is missing
towards optimality, since the leftmost vertex of Wi in the given t-order has only
the leftmost vertex v1 as a neighbor with a longer bar to the left. Finally, Z
adds two vertices and eight edges. Then, every Gk with k ≥ 21 and k odd has
3.5n − 1.5 edges. For every even k ≥ 22, we add a vertex with a short bar
immediately to the left of v8 in the AB1V representation of Gk−1 in Fig. 4. This
adds four edges. �

Hence, there are tight bounds, both for densest and sparsest maximal AB1V
graphs.

Corollary 2 The densest maximal AB1V graphs have 4n− 10 edges and the
sparsest maximal AB1V graphs have 3.5n− c edges, and both bounds are tight
up to a constant c with 1 ≤ c ≤ 9.

In consequence, the various versions of visibility induce a strict hierarchy
of classes of AB1V graphs. Moreover, every wAB1V graph is an induced
subgraph of an optimal (or m, d, s)AB1V graph. For the latter result, an AB1V
representation of a graph G is turned into an optimal AB1V representation of a
supergraph H by first varying the length of bars of the same length such that
they are all different and then expanding the two bars at the left and right ends
to the top-4 bars in r-order so that their vertices induce K4. Then, H is an
optimal AB1V graph [25] and G is an induced subgraph.

Corollary 3 oAB1V ⊂ mAB1V ⊂ dAB1V ⊂ sAB1V ⊂ wAB1V .

Proof: The inclusions are obvious. The first proper inclusion is shown in
Theorem 2. If v1 < . . . < vn for the t- and r-orders, then the resulting graphs
have only 2n−3 edges and are distinct but not maximal, which proves the second
inclusion. Third, the guarded double chains with vertices {1, . . . , n} and edges
(i, i+1) and (i, i+2) for 1 ≤ i < n−1 and (1, n), (1, n−1), (2, n), (2, n−1), (n−1, n)
and n ≥ 10 have an aligned bar 1-visibility representation, where the four longest
bars are placed in pairs at the left and right and induce K4 and all other bars
have the same length. These graphs cannot be represented with all bars of
distinct length, since the fifth longest bar can see the bars of the four extreme
vertices 1, 2, n − 1, n. Finally, strong AB1V graphs of size at least five have
degree at least four, which does not hold for weak AB1V graphs. �
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4 Path-Addition

In this section we show that wAB1V graphs are closed under path-addition.
Path-addition is a new operation on graphs which arises naturally from AB1V
representations. The operation is very powerful and is the opposite of taking
minors. Some classes of graphs are closed under path-addition, including bar
1-visibility, quasi-planar, fan-crossing free, RAC, and non-planar graphs, whereas
others are not, including planar, treewidth-k, k-planar, bar (1, j)-visibility, and
fan-planar graphs, see [12].

Definition 2 A path-addition takes a graph G = (V,E), two vertices u, v ∈ V ,
and an internally vertex-disjoint path P = (u,w1, . . . , wt, v) with wi 6∈ V for
1 ≤ i ≤ t from u to v and results in G′ = (V ∪W,E∪Q) where W = {w1, . . . , wt}
and Q is the edges of P . We denote G′ by G⊕ P .

Definition 3 A class of graphs G is closed under path-addition if the graph
G⊕ P is in G for every graph G in G of size n and for every internally vertex-
disjoint path P of length at least n− 1 between two vertices u and v of G.

For the closure of wAB1V (and other classes) under path-addition, we add a
path P of sufficient length so that P can be added independent of the position of
the endvertices in an AB1V representation. In consequence, the length of added
paths increases at least exponentially. Path-additions allow the construction of
any complete graph as a minor. First, add paths until there are k vertices, and
then add a new path between any pair of vertices. Then we have a Kk minor.

Theorem 3 The class of wAB1V graphs is closed under path-addition.

