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Abstract

In this paper we give a necessary condition and a sufficient condition
for a graph to be a pairwise compatibility graph (PCG). Let G be a graph
and let Gc be the complement of G. We show that if Gc has two disjoint
chordless cycles then G is not a PCG. On the other hand, if Gc has no cycle
then G is a PCG. Our conditions are the first necessary condition and the
first sufficient condition for pairwise compatibility graphs in general. We
also show that there exist some graphs in the gap of the two conditions
which are not PCGs.
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1 Introduction

Let T be an edge-weighted tree and let dmin and dmax be two non-negative
real numbers such that dmin ≤ dmax. A pairwise compatibility graph (PCG)
of T for dmin and dmax is a graph G = (V,E), where each vertex u′ ∈ V
represents a leaf u of T and there is an edge (u′, v′) ∈ E if and only if the
distance between u and v in T , denoted by dT (u, v), lies within the range from
dmin to dmax. We denote a pairwise compatibility graph of T for dmin and dmax

by PCG(T, dmin, dmax). A graph G is a pairwise compatibility graph (PCG) if
there exists an edge-weighted tree T and two non-negative real numbers dmin

and dmax such that G = PCG(T, dmin, dmax). An edge-weighted tree T is called
a pairwise compatibility tree (PCT) of a graph G if G = PCG(T, dmin, dmax)
for some dmin and dmax. Figure 1(a) depicts a pairwise compatibility graph
G and Fig. 1(b) depicts a pairwise compatibility tree T of G for dmin = 4
and dmax = 5. Evolutionary relationships among a set of organisms can be
modeled as pairwise compatibility graphs [9]. Moreover, the problem of finding
a maximal clique can be solved in polynomial time for pairwise compatibility
graphs if one can find their pairwise compatibility trees in polynomial time [9].
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Figure 1: (a) A pairwise compatibility graph G and (b) a pairwise compatibility
tree T of G.

Constructing a PCT of a given graph is a challenging problem. It is in-
teresting that there are some classes of graphs with very restricted structural
properties whose PCT are unknown. For example, it is unknown whether suf-
ficiently large wheel graphs and grid graphs are PCGs or not. It is known that
some specific graphs of 8 vertices, 9 vertices, 15 vertices, and 20 vertices are
not PCGs [8, 13]. On the other hand, some restricted subclasses of graphs like,
cycles, paths, trees, interval graphs, triangle free outerplanar 3-graphs, chord-
less cycles and single chord cycles, ladder graphs and some particular subclasses
of bipartite graphs are known as PCGs [12, 13, 14, 11, 5]. It is also known
that any graph of at most seven vertices [4] and any bipartite graph with at
most eight vertices [10] are PCGs. Furthermore a lot of work has been done
concerning some particular subclasses of PCG as leaf power graphs [1], exact
leaf power graphs [3] and lately a new subclass has been introduced, namely the
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min-leaf power graphs [2]. However the complete characterization of a PCG is
not known. We refer the reader to [7] for more details on PCG.

In this paper we give a necessary condition and a sufficient condition for
a graph to be a pairwise compatibility graph based on the complement of the
given graph. Let G be a graph and let Gc be the complement of G. We prove
that if Gc has two disjoint chordless cycles then G is not a PCG. On the other
hand, if Gc has no cycle then G is a PCG. We also show that there exist some
graphs in the gap of the two conditions which are not PCGs.

The rest of the paper is organized as follows. In Section 2 we give some defi-
nitions that are used in this paper. In Section 3 we prove a necessary condition
for PCG. We give a sufficient condition for PCG in Section 4. In Section 5 we
show that there exist some graphs in the gap of the two conditions which are
not PCGs. Finally, Section 6 presents some interesting open problems.

2 Preliminaries

Let G = (V,E) be a simple graph with vertex set V and edge set E. Let V ′

and E′ be subsets of V and E, respectively. The graph G′ = (V ′, E′) is called
a subgraph of G, and G′ is an induced subgraph of G if E′ is the set of all edges
of G whose end vertices are in V ′. The complement of G is the graph Gc with
the vertex set V but whose edge set consists of the edges not present in G. A
chord of a cycle C is an edge not in C whose endpoints lie in C. A chordless
cycle of G is a cycle of length at least four in G that has no chord. For a vertex
v of a graph G, N(v) = {u|(u, v) ∈ E} denotes the open neighborhood. Let
G1 = (V1, E1) and G2 = (V2, E2) be two induced subgraphs of G. We call the
subgraphs G1 and G2 disjoint if they do not share a vertex and there is no edge
(u, v) ∈ E such that u ∈ V1 and v ∈ V2. The cycles C1 and C2 drawn by thick
lines in the graph in Fig. 2 are disjoint cycles. On the other hand, the cycle C1

drawn by thick line and the cycle C3 indicated by dotted lines are not disjoint
since the edge (c, g) has one end vertex c in C1 and the other end vertex g in
C3.

