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Abstract

A drawing of a graph can be understood as an arrangement of geo-
metric objects. In the most natural setting the arrangement is formed
by straight-line segments. Every cubic planar 3-connected graph with n
vertices has such a drawing with only n/2 + 3 segments, matching the
lower bound. This result is due to Mondal et al. [J. of Comb. Opt., 25],
who gave an algorithm for constructing such drawings.

We introduce two new algorithms that also produce drawings with
n/2+3 segments. One algorithm is based on a sequence of dual edge con-
tractions, the other is based on a recursion of nested cycles. We also show
a flaw in the algorithm of Mondal et al. and present a fix for it. We then
compare the performance of these three algorithms by measuring angular
resolution, edge length and face aspect ratio of the constructed drawings.
We observe that the corrected algorithm of Mondal et al. mostly out-
performs the other algorithms, especially in terms of angular resolution.
However, the new algorithms perform better in terms of edge length and
minimal face aspect ratio.
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1 Introduction

To assess the quality of network visualizations, many criteria have been investi-
gated, such as crossing minimization, bend minimization and angular resolution
(see [12] for an overview). The structural complexity of a graph is often mea-
sured in terms of its number of vertices or edges. This, however, does not
necessarily correspond to its cognitive load (mental effort needed to interpret a
drawing). Bends and crossings increase the cognitive load, making it harder to
interpret a graph visualization, and should be avoided.

We consider the following measure of visual complexity for planar graphs [11]:
the number of basic geometric objects that are needed to realize the drawing.
For example, if a path in the graph is placed along a line, then we do not need
one line segment for each edge in this path; one line segment can represent the
entire path. In contrast to bends and crossings, which increase the cognitive
load, this definition of visual complexity aims to measure a reduction in cognitive
load in comparison to the structural complexity. The basic geometric shapes are
typically straight-line segments or circular arcs. Upper and lower bounds on the
necessary visual complexity of various graph classes are known [2, 3, 11]. A lower
bound for any graph is N/2, where N is the number of odd-degree vertices: at
least one geometric object must have its endpoint at such a vertex. Computing
the optimal visual complexity of line-segment drawings is NP-hard [4].

We consider line-segment drawings for planar cubic 3-connected graphs; un-
less mentioned otherwise, “graph” is used to refer to a graph of this class. Any
plane drawing has at least three vertices of the same face on its convex hull:
each of these convex-hull vertices is the endpoint of the line segment for each
incident edge. Thus, we obtain a lower bound of n/2 + 3 line segments, as n
is even. Dujmović gave an algorithm for drawing general planar graphs with
low visual complexity [2]. This algorithm will draw a cubic planar graph with
n + 2 line segments. Mondal et al. [8] improve this by giving an algorithm
that uses n/2 + 4 segments. Moreover, this algorithm places the vertices on a
(n/2+1)× (n/2+1) grid and uses only 6 different slopes. A variant of the algo-
rithm is also suggested, one that does not place the vertices on a grid and uses
7 distinct slopes, but attains a visual complexity of n/2 + 3. The presentation
of Mondal et al. contains a flaw, but it can be fixed as discussed in Section 4.

To compute a plane drawing matching the lower bound, we are given (or
pick) three convex hull vertices; these are referred to as the suspension vertices.
For all other internal vertices, we decide which two incident edges lie on the same
line segment, that is, which of the three angles is flat. Hence, this corresponds to
a flat-angle assignment ; we refer to plane drawings that match the lower bound
as flat-angle drawings. Note that any face in a flat-angle drawing is nonstrictly
convex. Aerts and Felsner [1] describe conditions for the stretchability of flat-
angle assignments. From a stretchable assignment, a layout can be obtained by
solving a system of harmonic (linear) equations with arbitrary edge weights, very
similar to the directed version of Tutte’s barycentric embedding as presented
by Haas et al. [6]. How to efficiently compute stretchable flat-angle assignments
remains an open problem.
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Figure 1: Result of the various algorithms for the same graph and outer face.
(left) Reconstruction algorithm. (middle) Windmill algorithm. (right) Mondal
algorithm.

Contributions. We present two different new O(n2)-time algorithms (Section 2
and 3) to construct a plane drawing with n/2 + 3 segments for n ≥ 6, match-
ing the lower bound. From the constructed drawings, a flat-angle assignment
is derived, which is then used to set up a system of harmonic equations [1].
By solving the system using uniform edge weights we can redraw the layouts
to (possibly) increase their visual appeal. To the best of our knowledge, the
new algorithms present novel methods to incrementally build up cubic planar
3-connected graphs by simple and local modifications. These construction se-
quences might also find applications outside of our applications.

We review the algorithm of Mondal et al. and discuss cases where it might
produce degenerate drawings. We then present a fix for these problematic cases.
This leaves us with three algorithms that produce drawings of cubic planar 3-
connected graphs with low visual complexity; see Figure 1. We run several
experiments and evaluate the performance of these algorithms by measuring
geometric features of the produced drawings. In particular, we measure angular
resolution, edge length, and face aspect ratio. We use two data sets for our
experiments. For the first data set we sample over the set of all cubic planar
3-connected graphs with 24 to 30 vertices. The second data set is given by the
set of 146 popular graphs with at most 30 vertices from the Wolfram graph
database1.

2 The Reconstruction Algorithm

The Reconstruction algorithm is based on an operation on embedded graphs
that we call edge insertion2: pick two edges that belong to one face, subdivide
both edges and add a new edge between the new degree-2 vertices while pre-
serving planarity. Its inverse is edge removal : pick an edge (u, v), remove it,
and make the series reduction on u and v. These operations are illustrated in

1http://reference.wolfram.com/language/ref/GraphData.html
2This is not the graph-theoretic notion of edge insertion.

http://reference.wolfram.com/language/ref/GraphData.html
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edge insertion

edge removal

u v

Figure 2: Edge removal (left to right) is the inverse of edge insertion (right to
left). It reduces the number of vertices by 2 and the number of edges by 3.

Figure 2. The algorithm consists of two phases: in the first it deconstructs the
desired graph, finding a sequence of edge removals, until the triangular prism is
obtained; in the second we reverse this sequence of edge removals, and recon-
struct the graph while maintaining a flat-angle drawing.