Proof: Consider an AB1V representation of Gi after paths P1, . . . , Pi have been
added to a wAB1V graph G. Increase the length of the bars of the vertices of
Gi by ki+1 + 1, where ki+1 is the length of Pi+1, so that they are long, and let
the bars of the internal vertices of Pi+1 have length 1, . . . , ki+1, respectively, so
that they are short. Insert the bars of the internal vertices of Pi+1 between the
bars of Gi such that there is a 1-visibility between two consecutive vertices of
Pi+1. This can be done in many ways if Pi+1 is longer than the distance of its
endvertices in the t-order of Gi. �

The addition of a path P to a strong AB1V graph G does not preserve
AB1V , since the inserted vertices of P induce 1-visibility to vertices of G. Then
a set of supplementary edges F must be added to preserve aligned bar 1-visibility
and F depends on the given AB1V representation.

5 Recognition of Optimal AB1V Graphs

The recognition problem of beyond-planar graphs is NP-hard, in general. How-
ever, it is known that outer 1-planar graphs can be recognized in linear time
[4, 26], map graphs in cubic time [15], maximal outer fan-planar graphs in
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polynomial time [5] and optimal 1-planar graphs in linear time [10]. Here, we
solve the recognition problem for optimal AB1V graphs. In addition, we show
that the t-order can be computed in linear time from the r-order of a dAB1V
graph. This complements a result by Felsner and Massow [25] who computed
the r-order from the t-order. Their algorithm runs in quadratic time and can be
implemented to run in linear time, although this is not stated.

The recognition algorithms use the fact that the vertex with the i-th longest
bar either has four neighbors with longer bars and then must be placed between
them, or it must be placed just outside the extreme vertices with the longest
bars. This procedure is stepwise generalized from a given r-order via optimal
graphs to distinct graphs and at the expense of the running time.

In particular, we use the following fact, which was mentioned above:

Proposition 1

• Every AB1V graph has a vertex of degree at most four [23].

• The maximum complete subgraphs have size at most five [23].

• G is an optimal AB1V graph if and only if the vertices with the four longest
bars are in pairs at the left and right ends and build K4 [23].

• If G is an optimal AB1V graph, then all vertices have degree at least four.

• For i = 1, . . . , n − 4, the i-th vertex in r-order has four neighbors with
a higher r-order, i.e., with longer bars, and the subgraph induced by the
vertex and its neighbors is K5 or K5 − e.

Our recognition algorithm for optimal AB1V graphs proceeds in two phases.
First, it computes all clusters. Then it incrementally adds a vertex at a time and
chooses a vertex v so that v induces a cluster with the already inserted vertices.
Thereby, it takes the vertices in decreasing r-order.

Lemma 8 There is a linear-time algorithm that checks whether a partial AB1V
representation of a cluster of an optimal AB1V graph G can be extended to an
AB1V representation of G, and, if so, computes an AB1V representation, i.e.,
a t- and an r-order of G.

Proof: The algorithm implements Proposition 1. Let V = {v1, . . . , vn} be the
set of vertices of G and let v1, . . . , v5 be the vertices of the given cluster with
v1 >r v2 >r v3 >r v4 >r v5 >r vi for i > 5 in r-order and v5 in the middle
of v1, v2, v3, v4 in the t-order of a partial AB1V representation of G[v1, . . . , v5]
according to Lemma 1.

For i = 5, . . . , n and Vi = {v1, . . . , vi}, if there is a partial AB1V representa-
tion of G[Vi] and the vertices of Vi are assigned the n+ 1− i longest bars, then
the algorithm gets a vertex vi+1 ∈ V −Vi which has four neighbors in Vi, assigns
the bar of length n− i and places the bar in the middle (at the median) of the
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bars of its four neighbors from Vi. This is a partial AB1V representation of
G[Vi+1] with Vi+1 = Vi∪{vi+1}. If such a vertex does not exist or the placement
is invalid, then the algorithm stops and rejects.

Processing a vertex takes O(1) time. If the algorithm succeeds, it has
computed a t- and an r-order of G and if it fails, then either G is not AB1V or
the initial cluster did not represent the top-5 vertices in r-order. �

Theorem 4 There is a quadratic-time algorithm that checks whether a graph G
is an optimal AB1V graph, and, if so, computes an AB1V representation.

