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Abstract

This paper is devoted to the problem of existence of all (g, f)-factors
in a bipartite graph. We present an algorithm to test if a given bipartite
graph contains all (g, f)-factors. In this way we give the affirmative answer
to the question stated by Niessen. An analogous result for general graphs
remains still unanswered.
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1 Introduction

Niessen in his paper [4] asks whether there exists a polynomial-time algorithm
for testing if a graph has all (g, f)-factors. This work solves this problem for
bipartite graphs.

The paper is organized as follows. We first present the necessary formal
background on matching theory in Section 2. Then, in Section 3 we study
various conditions under which a bipartite graph contains all (g, f)-factors and
give a polynomial algorithm in Section 4. Finally, in Section 5 we state some
open problems and conclude.

2 Preliminaries

We start with formal definitions of the central concepts. We recall some ter-
minology of matching theory that we use in the rest of the paper. We assume
that the reader is familiar with the essentials of graph theory (see [2]). We use
standard terminology but for the sake of clarity we repeat the most important
definitions and notations from [1].

Let G be a bipartite graph, and let (g, f) be a pair of mappings of V (G)
into the non-negative integers such that 0 ≤ g(x) ≤ f(x) ≤ dG(x), where dG(x)
denotes the degree of the vertex x, i.e. the number of adjacent edges. A (g, f)-
factor of G is a spanning subgraph F with the property that g(x) ≤ dF (x) ≤
f(x) hold for each x ∈ V (G). A (g, f)-factor of G with the minimum number of
edges is called a minimum (g, f)-factor. The maximum (g, f)-factor is defined
analogously.

For fixed g and f , a graph is said to have all (g, f)-factors if it has an (h, h)-
factor for every function h with g(x) ≤ h(x) ≤ f(x) for all vertices x and where
h(V ) is even, whereby h(V ) =

∑
x∈V (G) h(x).

A bipartite graph with bipartion (X,Y ) has all (g, f)-factors if function h
satisfies the necessary condition for the existence of h-factors, i.e. h(X) = h(Y ).

3 Some results concerning (g, f)-factors

It is well known that a maximum matching can be obtained from any other
maximum matching by a sequence of transfers along alternating cycles and
paths of even length (see, for example, Theorem 5.1.7 in [1]). The similar result
holds for f -factors (see Theorem 7.2.4 in [1]).

Just as for matchings and f -factors, we can transform any (g, f)-factor into
any other by a series of transformations. These transformations are based on
alternating paths and cycles. We investigate some properties of factor transfor-
mation in bipartite graphs. That is, given two factors in G, we can start with
one and transform to another one through the operation of symmetric difference.
Combining theorems with properties we can deduce the following result.



JGAA, 21(4) 555–560 (2017) 557

Theorem 1 A (g, f)-factor F of a bipartite graph G can be obtained from any
other (g, f)-factor F ′ by a sequence of transfers along alternating cycles of even
length and alternating paths of even and odd length.

Proof: The proof of this theorem is similar to that of Theorem 7.2.4 in [1].
Thus, we only give an intuitive argument. First we must convert a (g, f)-
factor problem in G to an f -factor problem in a more complex graph G∗. We
construct a new graph G∗ from G as follows. The construction we present is
due to Tutte [5], who in 1981 gave an elegant reduction of (g, f)-factor problem
to the f -factor problem.

We introduce one new vertex w to G, and join w to every vertex x of G by
exactly f(x)− g(x) new multiple edges. Finally we attach b q2c new loops to w,
where q is an integer expressed as

q =
∑

x∈V (G)

(f(x)− g(x))

and must have the same parity as the number
∑

x∈V (G) f(x). We next define

the function f∗ : V (G∗)→ Z+ as

f∗(x) =

{
f(x) if x ∈ V (G),
q if x = w.

It is not difficult to check that any f∗-factor of G∗ corresponds exactly to
a (g, f)-factor of G (by removing from the graph the dummy vertex w with all
adjacent edges).

Now let F1 and F2 be two (g, f)-factors of G. Each factor corresponds to
an f -factor in G∗, say F ∗1 and F ∗2 , respectively. According to Theorem 7.2.4
in [1] F ∗1 can be transformed into F ∗2 by a sequence of transfers along closed
alternating trails relative to F ∗1 . Each of these closed trails, after removal of w,
correspond to an alternating trail relative to F ∗1 , and this trail is itself a union
of alternating cycles of even length (when they contain only vertices of G), and
union of alternating paths of even (when they lead through w) and odd length
(when they contain any loop attached to w). Thus, the theorem is established.

�

We now prove the theorem that if a bipartite graph G contains a (g, f)-factor
with the property that if for every vertex x there exists a (g, f)-factor F such
that dF (x) = g(x) and there exists a (g, f)-factor F ′ such that dF ′(x) = f(x)
then G contains for every vertex x and every number d(x) between f(x) and
g(x) a (g, f)-factor with degree d(x) at x.

Observe that the above criterion does not mean that if G contains a (g, g)-
factor and an (f, f)-factor then G contains all (g, f)-factors.