2.1 Deconstruction with Edge Removals

In this first phase of the algorithm we deconstruct the given graph, computing a
sequence of edge removals to obtain the triangular prism. That is, we repeatedly
perform an edge removal, until we obtain a triangular prism in one of its two
planar embeddings. The existence of such a sequence is readily implied by
folklore stating that every cubic 3-connected graph can be obtained from K4

by a sequence of edge insertions (e.g, [5, page 243]). However, for our purpose
we need a slightly stronger version, as our reconstruction phase (next section)
cannot cope with edge insertions in the outer face.

While edge insertion preserves 3-connectivity, planarity and 3-regularity,
edge removal can break these properties and produce double edges. Hence,
we call an edge a removable edge if its removal maintains planarity, 3-regularity
and 3-connectivity. We may remove only such removable edges in the decon-
struction process; we implicitly suppose that edge removal is applied only to
removable edges. Characterizing removable edges is easiest through the dual
graph, as shown with the lemma below.

Lemma 1 An edge is removable if and only if its dual is not part of a separating
triangle in the dual graph.

Proof: The operation on the dual graph that corresponds to edge removal on
the primal graph is the edge contraction, as illustrated in Figure 3.

Graph G is cubic, planar and 3-connected if and only if its dual G∗ is a
planar triangulation. The lemma is thus equivalent to stating that the dual
remains a planar triangulation, when contracting a dual edge that is not part
of a separating triangle.

This is indeed trivial: edge contraction can be executed preserving the planar
embedding and every face stays triangular. We have to ensure only that no
double edges appear; this is exactly guaranteed by contracting only edges that
are not part of a separating triangle. �
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edge contraction

edge removal

Figure 3: Dual operations: edge removal and edge contraction. The primal
graph uses solid lines and its thick red edge is being removed. The dual graph
is dashed and its thick edge is being contracted.

We are now ready to formulate and proof the deconstruction process.

Theorem 1 Any cubic planar 3-connected graph G that is not K4 with an
(arbitrarily) fixed outer face f can be deconstructed to the graph of a triangular
prism by a sequence of edge removals such that no edge is removed from f .

Proof: The proof is by induction on the number of edges (which must be a
multiple of 3 in any cubic graph). We do not consider K4: the base is a graph
with 9 edges. There is only one such graph, the triangular prism.

For the induction step we need to show that every planar cubic 3-connected
graph G with more than 9 edges has a removable edge not on the fixed outer face
f . Or, equivalently on the dual graph, every planar triangulation G∗ with more
than 9 edges has an edge that is not part of a separating triangle (Lemma 1)
and is not incident to vertex f∗, the dual of the fixed outer face.

If G∗ contains no separating triangle, then any edge not incident to f∗ can
be selected. Otherwise, consider a separating triangle T . It splits G∗ into two
components; at least one of them does not contain f∗. Pick as the interior of
T one of these components that does not contain f∗ . Let T ′ be a minimal
separating triangle—containing no other separating triangle—contained by T ;
if T contains no separating triangle, we simply use T as T ′. By our choice of
the interior of T , f∗ is either a vertex of T ′ or lies outside T ′. Pick a vertex of
T ′ that is not f∗. As G∗ is a planar triangulation, this vertex has an edge to a
vertex inside T ′. By construction, this edge is not part of a separating triangle
nor is it incident to f∗.

Thus, we can always find a removable edge not on the outer face, remove it
and use the induction hypothesis. This finishes the proof of Theorem 1. �

Corollary 1 Any cubic planar 3-connected graph G that is not K4 with an
(arbitrarily) fixed outer face f can be constructed from the graph of a triangular
prism by a sequence of edge insertions such that no edge is inserted into f .

2.2 Reconstruction with Edge Insertions

Using the techniques of the previous section, we have found a sequence of edge
insertions from one of the two planar embeddings of the triangular prism that
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Figure 4: The triangular prism admits to planar embeddings, both of which
have a simple flat-angle drawing.

(1)

(3)

(2)

Figure 5: Edge insertion that connects (1) noncollinear edges of a face, (2)
collinear edges separated by one vertex, and (3) collinear edges separated by
two or more vertices. In case 2 and 3, we reassign the flat angle at the first
and/or last separating vertex.

leads to the given graph. With this sequence, we reconstruct the original graph
in such a way that we obtain a flat-angle drawing. The embedding of the
triangular prism either has three or four vertices on the outer face. Both cases
have a trivial flat-angle drawing (see Figure 4) and we start the reconstruction
from this drawing. We then apply the edge insertions while maintaining a
flat-angle drawing (see Figure 5). When inserting edges, we may have different
possibilities how to update the flat-angle assignment. Depending on our strategy
we may obtain different drawings.

If an edge insertion “connects” two edges that are not aligned (such as (1)
in Figure 5), we have an obvious way how to add the new edge: we pick a
subdivision point on each of the edges and add the new edge as a straight-line
segment connecting these points. This maintains a plane flat-angle drawing as
faces must be nonstrictly convex.

If the two edges are aligned (part of a common segment `), we need to modify
the existing drawing. Let u and v be the new vertices that we introduce and
let s1, . . . , sk be the vertices in between u and v on `; see Figure 6(a). Since
the graph after adding e is planar, all segments starting at si have to leave
` on the same side. We first draw the new edge (u, v) on top of ` such that
v coincides with sk. To repair the degeneracy, we tilt the old part of ` that
was running between u and sk as done in Figure 6(b). Here we let sk “slide”
on its segment that was not part of `. For k ≥ 2 we have also the following
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(a) (b) (c)

Figure 6: (a) Inserting edge e = (u, v) with its endpoints on the same side of a
face (a). (b) The standard insertion. (c) An alternative strategy.

alternative method for inserting (u, v): we draw a segment parallel to ` that
runs between the segments starting at s1 and sk. We place all endpoints si on
this new segment without changing any slopes of the old segments. We now
place u at the old position of s1, and v at the old position of sk as depicted in
Figure 6(c). We refer to the latter strategy as the alternate insertion operation.