Proof: The top-5 vertices in r-order induce a cluster C. There are at most O(n)
clusters by Corollary 1, which are computed in O(n) time. Since the bars of the
vertices of C are longer than the bars of all other vertices, we take any r-order
that defines a cluster.

The algorithm takes each cluster of G and successively tests all 120 t-orders
of the vertices as a partial AB1V representation for an extension according to
Lemma 8. The algorithm succeeds if it finds an extension and rejects otherwise.
If G is an optimal AB1V graph, the algorithm must succeed and it cannot
succeed otherwise. �

Next, we show that the left-to-right order of the bars can be computed from
an AB1V graph together with the knowledge of the length of the bars. The
converse was shown in [25].

Theorem 5 There is a linear-time algorithm that computes a t-order given an
r-order of a dAB1V graph G such that the t- and r-orders describe a dAB1V
representation of G.

Proof: Consider the vertices of G in decreasing r-order and for i = 1, . . . , n
let Wi = {v1, . . . , vi} denote the set of i vertices with the longest bars. The
algorithm successively extends a partial AB1V representation of G[Wi] to a
partial AB1V representation of G[Wi+1]. It starts with an AB1V representation
of G[W4] and tries all 12 t-orders of the vertices up to reflection.

For i = 5, . . . , n, if vi has four neighbors in Wi−1, then the partial AB1V
representation is extended by placing vi in the middle of its four neighbors in
Wi−1. If vi has three neighbors in Wi−1, then one of its neighbors is the first
(resp. last) vertex in the actual partial AB1V representation, which is extended
by placing vi in second (last but one) place. Finally, if vi has only two neighbors
in Wi−1, then vi is an extreme vertex and is placed to the left (right) of the
vertices of Wi−1 if the former leftmost (rightmost) vertex is its neighbor. The
algorithm stops if the placement was invalid.

The correctness is due to the fact that the bars of vi, . . . , vn are shorter than
the bar of vi−1. Hence, the bar of vi is 1-visible from the bars of its neighbors
from Wi−1, and it is 1-visible from two, three, or four neighbors depending on
its position in the partial AB1V representation.

Each run with an extension of a partial AB1V representation of G[W4] takes
linear time, which implies O(n) time in total. �

Together with a result from [25] we can conclude:
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Corollary 4 If G is a dAB1V graph, then an AB1V representation can be
computed in linear time if (i) a t-order or (ii) an r-order is given.

6 Relationship to other Classes of Graphs

For the comparison of AB1V graphs with other classes of graphs we consider
weak AB1V graphs, since the other versions, e.g., sAB1V graphs, are too
restrictive, since the graphs have vertices of degree four. Moreover, the other
classes of graphs are generally closed under taking subgraphs, in particular, all
classes of graphs listed in Fig. 13.

6.1 Inclusion Relations

Common drawings and visibility representations are equivalent in the planar
case with non-transparent bars, both in the general case [37, 39] and in the outer
planar case with aligned visibility [17]. However, visibility representations are
more powerful than common drawings if crossings are allowed. The 1-planar
graphs are a proper subset of bar (1, 1)-visibility graphs [9] and bar 1-visibility
graphs [22]. Hence, single edge-edge crossings are weaker than single edge-vertex
crossings. A similar result holds for AB1V graphs.

Theorem 6 There is a linear time algorithm that constructs a wAB1V repre-
sentation of an outer 1-planar graph.

Proof: Recall that a graph is outer 1-planar if it admits a drawing with all
vertices in the outer face and at most one crossing per edge [4, 26].

The linear time algorithm of Auer et al. [4] tests whether a graph G is outer
1-planar and, if so, augments G to a graph H by adding edges and constructs a
(planar) maximal outer 1-planar embedding of H. The embedding of H consists
of planar triangles and kites. A kite is a K4 that is embedded with a pair of
crossing edges.

Let X be the set of crossing edges in the embedding of H and let H −X
be the graph after their removal. Then H −X is an outer planar graph with
a Hamiltonian cycle where all inner faces are triangles or quadrangles. The
dual of H −X is a tree T with t- and q-vertices corresponding to triangles and
quadrangles, respectively. The outer face is ignored. We root T at a leaf r and
thereby orient T from r.