Let G = PCG(T, dmin, dmax), and let v be a leaf of T . Then we denote the
corresponding vertex of v in G by v′ and vice versa. The following lemma is
known on a forbidden structure of PCG.

Lemma 1 [8] Let C be the cycle a′, b′, c′, d′ of four vertices. If
C = PCG(T, dmin, dmax) for some tree T and values dmin and dmax,
then dT (a, c) and dT (b, d) cannot be both greater than dmax.

A graph G(V,E) is an LPG (leaf power graph) if there exists an edge-
weighted tree T and a nonnegative number dmax such that there is an edge
(u, v) in E if and only if for their corresponding leaves u′, v′ in T , we have
dT (u

′, v′) ≤ dmax. We write G = LPG(T, dmax) if G is an LPG for a tree T
with a specified dmax. Again G is an mLPG (minimum leaf power graph) if
there exists an edge-weighted tree T and a nonnegative number dmin such that
there is an edge (u, v) in E if and only if for their corresponding leaves u′, v′
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Figure 2: A graph G with two disjoint chordless cycles whose complement is
not a PCG.

in T , we have dT (u
′, v′) ≥ dmin. We write G = mLPG(T, dmin) if G is an

mLPG for a tree T with a specified dmin. Both LPG and mLPG are subclasses
of PCG [5]. The following lemmas are known on LPG and mLPG.

Lemma 2 [6] Let Cn be a cycle of length n ≥ 5, then Cn /∈ mLPG.

Lemma 3 [5] The complement of every graph in LPG is in mLPG and con-
versely, the complement of every graph in mLPG is in LPG.

3 Necessary Condition

In this section our aim is to prove that for a given graph G, if Gc has two disjoint
chordless cycles of length four or more then G is not a PCG. We first prove the
following lemma.

Lemma 4 Let G = (V,E) be a graph. Let G1 = (V1, E1) and G2 = (V2, E2) be
two induced subgraphs of G with no common vertices in G1 and G2. Assume
that V2 ⊂ N(u′) and V1 ⊂ N(v′) in G for every u′ ∈ V1 and every v′ ∈ V2. If
neither G1 nor G2 is an mLPG, then G is not a PCG.

Proof: Let T1 be a PCT of G1 such that G1 = PCG(T1, dmin1, dmax1) and T2

be a PCT of G2 such that G2 = PCG(T2, dmin2, dmax2). Since G1 is not an
mLPG, there exist two leaves a, c in T1 such that dT1

(a, c) > dmax1, and two
leaves b, d in T2 such that dT2

(b, d) > dmax2.
Assume for a contradiction that G = PCG(T, dmin, dmax). Then T has

two subtrees T1 and T2 such that G1 = PCG( T1, dmin, dmax) and G2 =
PCG(T2, dmin, dmax). Since there exists a pair of leaves a, c in T1 such that
dT1

(a, c) > dmax and exists a pair of leaves b, d in T2 such that dT2
(b, d) > dmax,

both dT (a, c) and dT (b, d) are greater than dmax in T . Then G does not have
the edges (a′, c′) and (b′, d′). Hence the induced subgraph of vertices a′, b′, c′, d′
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Figure 3: Illustration for Lemma 4.

is a cycle in G because V2 ⊂ N(u′) and V1 ⊂ N(v′) in G for each u′ ∈ V1 and
each v′ ∈ V2 (see Fig. 3), a contradiction to Lemma 1. �

Since every vertex of G1 is a neighbor of every vertex of G2 in Lemma 4,
there is no edge (u, v) in Gc where u ∈ V1 and v ∈ V2. That means Gc

1
and Gc

2

are disjoint for the graphs G1 and G2 in Lemma 4. Thus the following lemma
is immediate.

Lemma 5 Let G be a graph. Let H1 and H2 be two disjoint subgraphs of Gc.
If neither Hc

1
nor Hc

2
is an mLPG, then G is not a PCG.

It would be interesting to investigate what could be the smallest subgraph
Hc

1
or Hc

2
, where there always exists a pair of leaves with weighted distance

greater than dmax in its PCT. Our goal is to show that Hc
1 or Hc

2 could be a
chordless cycle or the complement of a cycle.

Lemma 6 Let Cn be a cycle of length n vertices. If n ≥ 5, then Cn is not an
mLPG. If n ≥ 4, then Cc

n
is not an mLPG.