2.3 Variants

The deconstruction sequence, and hence the result of the construction, is not
necessarily unique. For the later analysis (Section 5), we distinguish three dif-
ferent strategies on how to select the removed edge from the set of all removable
edges that are not incident to the fixed outer face:

(R) We select an edge randomly.

(S) We select an edge with minimal sum of the degrees of its incident faces.

(L) Analogous to (S), we select an edge with maximal sum of degrees.

We remark that there is no basis to suggest that the strategies (S) or (L) might
perform particularly well: we study these strategies primarily to have a more
structured procedure against which we can compare the randomized strategy.

With three different deconstruction strategies (R, S and L) and an alternative
insertion operation (ALT), we have six variants of the Reconstruction algorithm,
referred to as REC-R, REC-R-ALT, REC-S, REC-S-ALT, REC-L and REC-
L-ALT. In the -ALT variants, the alternative insertion operation is applied
whenever possible; in the other variants it is never used.

3 The Windmill Algorithm

In contrast to the Reconstruction algorithm and Mondal’s algorithm—which
build a drawing bottom-up using local structures—the Windmill algorithm is
recursive, taking a top-down approach by starting with the overall structure.
It computes a flat-angle drawing, working its way inward from the outer face,
until all vertices have been processed.

We have a planar cubic 3-connected graph G with at least 6 vertices. Some
combinatorial planar embedding of G is given and three of its vertices on the
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outer face are marked as suspension vertices. The algorithm constructs a flat-
angle drawing δ(G); we use δ(·) to refer to the embedded positions of vertices
and geometries representing subgraphs of G. In addition to G, the recursion
takes as input a simple cycle C in G. The interior and exterior of C are defined
with respect to the given combinatorial embedding; we use strict interpretations
of these: edges and vertices on C are considered neither inside nor outside. The
algorithm poses the following precondition on C.

Precondition 1 C is a simple cycle in G, such that δ(C) is the boundary of
a nonstrictly convex polygon. A strictly convex vertex of δ(C) corresponds to
either a suspension vertex or a vertex with an edge outside of C. A flat vertex
of δ(C) corresponds to an internal vertex with an edge inside C.

Hereafter, we simply use convex to refer to strictly convex vertices in a
drawing of a cycle, δ(C). The sides of δ(C) are the line segments between two
consecutive convex vertices. Any edge or flat vertex of C lies on precisely one
side; any convex vertex lies on two sides. With F we denote the cyclic sequence
of faces inside C as they occur along the boundary of C. Consecutive edges of
C that are incident to the same inside face f give rise to only one occurrence of
f in F , but multiple occurrences are possible; see Figure 7(c) for an example of
such a face.

To initialize the algorithm, we use as C the outer face of G. To meet Pre-
condition 1, we position the suspension vertices as the corners of an equilateral
triangle; the other vertices of C are positioned equidistantly along its sides
(Figure 7(a)).

A call to the windmill algorithm with cycle C computes a position δ(v) for
each vertex inside C. The edges inside C are line segments connecting their
endpoints. To obtain a flat-angle drawing, the algorithm places each vertex v
in such a way that δ(v) is collinear with the placement of two of its neighbors.
One recursive step consists of the execution of the first applicable of the four
cases below, to be detailed and proven correct in the upcoming sections.

1. At most one vertex : there is at most one vertex strictly inside C. We draw
all chords as line segments. The one vertex (if present) is positioned to lie
on a line segment between two of its neighbors. See Figure 7(b→c,e→f).

2. Repeated face: a face f occurs more than in F , splitting its interior. We
draw its paths inside C as line segments and recurse on a subcycle for
each path. See Figure 7(c→d)

3. Adjacent faces: two faces, f1 and f2, are adjacent but not consecutive
in F , assuming that there are two different sides of δ(C) to which the
faces are incident. We draw three line segments to represent the paths
inside C along the two faces and recurse on the two subcycles created.
See Figure 7(a→b).

4. Windmill : none of the above holds. We create a windmill pattern with the
sequence of faces along C. We recurse on the cycle inside the windmill.
See Figure 7(d→e).
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(a) (b) (c)

(d) (e) (f)

Figure 7: The Windmill algorithm. Cycles are drawn thick; unshaded cycles
are processed in the next step. (a) Initial call. (b→ . . .→e) Consecutive states.
(f) Final result. (e→f) Two cycles are processed. (a,c) Hashures indicate faces
relevant for case 3 and 2.

Note the subtlety for case 3: the faces must lie on different sides of the polygon
for C. Otherwise, the condition on C described above cannot be maintained in
a plane drawing. Case 4 must handle such a pattern using additional recursive
calls. Details are found in Section 3.4.

To prove that the algorithm is correct, we use induction on the number of
edges inside C. The first case does not result in a recursive call and thus forms
the base case for this induction. The other three cases result in one or more
recursive calls, for which we shall argue that the number of edges inside the
cycle is smaller, thus allowing us to apply the induction hypothesis.

Crucial to this proof is showing that any cycle C is nonstrictly convex and
any vertex on C, for which the third edge is not drawn yet, is either a suspension
vertex or its other two edges (part of C) are drawn collinearly. In either case,
we need not worry about aligning the undrawn edge with another to obtain
minimal visual complexity, since each nonsuspension vertex must have exactly
two aligned edges.

In the upcoming sections, we discuss the precise conditions, constructions
and correctness proofs for each of these cases. We also use the dual G∗ of graph
G. Note that G∗ is a maximal triangulation. With C∗ we denote the subgraph
of G∗ restricted to faces interior to C.

3.1 At most one vertex

Condition. Cycle C has at most one interior vertex v.
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(a) (b)

v v

(c)

v

Figure 8: (a) Cycle C (blue) with one vertex inside. (b) Any chords are drawn
as line segments (red). (c) One line segment for two edges of v is chosen such
that it does not coincide with C; the third edge is drawn as a line segment to
the position for v.

Construction. Cycle C may have a number of chords. Before dealing with
v, each chord e = (u,w) is drawn as a line segment between δ(u) and δ(w)
(Figure 8).