First, we construct a (planar) bar visibility representation of H−X. Consider
the root of T which corresponds to a triangle or a quadrangle (v1, . . . , vk) with
k = 3, 4 and with the edge (v1, v2) in the outer face. Then the t-order is the
ordering of the vertices of the Hamiltonian cycle of H with v1 = 1 and v2 = n.
Now, two vertices u and v span an interval on the Hamiltonian cycle.

The length of each bar, i.e., the r-order of H−X, is computed by successively
removing a leaf from T . This extends Mitchell’s algorithm for the recognition of
maximal outer planar graphs by successively removing a vertex of degree two
[30]. A leaf b of T is in one-to-one correspondence to a vertex v of degree two if
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b is a triangle, and to two vertices u and v of degree two with an edge (u, v) if b
is a quadrangle. Suppose that i− 1 vertices have been removed so far, where
i = 1, . . . , n − i − j for j = 0, 1 and j = 0 if and only if the root is a triangle.
Assign v a bar of length i if b is removed and v is a degree-two vertex in the
triangle b. The edges (u, v) and (v, w) incident to v are lines of sight at level i,
i.e., at the top end of the bar of v. Increase i by one. Accordingly, assign bars
of length i and i+ 1 to u and v (in any order) if b is a quadrangle and u and v
are the degree two vertices corresponding to b and draw the lines of sight at the
top of the bars. Increase i by two. Finally, assign bars of length n and n− 1 to
the vertices v1 and v2 corresponding to the root and bars of length n− 2 resp.
n− 3 to the other vertices of the root.

The algorithm preserves the invariant that all bars have a distinct length
and that the bars of all vertices in the interval between u and v have bars that
are shorter than the bars of u and v if there is an edge (u, v). The latter is due
to the fact that the vertices between u and v have been processed before u and
v. It guarantees that an edge at level i is unobstructed.

Finally, we reinsert the crossing edges of X. For each pair of crossing edges
(a, c) and (b, d) there is a quadrangle (a, b, c, d) with a <t b <t c <t d in t-order
and {b, c} <r {a, d} in r-order. By the previous assignment, the bars of b and
c have length i and i+ 1 for some i, respectively. Then the bar of a vertex w
in the interval from a to d has length at most i − 1 if w 6= b, c. Suppose the
bar of b has length i, the case where the bar of c has length i is similar. Then
draw the edge (a, c) as a planar line of sight at level i + 1 and draw the edge
(b, d) as a line of sight at level (i− 0.5) which traverses the bar of c. No other
bars are affected. Hereby, we adapt the technique of Brandenburg [9] for the bar
(1, 1)-visibility representation of 1-planar graphs to AB1V representations. For
integer coordinates, scale by two.

In total, we have obtained a weak distinct AB1V representation of G where
lines of sight are ignored if there is no edge. All stages of the algorithm take
linear time. �

To establish proper inclusion relations we use the fact that outer 1-planar
graphs are planar [4], that K5 is an AB1V graph, and that K6 is a bar 1-visibility
graph and not an AB1V graph. Note that bar 1-visibility graphs are a proper
subclass of quasi-planar graphs [22].

Corollary 5 Every outer 1-planar graph is a wAB1V graph, but not conversely,
and every wAB1V graph is a bar 1-visibility graph, but not conversely.

Hence, AB1V graphs are quasi-planar, which is a large class of beyond-planar
graphs containing graphs with up to 6.5n-20 edges [1]. Quasi-planar graphs are
defined via embeddings and exclude a mutual crossing of three edges. Therefore,
they include all 1-planar, RAC, fan-planar, bar 1-visibility [22], and rectangle
visibility graphs, and all graphs with geometric thickness two. Since AB1V
graphs have geometric thickness two [25] and are bar 1-visibility graphs, we can
conclude:
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Corollary 6 A graph G is quasi-planar if G is a wAB1V graph, but not con-
versely.