Proof: By Lemma 2 and Lemma 3, the claim is true for n ≥ 5. The proof for
the case when n = 4 can be obtained using a known result that every LPG is a
chordal graph [7]. However, here we give an independent proof for completeness.

Let C4 be the cycle a′, b′, c′, d′ of four vertices. Let Cc
4
= PCG(T1, dmin1,

dmax1). We prove that there exist a pair of leaves in T1 whose weighted distance
is greater than dmax1. Note that C

c
4
contains only two edges (a′, c′) and (b′, d′).

For contradiction assume that dT1
(a, b), dT1

(b, c), dT1
(c, d), dT1

(d, a) are smaller
than dmin1. Then Cc

4 = mLPG(T1, dmin1). By Lemma 3, C4 = LPG(T1, dmax)
or PCG(T1, 0, dmax) for some dmax. Since (a′, c′) and (b′, d′) are the non-
adjacent pair in C4, both dT1

(a, c) and dT1
(b, d) are greater than dmax. But

both dT1
(a, c) and dT1

(b, d) can not be greater than dmax by Lemma 1, a con-
tradiction. �
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We now have the following theorem, which is the main result of this section.
The proof of the theorem is immediate from Lemma 5 and Lemma 6.

Theorem 1 Let G be a graph. Let H1 and H2 be two disjoint induced subgraphs
of Gc. If each of H1 and H2 is either a chordless cycle of at least four vertices
or Cc

n for n ≥ 5, then G is not a PCG.

4 Sufficient Condition

In this section we show that if the complement of a graph has no cycle then the
graph is a PCG.

Salma et. al. [12] showed that every tree T is a PCG where
T = PCG(T, 3, 3). They compute the edge-weighted tree T easily by
taking a copy of T and attaching each vertex as a pendant vertex with its
original one. Then set weight 1 to each edge. It can be easily verified that T is
a PCT of T for dmax = 3 and dmin = 3. For the same settings it is also true
that T = LPG(T, 3). We extend this technique and show that every forest is a
LPG as in the following lemma.

Lemma 7 Let T be a forest. Then T = LPG(T, 3). Furthermore the edge-
weighted tree T can be found in linear time.

Proof:
Let T be a forest of trees T1, T2, · · · , Tk. We find Ti = LPG(Ti, 3) for each

tree as described above. Then for 2 ≤ i ≤ k we join Ti with
∑

Ti−1, where∑
Ti−1 is the resultant merged trees up to i − 1, as follows. Take two internal

vertices u and v from Ti and
∑

Ti−1, respectively. If no internal vertex exists
in Ti or

∑
Ti−1 then u or v could be a leaf. Then add an edge between u

and v in
∑

Ti with weight 3. In this way we get T =
∑

Tk. Figure 4(a) and
Figure 4(b) illustrate a forest T and an edge-weighted tree T for T = LPG(T, 3),
respectively. It is easy to see that T for T = LPG(T, 3) can be constructed in
linear time.

�

We now show that if the complement of a graph has no cycle then the graph is
a PCG as in the following theorem.

Theorem 2 Let G be a graph. If Gc has no cycle then G is a PCG.

Proof: Let G be a graph. If Gc has no cycle then Gc is a forest. By Lemma 7,
Gc = LPG(T, 3). It can be easily verified that G = mLPG(T, 4). Moreover, by
Lemma 3 G is a PCG.

�

5 Characterizing the Intermediate Graphs

In Section 3 we have shown that if a graph G is a PCG, then Gc cannot contain
two disjoint induced chordless cycles. Recall that two chordless cycles C1 and
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Figure 4: (a) A forest T and (b) the edge-weighted tree T for T = LPG(T, 3).

C2 in Gc are disjoint if they are vertex disjoint, and there does not exist any
edge (u, v) in Gc where u ∈ C1 and v ∈ C2. On the other hand, in Section 4
we have proved that if Gc does not contain any cycle, then G is a PCG. Some
interesting classes of graphs that remain in the gap are as follows.

G1: A graph G belongs to G1 if Gc does not contain any chordless cycle.
Fig. 5(a) shows such an example of Gc.

G2: A graph G belongs to G2 if Gc consists of two induced chordless cycles,
where the cycles share some common vertices, e.g., see Fig. 5(b).

G3: A graph G belongs to G3 if Gc consists of two induced chordless cycles
and some edges that are incident to both cycles, e.g., see Fig. 5(c).

G4: A graph G belongs to G4 if Gc contains only one induced chordless cycle,
e.g., see Fig. 5(d).