If v is present, we proceed as follows. Vertex v has three neighbors on C.
By 3-connectivity, not all three neighbors of v can lie on the same side of δ(C).
Hence, we can pick a pair of neighbors of v such that the line segment connecting
them lies strictly inside δ(C). We place v halfway this line segment and simply
connect the third neighbor.

Proof. We must prove that this results in a plane drawing inside C. Since G is a
planar graph, we know that no two chords intersect. Moreover, a chord cannot
have its endpoints on one side of δ(C), argued as follows. If there are no other
vertices on C in between the endpoints, the chord would imply a multi-edge.
Any vertices in between must be flat vertices and thus have an edge inside C by
Precondition 1. This implies that the endpoints of the chord make a separating
pair of vertices contradicting the assumption that G is 3-connected.

What remains is to argue that our placement of v (if present) is correct.
Consider the state of the drawing after inserting the chords but before placing
v. The chords partition the interior of δ(C) into a number of convex polygons.
By planarity, v lies inside one of these polygons and its neighbors are placed on
its boundary. By construction, v is placed strictly inside the polygon, resulting
in a planar drawing.

3.2 Repeated face

Condition. Cycle C contains a face f that occurs more than once along C,
splitting the subgraph. In terms of the dual, f∗ is a separating vertex for C∗.

Construction. Consider the maximal components C∗i that arise when removing
f∗ from C∗. There are at least two such components. The cut edges between
C∗i and its complement in G∗ define a simple cycle Ci in the primal graph. This
partitions C in an even number paths, alternatingly along f and along cycle Ci.
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f

(a) (b)

p1

p2p3

C1

C2C3

f

Figure 9: (a) Cycle C (blue) with a face f occurring multiple times along C.
(b) Paths pi in C are drawn as line segments and result in smaller cycles for
recursion.

Each cycle Ci has precisely two vertices, ui and vi, on C that are incident
to f . These vertices partition Ci into two paths: the chordal path pi along f
and the path qi that follows C. We draw a single line segment for pi between
δ(ui) and δ(vi) and place the vertices of pi in order equidistantly along this line
segment. We then recurse on Ci. This is illustrated in Figure 9.

Proof. Each chordal path pi is drawn as a line segment in the convex polygon
δ(C). By planarity of G, these line segments cannot intersect each other.

The line segment δ(pi) must lie strictly inside δ(C), as 3-connectivity with
Precondition 1 implies that ui and vi lie on different sides of δ(C). This is
analogous to the argument made for chords in the previous case.

We must prove that δ(Ci) meets Precondition 1. Except for ui and vi, any
vertex on qi—the path that follows C—has an edge inside Ci if and only if it has
an edge inside C: Precondition 1 on C implies that it also holds for Ci. Except
for ui and vi, any vertex on pi—the chordal path—has an edge inside Ci and
cannot be a suspension vertex: these vertices are flat on δ(Ci) as they lie along
the line segment δ(pi). Vertices ui and vi have their third edge outside Ci by
construction. These vertices must be convex on δ(Ci): the interior angle must
be strictly smaller than that in δ(C), which is at most π as δ(C) is convex.

The recursion on Ci entails a reduction in the number of interior edges, since
any edge enclosed by Ci must be enclosed by C and the edges on the chordal
path pi are interior to C but not to Ci.

3.3 Adjacent faces

Condition. There is a pair of faces, f1 and f2, that share an edge e but do not
occur consecutively along C. In terms of the dual, f∗1 and f∗2 are a separating
vertex pair for C∗. Let ui and vi denote the first and last vertex of fi along C
in clockwise order, for i ∈ {1, 2}. This is illustrated in Figure 10(a). We require
that either or both u1 and u2 or v1 and v2 lie on different sides of δ(C). If this
is not the case, it is handled by the windmill case described in the next section.
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f1

(a) (b)

f2

u1

v1 u2

v2

f1
f2

u1

v1 pu
u2

v2

(c)

f1 f2

u1

v1
u2

v2

p1

p2

Figure 10: (a) Cycle C (blue) with adjacent faces, f1 and f2, that are noncon-
secutive along C. (b) First, we place path pu as a line segment. (c) We draw
p1 and p2 as line segments and obtain two cycles for recursion.

Construction. Consider the path pu inside C along f1 and f2 from u1 to u2,
and similarly, pv from v1 to v2. Both paths include the shared edge e. By our
assumption, at least one of these paths ends on different sides of δ(C). Without
loss of generality, assume it is pu.

We draw pu as a line segment between δ(u1) and δ(u2), placing its vertices
equidistantly. We split pv into p1 and p2 by removing edge e, using the index to
denote along which face the paths lies. We draw p1 as a line segment between
δ(v1) and its endpoint of e, as given by δ(pu), placing its vertices equidistantly.
We handle p2 analogously. This is illustrated in Figure 10(b-c).

Removing f∗1 and f∗2 from C∗ yields two maximal components in the dual
graph. Each defines a simple cycle in the primal graph upon which to recurse.

Proof. Path pu is drawn as a chordal line segment inside δ(C). Due to our
assumption, it starts and ends on different sides: it cannot overlap a side of
δ(C). This creates two convex polygons, in which we draw paths p1 and p2
as chordal line segments, one in each polygon. Thus, they cannot intersect or
coincide with δ(C).

We prove as follows that a recursive cycle C ′ meets Precondition 1. Anal-
ogous to the repeated-face case, any vertex that originates from C is correctly
positioned on δ(C ′) in terms of convexity. Any vertex on C ′ interior to C is
adjacent to f1 or f2. If it is not adjacent to both, it must have its third edge
interior to C ′. By construction, it is and must be flat on δ(C ′).

The endpoints of e are incident to both f1 and f2. As e is outside both
recursive cycles, these must be convex in the drawing. Both f1 and f2 are
outside the recursive cycle, and one of them makes a flat angle at the endpoint
of e. Thus, their combined angle is strictly larger than π, implying an interior
angle strictly less than π for the recursive cycle.

To show correct recursion, observe again that any edge interior to one of the
recursive cycles is interior to C, but at least five edges interior to C are incident
to one of the shared faces and thus not interior to one of the recursive cycles.
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3.4 Windmill

Condition. No other condition holds: C contains at least two vertices; any face
along C occurs exactly once; two nonconsecutive faces along C share an edge
only if they are incident to one side of δ(C) (see Figure 11(a)).