6.2 Incomparability Results

In this section we prove that wAB1V graphs are incomparable to some classes of
beyond-planar graphs. Two graph classes are incomparable if there are mutual
counterexamples, i.e., graphs that are in one class and not in the other. As
aforesaid, we consider classes that are closed under taking subgraphs. The
incomparability holds for any version of visibility, i.e., {o,m, d, s, w}AB1V
graphs.

First, consider planar graphs. Since there are planar graphs that are not
wAB1V graphs, a class of graphs G is not contained in wAB1V if G includes
the planar graphs.

Theorem 7 The classes of planar and wAB1V graphs are incomparable.

Proof: Every wAB1V graph has a vertex of degree at most four, namely the
one with the shortest bar in an AB1V representation. However, there are planar
graphs of degree five, such as the dual of the dodecahedron graph or of the
football graph C60.

Conversely, K5 is an AB1V graph and not planar. Moreover, optimal AB1V
graphs are denser than planar graphs. �

For the incomparability of wAB1V and k-planar respectively bar (1, k)-
visibility graphs we use the fact that the closure of bipartite graphs K2,m under
path-addition results in graphs that are neither k-planar nor (1, k)-visibility
graphs [12], but are wAB1V graphs.

Theorem 8 For every k ≥ 0, the classes of k-planar (bar (1, k)-visibility) graphs
and wAB1V graphs are incomparable.

Proof: There are planar graphs that are not wAB1V graphs, which proves one
direction. Conversely, consider graphs that are obtained from K2,n by at least
one path-addition between each pair of vertices from the set of n vertices. Each
such graph is a wAB1V graph by the closure of wAB1V under path-addition, as
established in Theorem 3. However, for n ≥ 4k + 9 the graphs are not k-planar
and not bar (1, k)-visibility graphs, as shown in [12]. �

Similarly, there are counterexamples for outer fan-planar and fan-planar
graphs.

Theorem 9 The classes of wAB1V and outer fan-planar graphs are incompa-
rable.

Proof: Outer fan-planar graphs of size n have at most 3n − 5 edges [6], but
there are AB1V graphs with 4n− 10 edges.



JGAA, 21(3) 281–312 (2017) 303

Conversely, consider the outer fan-planar graph G from Fig. 7, which is
built in three stages. First, G has a central K5 with vertices v1, . . . , v5, which
is drawn as a pentagram with edges (vi, vi+1) for i = 1, . . . , 5 with v6 = v1 in
the outer face. There is a subgraph associated with each outer edge as depicted
in Fig. 7(b). In the second stage, for i = 1, . . . , 5 with v6 = v1, there are four
new vertices such that the subgraph induced by {vi, vi+1} and {ui1, . . . , ui4} is
K2,4. Third, let vi = ui0 and vi+1 = ui5 and add three new vertices wi

j , x
i
j , y

i
j

for i = 1, . . . , 5 and j = 0, . . . , 4, which together with vertices uij , u
i
j+1 induce a

cluster. In total, G has 100 vertices and 290 edges.
G is outer fan-planar as shown in Fig. 7.
Assume, for a contradiction, that G has an AB1V representation (in which

edges may be omitted). Lemma 1 applies to each cluster C. In particular, there
is no other vertex with a long bar between the vertices of C which disturbs the
AB1V representation of C. We say that two vertices x and y see each other
if both are members of a cluster. Then there is a planar line of sight between
the bars of x and y at level l, where l is the length of the shorter bar. A vertex
disturbs if it prevents a bar 1-visibility of two other vertices.

Suppose vi1 <t . . . <t vi5 is the t-order of the vertices of the central K5.
Since there is a triangle by the vertices vi2 , vi3 , vi4 , at least one of the edges of
the triangle is an outer edge and has an associated K2,4. Let (vs, vt) be the
outer edge. Suppose that vs <r vt. Then vs has at most the second shortest bar
of the vertices of the central K5 and therefore vs <r {vi1 , vi5} by Lemma 1.