We now show that there exist graphs in G1 and G3 that are not PCGs, which
leaves the characterization for the remaining two graph classes G2 and G4 open.

Theorem 3 Each of G1 and G3 contains a graph that is not a PCG.

Proof: We first briefly review a result of Yanhaona et al. [13] that proves the
existence of a bipartite graph, which is not a PCG. We then use this bipartite
graph to construct instances of G1 and G3, which are not PCGs.

Review of Yanhaona et al.’s [13] Result: Let H = (V,E) be a bipartite
graph with vertex partition V = (A∪B), where |A| = 5, |B| = 10, and each set
of three vertices in A is adjacent to a distinct vertex in B. Yanhaona et al. [13]
proved that H is not a PCG. Specifically, they showed that for every pairwise
compatibility tree T and a set L of five leaves in T , the following property holds
in the corresponding pairwise compatibility graph G = PCG(T, dmin, dmax).
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Figure 5: Illustration for open problems.

Neighborhood Property: There exists a set Q ⊂ L of three vertices in G
such that any vertex u 6∈ L, which is adjacent to all the vertices of Q,
must be adjacent to at least one of the vertices in L \Q.

Now consider the graph H . Observe that for every set Q of three vertices in
A(= L), there exists a vertex u ∈ B, which is adjacent to all the vertices in
Q, but not to the vertices of A \ Q. Therefore, the Neighborhood Property is
violated for some choice of Q and u. Consequently, the graph H is not a PCG.

An interesting consequence of the above proof is the following. Any graph
that contains H as a subgraph, but does not introduce any new edge joining
a vertex in A to a vertex in B, is not a PCG. For example, one can insert
some edges with both end vertices in A, and similarly, some edges with both
end vertices in B, but this also yields a graph which is not a PCG. Specifically,
let H be the class of graphs that includes all the graphs obtained from H by
inserting edges in the same set of H . Then none of the graphs in H is a PCG.

A Negative Example for G1: Construct a graph H1 from H by inserting
edges in the set A such that the vertices in A form a clique of five vertices.
Figure 6 shows an example of H1. It is straightforward to observe that H1 ∈ H,
and hence it is not a PCG. We now claim that Hc

1 does not contain any induced
chordless cycle, i.e., H1 ∈ G1.

Suppose for a contradiction that Hc
1
contains an induced chordless cycle

C = (v1, v2, v3, . . . , vk). Since the set B forms a complete graph in Hc
1 , the

vertices of C cannot all belong to the set B. Without loss of generality assume
that v2 belongs to the set A. Since the vertices in A form an independent set in
Hc

1 , both v1 and v3 must belong to B. Since the set B forms a complete graph
in Hc

1
, the edge (v1, v3) must be a chord in C, which contradicts that C is an
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Figure 6: An example of H1 whose complement is in G1.

induced chordless cycle in Hc
1
.

A Negative Example for G3: Construct now a graph H3 from H by
inserting edges in set A (respectively, B) such that the vertices in A (respectively,
B) form a complement of a C5 (respectively, C10). Figure 6 shows an example
of H3. It is straightforward to observe that H3 ∈ H, and hence it is not a PCG.
In the following we verify that Hc

3 consists of two induced chordless cycles and
some edges that are incident to both cycles, i.e., H3 ∈ G3.

Figure 7: An example of H3 whose complement is in G3.

Since A forms a complement of C5 in H3, the vertices in A form an induced
cycle of five vertices in Hc

3 . Similarly, since B forms a complement of C10 in
H3, the vertices in B form an induced cycle of ten vertices in Hc

3
. Finally, since

H is not a complete bipartite graph, and since H3 does not introduce any new
edge joining a vertex in A to a vertex in B, Hc

3 must have some edge (u, v),
where u ∈ A and v ∈ B. �
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6 Conclusion

In this paper we have given a necessary condition and a sufficient condition for a
pairwise compatibility graph. We have shown that if the complement of a given
graph G contains two disjoint chordless cycles or two disjoint complements of
cycles then G is not a PCG. On the other hand, if the complement of G do not
have any cycle then G is a PCG.

We have proved that some graphs lying in the gap between our two conditions
are not PCGs. Below are the two interesting graph classes that lie in the gap,
but for which no negative example is known.

G2: A graph G belongs to G2 if Gc consists of two induced chordless cycles,
where the cycles share some common vertices, e.g., see Fig. 5(b).

G4: A graph G belongs to G4 if Gc contains only one induced chordless cycle,
e.g., see Fig. 5(d).

It will be interesting to examine whether every graph that belongs to G2

or G4 is a PCG. Another interesting direction for future research would be to
examine the computational complexity of PCG recognition in general.
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