Theorem 2 Let G be any bipartite graph with the mappings g and f as required
above. For any vertex x ∈ V (G) the degrees of x in (g, f)-factors form a sequence
of consecutive integers.
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Proof: Let F g(x) be a (g, f)-factor such that dF (x) = g(x) and let F f(x)

be a (g, f)-factor such that dF (x) = f(x). According to Theorem 1 we can
transform F g(x) into F f(x) by a sequence of transfers along alternating cycles
and alternating paths. Observe that each transfer along any alternating path
does not change the degrees of internal vertices but only changes the degrees of
endpoints by 1. Since any alternating path changes the degree of x by at most
1, the degrees of x in the intermediate (g, f)-factors F will cover every integer
in the interval [g(x), f(x)]. �

Let us remark that the above theorem does not hold for general graphs.
As a counter-example let us take the graph K3 with the following mappings:
f(x1) = g(x1) = 1, f(x2) = g(x2) = 1, f(x3) = 0 and g(x3) = 2. There exists
no (g, f)-factor F with dF (x3) = 1 (see Figure 10.2.2 in [3]).

4 Algorithm

Assume now that a (g, f)-factor F in a graph G is initially found. We can
classify the vertices of G (with respect to F ) into the following categories:

• positive vertex, if g(x) ≤ dF (x) < f(x),

• negative vertex, if g(x) < dF (x) ≤ f(x),

• neutral vertex, if g(x) = dF (x) = f(x).

Observe that when a graph G with a (g, f)-factor is given the following
alternating paths can be distinguished:

• an even alternating path leading from a positive vertex v and a free edge
to a negative vertex w, or vice versa. In the first case the degree of v in
F will be increased by 1, whereas the degree of w will be decreased by 1,
or vice versa.

• an odd alternating path leading from a positive vertex v and a free edge
to another positive vertex w. In this case the degree of both v and w will
increase by 1.

• an odd alternating path leading from a negative vertex v and a matched
edge to another negative vertex w. In this case the degree of both v and
w will decrease by 1.

Observe that the operation of symmetric difference on the alternating path
does not change the degrees of internal vertices. The same holds for alternating
cycles.

From the above considerations we can receive an easy algorithm to test if a
given bipartite graph G with pair of mappings (g, f) possesses all (g, f)-factors.
First, we have to check the necessary condition. For a specific vertex x we check
whether there exists a (g, f) factor F such that dF (x) = g(x) and a (g, f) factor
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F ′ such that dF ′(x) = f(x). Next, we compute the minimum (g, f)-factor and
for every positive/negative vertex we test whether there exists an alternating
path to another positive/negative vertex. Finally, we examine the conditions for
the maximum (g, f)-factor. If these criteria hold for all vertices in V (G) then
the bipartite graph has all (g, f)-factors. Observe that the algorithm requires
O(n ·m) steps (assuming that the (g, f)-factor in G has been found), where n
is the number of vertices and m is the number of edges in G.

Thus, an algorithm for testing if a graph G has all (g, f)-factors looks as
follows:

1. check the necessary condition,

2. for every positive/negative vertex check if there exists an alternating path
to every positive/negative vertex with respect to the minimum and max-
imum (g, f)-factor,

3. if yes, then the graph has all (g, f)-factors.

5 Conclusion

We have proven that bipartite (g, f)-factors have a continuity property. We
know that this result does not hold for general graphs. But an interesting
question is whether we can determine vertices in a general graph whose degrees
are consecutive in (g, f)-factors.

Of course, one can use standard algorithms for the existence of (g, f)-factors
to check whether, for every single vertex x and every number h with g(x) ≤
h ≤ f(x), there is a (g, f)-factor F of G with dF (x) = h. As there are O(n2)
possibilities of picking x and h, one can easily check this property in polynomial
time. However, this brute-force method is not efficient, and therefore we present
an algorithm only for bipartite graphs. This means that the open problem of
efficiently checking whether a graph has all (g, f)-factors still remains not solved
for general case.



560 Rados law Cymer A Note on the Existence of All (g, f)-Factors

References

[1] A. S. Asratian, T. M. J. Denley, and R. Häggkvist. Bipartite Graphs and
their Applications. Cambridge University Press, Cambridge, 1998.

[2] M. Gondran and M. Minoux. Graphs and Algorithms. John Wiley & Sons,
New York, 1984.

[3] L. Lovász and M. D. Plummer. Matching Theory. Annals of Discrete Math-
ematics (29). North-Holland, Amsterdam, 1986.

[4] T. Niessen. A characterization of graphs having all (g, f)-factors. Journal of
Combinatorial Theory, Series B, 72(1):152–156, 1998. doi:10.1006/jctb.

1997.1797.

[5] W. T. Tutte. Graph factors. Combinatorica, 1(1):79–97, 1981. doi:10.

1007/BF02579180.

http://dx.doi.org/10.1006/jctb.1997.1797
http://dx.doi.org/10.1006/jctb.1997.1797
http://dx.doi.org/10.1007/BF02579180
http://dx.doi.org/10.1007/BF02579180

	Introduction
	Preliminaries
	Some results concerning (g,f)-factors
	Algorithm
	Conclusion