Construction. Consider the dual C∗, but restrict it to the faces along C; let us
call this F ∗. Clearly, F ∗ is an outer-planar graph. By the condition, we know
that any chords in F ∗ can be only between two primal faces (dual vertices)
that are incident to the same side of C. Thus, we may orient F ∗ in clockwise
direction and find the shortest cycle W ∗ in F ∗ (see Figure 11(b)). This cycle
can be found in a greedy way by starting from a dual vertex f∗ on F ∗ such that
the first vertex of face f on C is a suspension vertex or f has at least two edges
in C (implying a convex vertex on δ(C)).

We use cycle W ∗ = 〈f∗1 , . . . , f∗k 〉 to create a windmill inside δ(C) as follows
(refer to Figure 11(c-e) for illustrations). For each f∗i on W ∗, we compute the

(a) (b)

W ∗

(c)u1

u2 u3 u4

u6u7

v1

v2

v3

v4

v5

v6
v7

u5

(d) (e) (f)

C0

C1

C2
q2

q1

Figure 11: (a) Cycle C (blue) for which none of the other cases apply. There
may be pairs of nonconsecutive adjacent faces: in this case, one on the top and
one on the bottom side. (b) The (directed) dual F ∗ and its shortest cycle W ∗

are given in purple. (c) Using W ∗ we define 7 paths pi from ui to vi, such that
ui lies on C and vi on pi+1. (d) We construct the left tangent to some circle c
(dashed). (e) With these tangents we construct the windmill. We ignored two
parts in this construction (dashed) due to chords in F ∗. (d) These are added as
triangles, resulting in three cycles for recursion.
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primal path pi starting at the first vertex ui in clockwise direction of fi on C to
the first vertex vi incident to fi+1 in counterclockwise direction along fi. Now,
we have paths pi = 〈ui, . . . , vi〉 such that ui lies on C and vi is a nonendpoint
vertex of pi+1. To create the windmill, we must define an appropriate line
segment for each path pi. To this end, consider some small circle c somewhere
inside the convex hull of the ui vertices. With ti, we denote the left tangent
from ui on c. The line segment we draw for pi starts at δ(ui) and ends at the
intersection between ti and ti+1. After placing these line segments, we position
the vertices on pi in before vi−1 equidistantly between δ(ui) and δ(vi−1); we
place the vertices on pi after vi−1 equidistantly between δ(vi−1) and δ(vi).

Consider removing W ∗ from C∗. This splits the dual subgraph into a number
of maximal components, C∗0 , . . . , C

∗
m, where m is the number of chords used

by W ∗. Each C∗j has a primal outline corresponding to a simple cycle Cj .
One component is incident to all fi in W ∗ and corresponds to the interior
of the windmill. We assume that this is C∗0 . All other components C∗j for
j ∈ {1, . . . ,m} correspond to subgraphs that are separated by a chord in F ∗

from the windmill.

Cycle C0 corresponds to the cycle of the windmill. Its placement δ(C0) is
given directly by the construction. Thus, we recurse on C0.

Any other component C∗j was separated by a chord in F ∗. Assume this chord
is from f∗i to f∗i+1. Cj consists of three parts: edges on C, edges incident to fi
and edges incident to fi+1. The edges on C and incident to fi+1 (part of pi+1)
have already been placed. What remains is to place a line segment to represent
the edges incident to fi. Let us call this path qj . Path qj has one endpoint on
C and one on pi+1. These have already obtained a placement, prescribed by
δ(C) and the windmill respectively. The vertices on qj are placed equidistantly
between these endpoints. This creates a triangular δ(Cj); we recurse on each
Cj (see Figure 11(f)).

Rather than using a clockwise order, we may also orient F ∗ in counterclock-
wise direction, reversing W ∗. If we aim for a uniformly weighted harmonic
system, we can also solve the local harmonic system with appropriate weights
for constructing the windmill, to directly compute the final layout and avoid
the need for solving the entire harmonic system after the windmill algorithm.

Proof. To see why this operation yields a planar drawing, we observe that the
endpoints ui are in (nonstrict) convex position. Hence, the tangents ti occur in
order along the circle c and the windmill is planar. Now, for each additional
component C∗j , we place another line segment. We observe that this occurs at
most once for any f∗i on W ∗. Before placing the chord, face fi lies in a convex
polygon: it uses part of δ(C) which is convex, and two line segments placed for
pi and pi+1. The line segment for qj is a chord between different sides of this
polygon. Thus, it causes no intersections.

We must argue why component C∗0 inside the windmill exists. As F ∗ does
not have multi-edges, W ∗ has at least length three. If W ∗ has length greater
than three, C∗0 must contain a dual vertex, as G∗ is a maximal planar graph. If
W ∗ has length three, but does not enclose a dual vertex, then the cycle of faces
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meet at a single vertex v in the primal graph. If C is the outer face of G (i.e.,
this is the initial call to the windmill algorithm), then G must be K4, violating
our assumption that G has at least 6 vertices. If C is not the outer face of G,
at least two of the faces on W ∗ have an edge outside of C (by 3-connectivity)
and thus be incident to more than one side of C. As there is at least one more
vertex inside C, there must be a pair of faces on W ∗ that are nonconsecutive
on F ∗ (but adjacent as they are on W ∗). Such a pair cannot be incident to
a unique face, violating the condition of this windmill case: the adjacent-faces
case should be applied instead.

To see why Precondition 1 holds for δ(C0), first observe that it can have
no suspension vertices. Any vertex on C0 with an edge outside C0 is convex
on δ(C0) as it is the intersection between two consecutive tangents used in the
construction. Any other vertex on C0 must have its edge inside C0. As it is not
the endpoint of some pi, it has been placed equidistantly between some vi and
vi+1, thus implying it is flat on δ(C0).

For each δ(Cj) with j > 0, we must argue the same. Again, assume this
component was caused by a chord in W ∗ from f∗i to f∗i+1. As fi and fi+1 lie on
the same side of C and are exterior to Cj , Cj cannot have suspension vertices.
δ(Cj) has three convex vertices. For each we argue that it has two faces outside
Cj and thus an edge outside of Cj . This implies that it should indeed be convex
for recursion on Cj .