Consider a partial AB1V representation with vertices V ′ = {vi1 , vp, vq, vi5}
and U = {u1, . . . , u4} of the associated K2,4. Note that {vi1 , u1}, {vi5 , u4},
{uj , uj+1} for j = 1, 2, 3, and {vi1 , vp}, {vp, vq} and {vq, vi5} pairwise see each
other if the fifth vertex w ∈ {vi2 , vi3 , vi4} − {vp, vq} is ignored. Towards a
contradiction, we show that there is no partial AB1V representation of G[V ′∪U ]
which respects the pairs of vertices that see each other.

First, observe that the vertices of U cannot be placed between vp and vq, i.e.,
vp <t U <t vq, since the least vertex of U in r-order is not 1-visible from vp and
vq, and there is no K2,4. Second, if some vertex u ∈ U is placed to the left of vp,
then all vertices of U must be placed to the left of vp, since u must see one or
two vertices of U , and this relation is transitive on U . This holds accordingly
for vi1 and for vq and vi5 with a placement to the right. Finally, suppose that
all u ∈ U are placed to the left of vp. If the vertices of U are placed between vi1
and vp, then their bars must be shorter than the bar of vp. Now vq cannot see
u4 since vp disturbs. Otherwise, if the vertices of U are placed to the left of vi1 ,
then vp cannot see u1, since vi1 disturbs. The placement of the vertices of U to
the right is similar and also leads to a contradiction. �

Next, we address fan-crossing free graphs. First, we show that there are
graphs with a unique fan-crossing free embedding, which may be useful in further
studies of fan-crossing free graphs.

Lemma 9 A fan-crossing free embedding of K5 has one pair of crossing edges
and is unique up to graph automorphism (labeling of the vertices).
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(a) (b)

Figure 7: An outer fan-planar graph which is not an AB1V graph. Gray areas
in (a) are the subgraphs displayed in (b).

Figure 8: A fan-crossing-free embedding of K5

Proof: There is a fan-crossing free embedding of K5 as shown in Fig. 8. Clearly,
any embedding of K5 has a pair of crossing edges with a crossing point. Then
the remaining fifth vertex cannot be placed in a triangle with the crossing point
and two other vertices of K5 in a fan-crossing free embedding. Hence, only the
embedding as in Fig. 8 remains, which is unique up to a graph automorphism
[36]. Note that we exclude crossings of edges incident to a common vertex. �

Lemma 10 There are fan-crossing free graphs with an almost fixed fan-crossing
free embedding.

Proof: Consider the graph A = Gk[V0] with vertices v1, . . . , v10 in t-order and
r1, . . . , r10 in r-order from Fig. 4 and a fan-crossing free embedding in Fig. 12.
We prove property (*) which implies that all but the placement of vertex r10 is
fixed. The outer face is opposite to the face containing r6 in the embedding of
the initial K5.

For convenience, we consider the vertices {r1, . . . , r10} of A in the r-order
of the AB1V representation from Fig. 4 such that there are six clusters Ci =
A[ri, . . . , ri+4] for i = 1, . . . , 6. We successively add the vertices r6, . . . , r10 to
an initial fan-crossing free embedding of the first cluster C1 and establish the
following property:

(*) In any fan-crossing free embedding E(A), vertex ri for i = 6, . . . , 9 must be
placed in a triangle ∆i = ∆(ri−3, ri−2, ri−1) and the edges of ∆i are planar.
Finally, r10 is placed in ∆8.

In consequence, all vertices rj with j ≥ i are placed in ∆i and there is a
nesting of E(A) as shown in Fig. 12.
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For the proof of (*), first observe that vertex ri for i ≥ 6 cannot be placed in
a triangle ∆(u, v, x) of the planarization of E(A[r1, . . . , ri−1]) if x is a crossing
point of two edges. A planarization of an embedding treats a crossing point as a
special vertex of degree four which subdivides the crossed edges and belongs to
four triangles. All faces are triangles by construction. A planarization converts
an embedding with crossings into a planar embedding. The observation is due
to the fact that ri has four neighbors in {r1, . . . , ri−1} and the edges to at least
two vertices not in ∆(u, v, x) inevitably introduce a fan-crossing if ri is placed
in ∆(u, v, x).