1. The endpoint ui+1 of pi+1. ui+1 is incident to fi+1 and the face outside
of C; both are exterior to Cj

2. The endpoint of qj on C. This endpoint is incident to fi and the face
outside of C; both are exterior to Cj .

3. The endpoint of qj on pi+1. This endpoint is incident to fi and fi+1; both
are exterior to Cj .

All other vertices on Cj are flat and hence must have its edge inside Cj . For
this, observe that all vertices also on C are on the same side (flat on δ(C)) and
hence have their third edge inside Cj . Vertices incident to fi or fi+1 cannot have
an edge exterior to Cj , as it would imply that C∗j is not a maximal component.

For each recursion, any edge interior to the recursion cycle is interior to C,
but each cycle does not include at least three edges that are part of the windmill
cycle C0. Thus any recursive cycle has less edges in its interior than C, allowing
the induction hypothesis to be applied.

3.5 Variants

The Windmill algorithm leaves little room for extensive strategies, since the op-
eration’s order is crucial to its correctness. However, in performing the Windmill
operation, we can choose either a clockwise or counterclockwise direction. To
decide, we provide two strategies. The first is to always choose the same direc-
tion; the other is to alternate clockwise and counterclockwise, depending on the
recursion depth. We refer to these variants as WIN and WIN-ALT respectively.
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4 The Mondal Algorithm

Mondal et al. [8] describe two linear-time algorithms for drawing cubic planar
3-connected graphs: one results in a grid drawing with n/2 + 4 line segments
with six slopes; the other attains minimal visual complexity with seven slopes
but does not produce a grid drawing. Both algorithms introduce the vertices as
given by a canonical order.

We observe that the grid algorithm as described by Mondal et al. [8] is
flawed. The example in Figure 12 illustrates the problem. When adding a chain
of vertices from u to v (case 4d in [8], see Figure 12(a-b)), the vertex at u is
“rotated” to give it an incident edge with slope 1. In the next step, we may
need to rotate backward to give vertex b an incident edge with slope ∞ (case
4b in [8], see Figure 12(b-c)). However, the point computed to rotate about is
erroneous: it is point q. This causes u to be placed on top of q, resulting in a
nonplane drawing.

To resolve this issue, we suggest the following procedure for determining the
correct pivot point. For case 4b, we walk downward along the slope 1 edges,
until we find a pivot vertex p that has either two slope 0 edges or a downward
edge with slope 1 and downward edge with slope ∞. In this case, every vertex
w along the path is moved `(w) positions to the left, where `(w) is the vertical
distance between w and pivot vertex p. We refer to this as a left-rotation. The
correct result for the counter example is given in Figure 12(d).

Analogously for case 4d, we walk downward along the slope ∞ edges, until
we find a pivot vertex p that has either two slope 0 edges or a downward edge
with slope 1 and downward edge with slope ∞. In this case, every vertex w
along the path is moved r(w) positions to the right, where r(w) is the vertical

case 4d

u
v

u

v

a
b

(a) (b)

(c) (d)

a b

q

p

case 4b

a
b

a
b

q

v

u

v

u

p

Figure 12: (a) State before adding b between u and v. (b) After adding b, before
adding a vertex between a and b. (c) Rotating about q as described in [8] results
in a nonplane drawing. (d) Rotating about p as described here yields a plane
result.
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distance between w and pivot vertex p. We refer to this as a right-rotation.

To prove that left- and right-rotations maintain a plane drawing, we must
show that for every degree-3 vertex along the path to the pivot vertex, any
horizontal edge in the direction of the rotation has sufficient length. This is
captured by the invariant below. To simplify notation, we define r(w) and
`(w) to be 0, if w is not on a path that may be right-rotated or left-rotated
respectively.

Invariant 1 Consider an edge e = (u, v) with slope 0 and let u and v be its left
and right vertex respectively. The length of e is at least 1 + r(u) + `(v).

Observe that r(u) or `(v) is nonzero only in situations where u has been left-
rotated or v has been right-rotated. To fully prove this statement is out of scope
for this paper. Also, note that this is the invariant for the grid algorithm. For
the minimal-complexity algorithm, we must multiply the values of r(·) and `(·)
by two, and observe that rotations are not performed with slope∞ edges: their
role is taken by slope −1 edges.

Moreover, we observe that the Mondal algorithm achieving minimal visual
complexity can be easily adapted to lie fully on a grid and use only six slopes
as well. To this end, we need to do only the following: whenever the bottom
point is moved to the right, it is moved downwards for an equal distance. This
ensures that its incident edge maintains a slope of −1.

Thus, we have two variants of the Mondal algorithms, both on a grid and
with only 6 slopes for its edges: one uses n/2 + 4 line segments, but draws on
a smaller grid than the second algorithm that uses only n/2 + 3 line segments.
We refer to these as MON-GRID and MON-MIN respectively.

5 Experiments

We have three different algorithms (each with its own variants) to draw pla-
nar cubic 3-connected graphs using only n/2 + 3 line segments (or n/2 + 4
for MON-GRID). The drawings (Figure 1) are obviously different, but—as the
visual complexity is the same—we need other criteria to further assess the over-
all quality. In this section we discuss experimental results comparing the 10
algorithm variants described in the previous sections.

5.1 Data Sets

We generated all planar cubic 3-connected graphs with 24, 26, 28 and 30 vertices,
using plantri3. From each batch we sampled 500 graphs uniformly at random
without duplicates, resulting in a total of 2000 graphs. This creates the Random
data set.

3http://cs.anu.edu.au/~bdm/plantri/

http://cs.anu.edu.au/~bdm/plantri/
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To further validate our results, we collected graphs with more than 30 ver-
tices. However, the above graph-selection procedure becomes infeasible. In-
stead, we used PlanarMap4 to directly generate 500 random planar cubic 3-
connected graphs, for each (even) size of 32 up to and including 50 vertices.
Note that these randomly generated maps are independent and hence have a
(very) small probability of containing duplicates. The graphs with 32 to 40
nodes constitute the Random Medium data set; the graphs with 42 to 50 nodes
the Random Large data set. Both these data sets hence contain 2500 graphs.