Hence, the triangles ∆ of the planarization of E(A[r1, . . . , ri−1]) with a
crossing point are excluded for a placement of any vertex rj for j ≥ i.

From now on we construct a fan-crossing free embedding of A. By Lemma 9
the embedding of the first cluster A[r1, . . . , r5] is as in Fig. 8. Since the vertices
r1, . . . , r5 are not yet determined, we rename them to x1, . . . , x5.

We choose the outer face as given and insert vertex r6 in the triangle
∆(x1, x2, x3). Since r6 has four neighbors in {x1, . . . , x5}, at least one edge
of (x1, x3) and (x2, x3) is crossed by an edge (r6, x4) or (r6, x5).

Towards a contradiction, suppose that ∆(x1, x2, x3) is not the triangle of
r3, r4, r5, i.e., {x1, x2, x3} 6= {r3, r4, r5}. Then both edges (x1, x3) and (x2, x3)
are crossed by edges incident to r6, as illustrated in Fig. 9. Assume that r6 has
neighbors x1 and x3, which implies x2 = r1 and thereby determines the first
vertex of x1, . . . , x5. The two other cases are similar. For the placement of r7,
there are only two regions left, the outer face ∆(x3, x4, x5) and an inner face
with vertices x1, r6, x4 and two crossing points, but both fail. Since x2 = r1, r7
cannot be placed in the inner face, since two of its neighbors from {r4, r5, r6}
are in the outer face and cannot be reached from r7 without a fan-crossing. If r7
is placed in the outer face, then edge (r6, r7) introduces a fan-crossing.

Assume that edge (x1, x3) is crossed by (r6, x4). This enforces x5 = r1. The
case where (x2, x3) is crossed by (r6, x5) and x4 = r1 is similar. Then r7 can
be placed in one of the triangles ∆(x1, x2, r6),∆(x2, x3, r6) or ∆(x2, x3, r1), see
Fig. 10. The outer face is excluded, since (r6, r7) would introduce a fan-crossing.

If r7 is placed in ∆(x2, x3, r1) (the dark shaded area in Fig. 10), then x1 = r2
and the edges (r3, x5) and (x2, x3) are crossed by the edges (r7, x4) and (r7, r6),
respectively. Thereafter, only ∆(x1, x2, r6) is left for a placement of r8; however,
edge (r7, r8) introduces a fan-crossing.

Hence, r7 must be placed in another triangle, which implies x4 = r2. Now
we have {r3, r4, r5} = {x1, x2, x3} such that r6 is placed in the “good” triangle
as stated in (*).

Next, suppose that r7 is placed in ∆(x2, x3, r6), see Fig. 11; the other case is
symmetric and yields another labeling of x1, x2, x3 by r3, r4, r5. Then (x1, r7)
crosses (x2, r6), which implies x1 = r3 and leaves ∆(x2, x3, r7) and ∆(x3, r6, r7)
for a placement of r8. The triangle ∆(x2, x3, r1) is excluded, since edge (r6, r8)
introduces a fan-crossing.

If r8 is placed in ∆(x2, x3, r7), then (r6, r8) crosses (r7, x3) and leaves no face
for a placement of r9. Hence, r8 must be placed in ∆(x3, r6, r7), which implies
x2 = r4 and x3 = r5. Now all initial vertices x1, . . . , x5 are determined. If the
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Figure 9: A fan-crossing-free embedding if vertex r6 is placed in a bad face with
only two neighbors in the face

next vertex r9 is placed in the triangle of r6, r8, x3, then there is no face for r10.
Hence, r9 must be placed in the triangle of r6, r7, r8 and (r9, r5) crosses (r6, r8).
Thereafter, r10 can be placed in ∆(r6, r7, r9) or in ∆(r7, r8, r9). If the sequence
is continued by some r11, r12, . . ., then r10 must be placed in ∆(r7, r8, r9).

In summary, the vertices r1, . . . , r5 are determined and property (*) is pre-
served, which implies an almost fixed embedding. �

Lemma 11 There are wAB1V graphs that are not fan-crossing free.