Finally, we also consider a special graph collection, in particular, the one
found in Wolfram Mathematica. From this collection, we extracted the con-
tained planar cubic 3-connected graphs with 6 to 30 vertices, and used these
146 graphs as a data set. This constitutes the Wolfram data set. To analyze
for a structural bias in this data set, we also performed a random sampling of
all cubic planar 3-connected graphs (using the plantri approach), but now such
that we obtain the same distribution of graph sizes as in the Wolfram data set.
We refer to these graphs as the Pseudo-Wolfram data set.

5.2 Measures

We use the following three measures to quantify the quality of a graph layout.

Angular resolution. At each internal vertex in the graph, we measure the small-
est angle as an indicator of angular resolution. Since one angle is always π,
the best angular resolution is π/2. Angular resolution measures how easily dis-
cernible the incident edges are. A high value indicates a good angular resolution.

Edge length. We measure all edge lengths in the graph, normalized to a percent-
age of the diagonal of the smallest enclosing axis-aligned square. Edge lengths
should neither be too short nor too long. Informal investigation of minimal edge
lengths suggested only tiny differences, though MON-GRID was slightly ahead
of the other algorithms. Hence, we in particular look at avoiding long edges in
the remainder: we consider lower values for edge length to be better.

Face aspect ratio. For each face, we measure the aspect ratio of the smallest
enclosing (not necessarily axis-aligned) rectangle. To compute this ratio, we
divide the length of its shorter side by the length of its longer side, yielding a
value between 0 and 1. High values thus indicate a good aspect ratio. This is a
simple indicator of fatness, as all faces are convex.

Measuring procedure. For each graph, we run each algorithm using each pos-
sible face of the graph as an outer face. For each measure, we compute both
the average value over all elements (vertices, edges, faces) as well as the worst
value. The worst value is the minimum value for angular resolution and face
aspect ratio, and the maximum value for the edge length. For both the aver-
age and worst value, we compute the average over all drawings for a particular
graph, i.e., what may be expected for that graph if we had chosen an outer face
uniformly at random. Thus, we have six measures in total.

4http://www.lix.polytechnique.fr/~schaeffe/PagesWeb/PlanarMap/index-en.html;
this implementation combines the results in [9, 10].

http://www.lix.polytechnique.fr/~schaeffe/PagesWeb/PlanarMap/index-en.html
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5.3 Algorithm Comparison: Random Data Set

Let us first consider the Random data set. Figure 13 shows the measured results
for all graphs in the data set, summarized as a box plot. Below, we discuss these
results per measure in more detail.

Angular resolution. The MON algorithms clearly perform better than the WIN
algorithms, which in turn outperform the REC algorithms. This was to be
expected due to the fixed slopes used in the MON algorithms.

Edge length. The worst-case values show that the MON algorithms perform
worst, and the WIN algorithms perform best; average edge length shows that
MON is slightly behind the WIN and REC algorithms. Though statistically
significant (later in this section), the differences are only minor. The maximum
edge length for the WIN and REC algorithms is lower due to its placement in
an equilateral triangle and the possibility of having additional vertices on all
sides of this triangle; the MON algorithms always have a long edge, close to
the diagonal of the drawing. For the MON-MIN algorithm, this worst-case edge
length is smaller than for MON-GRID. This is caused by our modification which
moves one point downward, thereby increasing the grid size.

Face aspect ratio. We see that the REC algorithms are outperformed by the
other algorithms in terms of average ratio. MON-MIN outperforms MON-GRID
and the WIN algorithms. However, looking at the minimal face aspect ratio of a
drawing, we see that REC outperforms the MON algorithms, and MON-GRID
is actually slightly ahead of MON-MIN.

We conclude from the above that the WIN algorithms generally outperform
REC algorithms. Between the WIN and MON algorithms, there is no clear
agreement between the measures: the MON algorithms perform very well in
angular resolution, but worse in edge length; for the face aspect ratio, it depends
whether we consider the average or minimum ratio in a drawing.

Statistical analysis. We further investigate the differences by performing an
RM-ANOVA analysis on the measurements with a post-hoc Tukey HSD test to
reveal the pairwise differences. The Skewness and Kurtosis of all measurements
are within the range [−2, 2], thus providing evidence for the assumption of
the normal distribution for these analyses. The only exception is the minimal
angular resolution for the MON algorithms, which are constant at π/4. These
are excluded from the statistical analysis; we consider the MON algorithms to
(significantly) outperform the other algorithms due to the high difference in
means.

The results of this statistical investigation are summarized in Figure 14. For
this, we require an estimated difference in means of at least 2.5% of the possible
range of values, i.e., a difference of π/80 for angular resolution, 2.5% for edge
length and 0.025 for face aspect ratio.

We verify that the WIN algorithms clearly outperform the REC algorithms,
in at least four measures (out of six). Between the two variants, there is no
difference. As observed above, whether the MON algorithms outperform an-
other algorithm depends highly on the measure. The MON-MIN algorithm
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Figure 13: Box plot of the measured results for the Random data set. For length,
lower values indicate better drawings; for the other measurements, higher values
indicate better drawings.
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Figure 14: Analysis results for the Random data set. (Left) Number of “wins”
(measures for which the row-algorithm outperforms the column-algorithm), us-
ing p < 0.001 in a Tukey HSD test with an estimated difference in means of at
least 2.5%. (Right) The number of “wins” minus the number of “losses” in the
left table, giving an overall view of relative performance.

“wins” more often than it “loses” compared to any other algorithm. However,
the MON-GRID algorithm is outperformed by the WIN algorithms. The REC
algorithms are not distinguishable between themselves. They outperform the
MON algorithms for some measures, but are outperformed by the MON algo-
rithms more often.

The right column of Figure 15 lists the charts reporting on any statistical
significance (0%) and using a required estimated difference of 5%. The latter
shows that the MON algorithms gain in performance: if a measure indicates a
better performance for the MON algorithms, then the difference is more decisive.
The former provides us some insight in the comparison of the REC algorithms,
though we should take into account that the differences are minor. In particu-
lar, we may see some evidence to suggest that the ALT variants have a slight
performance gain over the other variants. Moreover, the L strategy performs
poorest. REC-R-ALT performs better than any other variant.