Proof: Our counterexample G consisting of the graph A = Gk[V0] from Fig. 4
together with a single vertex z which is connected to v2, . . . , v5 or r2, r4, r6, r8
and is placed between v3 and v4 or r4 and r6 with a short bar. Thus z = u1 and
u2, . . . , u6 are removed.

As shown in Lemma 10, there is a unique fan-crossing free embedding of E(A)
up to the choice of two triangles for the placement of r10. However, there is no
face left for a placement of vertex z with the given neighbors without introducing
a fan-crossing. A candidate triangle with vertices r5, r7, r8 fails because of the
edges (r2, z) and (r6, z) and similarly, the triangle with vertices r5, r6, r8 fails
because of the edges (r4, z) and (r2, z).

More counterexamples can be constructed by adding more vertices to G, as
in Lemma 10. �

In consequence, we can establish a further incomparability.

Theorem 10 The classes of wAB1V graphs and (a) RAC graphs and (b) fan-
crossing free graphs are incomparable.

Proof: There are planar graphs of minimum degree five which are not wAB1V
graphs, and conversely the graph G from Lemma 11 is wAB1V and not fan-
crossing free and therefore not RAC, since every RAC graph is fan-crossing free.

�
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Figure 10: A fan-crossing-free embedding after vertex r6 is placed. Vertex r7 can
be placed in one of the shaded triangles and a placement in the darker shared
triangle fails.
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Figure 11: A fan-crossing-free embedding after placing r6 and r7
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Figure 12: A fan-crossing-free embedding of the A graph from the proof of
Lemma 10. Vertex r10 can be placed in the shaded area. There is no face left
for vertex z with neighbors r2, r4, r6, r8 from the proof of Lemma 11.
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quasi-planar
6.5n-20

outer 1-planar
2.5n-4

wAB1V
4n-10

bar 1-visibility
6n-20
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fan-crossing free
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Figure 13: Relationships between AB1V graphs and other classes of beyond-
planar graphs. An arrow indicates proper inclusion and no path to/from AB1V
indicates incomparability. The formula below the class name gives the maximum
number of edges. Classes with a closed boundary are closed under path-addition,
whereas classes with a dotted boundary are not closed under path-addition [12].

The relationships of the class of wAB1V graphs to other classes of beyond-
planar graphs are illustrated in Fig. 13. An “arrow” indicates a proper inclusion,
whereas “no path” indicates incomparability. The incomparability has been
proved for wAB1V and all shown classes except for fan-planar and outer fan-
crossing free graphs. Outer fan-crossing free graphs have not yet been studied in
detail. They may be included in wAB1V , but not conversely, since K5 is not
outer fan-crossing free by Lemma 9. Accordingly, there are fan-planar graphs
that are not wAB1V by Lemma 9 and fan-planar graphs are not closed under
path-addition [12]. We conjecture that all illustrated incomparabilities hold.

The bar (i, j)-visibility graphs [13] and the bar (1, 1)-visibility graphs [9]
are shown to be incomparable with wAB1V . These classes range between the
classes of 1-planar and bar 1-visibility graphs.

Clearly, the subclasses IC-planar [28] and NIC-planar [40] of the 1-planar
graphs are also incomparable with wAB1V , since they include the planar graphs
and do not include graphs with 4n− 10 edges.

Finally, wAB1V graphs have geometric thickness two [25], and graphs with
geometric thickness two are quasi-planar. The relationship of wAB1V and RVG
(rectangle visibility graphs) [27] is open and we conjecture incomparability.
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7 Conclusion

In this work we extended the studies of Felsner and Massow [25] on AB1V
graphs and added new properties and relationships.

Our studies have revealed new problems, such as the closure of classes of
graphs under path-addition and the relation of AB1V graphs to other classes of
beyond-planar graphs. Of interest are recognition problems, in particular for
weak AB1V graphs, and the relationship of AB1V graphs to further classes of
beyond-planar graphs. It might be worthwhile to study the relationship between
classes of optimal or maximal graphs.
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