Larger graphs. We may repeat the above analyses on graphs with more vertices.
To this end, we consider the Random Medium and Random Large data sets.
Figure 16 illustrates the results of these two larger data sets together with the
results obtained for the Random data set analyzed above.

In terms of angular resolution, the performance of the WIN and REC algo-
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Figure 15: Comparison of algorithm performance for the Wolfram and Random
data set, using p < 0.001 in a Tukey HSD test, using three levels of difference in
means: 0%, 2.5% and 5%. Shown are the number of “wins” minus the number
of “losses”, giving an overall view of relative performance.
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Figure 16: Three data sets are visualized concurrently. For each algorithm-
criterion combination, we present three box plots to show results: the Random
data set (top), the Random Medium data set (middle) and the Random Large
data set (bottom). This allows us to spot trends on how these criteria vary as
we increase the graph size. For length, lower values indicate better drawings;
for the other measurements, higher values indicate better drawings.
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rithms slightly decreases, though the MON algorithms stay at roughly the same
level of performance. Though the MON algorithms already outperformed the
other algorithms in this criterion, the difference becomes increasingly noticeable
for larger graphs.

The average edge length decreases for all algorithms, simply due to the larger
number of edges that need to be drawn. Though the WIN and REC algorithms
maintain lower average edge length, their lead on the MON algorithm decreases
even further. In terms of maximal edge length, we observe a very minor decrease
in the WIN and REC algorithms; this is likely caused by the larger number of
vertices that may be placed on the outer face. For the MON algorithm, there
is a slight increase in the maximal edge length. Thus for maximal edge lengths,
the difference between the WIN and REC algorithms and the MON algorithm
increases, in favor of the former.

For face aspect ratio, the MON algorithms roughly maintain their average
value, whereas the other algorithms decrease; the difference hence increases in
favor for the MON algorithms. The minimum face aspect ratio decreases for
all algorithms. The difference between the MON algorithms and the WIN and
REC algorithms becomes smaller for larger graphs.

To summarize, the MON algorithms remain stable in terms of angular reso-
lution (both average and minimum) and average face aspect ratio whereas the
others decrease performance; for average edge length and minimum face aspect
ratio, the difference between the algorithms decreases; only for maximum edge
length, the MON algorithms’ performance decrease whereas the others increase.
Overall, this suggests that the MON algorithm becomes increasingly preferable
for larger graphs.

5.4 Algorithm Comparison: Wolfram Data Set

Let us now turn to the Wolfram data set. The measurements are summarized in
Figure 17; the Tukey HSD test results are given in the left column of Figure 15.
Roughly the same patterns can be observed as for the Random data set. As
the graphs in this data set are typically smaller (n = 16.5 on average), some
minor differences arise. In particular, the angular resolution tends to increase
for the WIN and REC algorithms, compared to the values obtained for the
Random data set. However, for the MON algorithms, there in fact seems to be
a slight decrease. Moreover, the average face aspect ratio of the MON algorithms
decreases: MON-MIN is in line with the REC algorithms and the MON-GRID
algorithm has lost its lead on the WIN algorithms.

To investigate whether this data set has a structural bias, we repeat the
analysis procedure for the pseudo-Wolfram data set and compare the results.
The main difference may be observed at a minimal estimated difference in means
of 5%, see Figure 18. We see that the WIN algorithms are only slightly ahead of
the REC algorithms (outperforming in only one measure, rather than three to
four) and slightly behind the MON algorithms for the pseudo-Wolfram data set.
This suggests that there may be some bias towards a structure that is exploited
by the WIN algorithms.
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Figure 17: Box plot of the measured results for the Wolfram data set. For length,
lower values indicate better drawings; for the other measurements, higher values
indicate better drawings.
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Figure 18: Comparison of algorithm performance for the Wolfram and the
pseudo-Wolfram data sets. Shown are the number of “wins” minus the number
of “losses”, giving an overall view of relative performance.

6 Conclusions

We studied algorithms for drawing cubic planar 3-connected graphs with mini-
mal visual complexity, that is, with as few line segments as possible. The lower
bound is n/2 + 3 for a graph with n vertices, and we introduced two new al-
gorithms to match this lower bound. These algorithms may be of independent
interest, as a way of constructing planar cubic 3-connected graphs. Moreover,
we resolved a flaw in an existing algorithm by Mondal et al. [8] and argued that
their variant that achieves the minimal visual complexity can result in a grid
drawing with only six rather than seven slopes with minor modifications.

This leaves us with three algorithms, each with two or more variants. We
performed an experiment with two data sets to compare the performance of these
algorithms in terms of angular resolution, edge length and face aspect ratio. The
Reconstruction algorithm is always outperformed by the Windmill algorithm,
but the Windmill algorithm seems to be on par with the Mondal algorithm:
depending on the criterion, one or the other performs better. One aspect that
was not taken into consideration though, is that the Mondal algorithm comes
with a maximum grid size and uses only 6 slopes to draw the line segments.

Future work. We studied visual complexity for planar cubic 3-connected graphs,
which is rather restrictive. Future algorithmic work may aim towards reducing
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the gap between upper and lower bounds for other graph classes such as trian-
gulations or general planar graphs (see [3]). Moreover, the definition of visual
complexity is not limited to line segments, but may include for example the
use of circular arcs (see [7, 11]). We may investigate how many vertices are
spanned by a line segment—but what is “better” here is not immediately clear.
Moreover, we may look into applying the system of harmonic equations to the
Mondal layouts. Though it would break its provable properties such as good
angular resolution due to fixed slopes and a bounded grid size, it may provide
us further insight into the effect of the harmonic equations and the methods for
generating the flat-angle drawing separately.

Furthermore, it would be interesting to investigate whether the definition of
visual complexity correlates to an observer’s assessment of complexity. In other
words, are drawings with minimal visual complexity indeed perceived to be
simpler than those with higher visual complexity? Moreover, can we establish
a relation between visual complexity and cognitive load? The graph may be
visually simpler, but that does not readily imply that it is easier to interpret.
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