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On the size of planarly connected
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Abstract

We prove that if an n-vertex graph G can be drawn in the plane such
that each pair of crossing edges is independent and there is a crossing-free
edge that connects their endpoints, then G has O(n) edges. Graphs that
admit such drawings are related to quasi-planar graphs and to maximal
1-planar and fan-planar graphs.
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1 Introduction

Throughout this paper we consider graphs with no loops or parallel edges. A
topological graph is a graph drawn in the plane with its vertices as distinct
points and its edges as Jordan arcs that connect the corresponding points and
do not contain any other vertex as an interior point. Every pair of edges in a
topological graph has a finite number of intersection points, each of which is
either a vertex that is common to both edges, or a crossing point at which one
edge passes from one side of the other edge to its other side. A topological graph
is simple if every pair of its edges intersect at most once. A geometric graph
is a (simple) topological graph in which every edge is a straight-line segment.
If the vertices of a geometric graph are in convex position, then the graph is a
convex geometric graph.

Call a pair of independent1 and crossing edges e and e′ in a topological
graph G planarly connected if there is a crossing-free edge in G that connects
an endpoint of e and an endpoint of e′. A planarly connected crossing (PCC for
short) topological graph is a topological graph in which every pair of independent
crossing edges is planarly connected. An abstract graph is a PCC graph if it
can be drawn as a PCC topological graph.

Our motivation for studying PCC graphs comes from two examples of topo-
logical graphs that satisfy this property: A graph is k-planar if it can be drawn
as a topological graph in which each edge is crossed at most k times (we call such
a topological graph k-plane). Suppose that G is an n-vertex 1-planar topologi-
cal graph with the maximum possible number of edges (i.e., there is no n-vertex
1-planar graph with more edges than G). Now consider a drawing D of G as
a 1-plane topological graph with the least number of crossings. Then it is easy
to see that D is a simple topological graph. Moreover, D is a PCC topological
graph. Indeed, if (u, v) and (w, z) are two independent edges that cross at a
point x and are not planarly connected, then we can draw a crossing-free edge
(u,w) that consists of the (perturbed) segments (u, x) and (w, x) of (u, v) and
(w, z), respectively. This way we either increase the number of edges in the
graph or we are able to replace a crossed edge with a crossing-free edge and get
a 1-plane drawing of G with less crossings.

Another example for PCC topological graphs are certain drawings of fan-
planar graphs. A graph is called fan-planar if it can be drawn as a simple
topological graph such that for every edge e all the edges that cross e share a
common endpoint on the same side of e. As before, it can be shown (see [13,
Corollary 1]) that such an embedding of a maximum fan-planar graph with as
many crossing-free edges as possible admits a PCC topological graph.

Both 1-plane topological graphs and fan-planar graphs are sparse, namely,
their maximum number of edges is 4n − 8 [16] and 5n − 10 [13], respectively
(where n denotes the number of vertices). Our main result implies that simple
PCC topological graphs are always sparse.

1Two edges are independent if they do not share a vertex. Note that in a simple topological
graph two crossing edges must be independent.
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Theorem 1 Let G be an n-vertex topological graph such that for every two
crossing edges e and e′ it holds that e and e′ are independent and there is a
crossing-free edge that connects an endpoint of e and an endpoint of e′. Then
G has at most cn edges, where c is an absolute constant.

Note that by definition in a simple topological graph every pair of crossing
edges must be independent, therefore, Theorem 1 holds for PCC simple topo-
logical graphs. For PCC non-simple topological graphs, Theorem 1 holds when
independent crossing edges may cross each other several times, however, our
proof breaks in the presence of crossing edges that share a common endpoint
(see below). Still, we strongly believe that Theorem 1 holds also in this case.

It follows from Theorem 1 that 1-plane and fan-planar graphs have linearly
many edges, however, with a much weaker upper bound than the known ones. It
would be interesting to improve our upper bound and to find the exact maximum
size of a PCC (simple) topological graph. We show that this value is at least
9n−O(1) (see Section 3), which implies that not every PCC topological graph
is a (maximum) 1-plane or fan-planar graph.

PCC graphs are also related to two other classes of topological graphs. Call a
topological graph k-quasi-plane if it has no k pairwise crossing edges. According
to a well-known and rather old conjecture (see e.g., [8, 14]) k-quasi-plane graphs
should have linearly many edges.

Conjecture 2 For any integer k ≥ 2 there is a constant ck such that every
n-vertex k-quasi-plane graph has at most ckn edges.

It is easy to see that if G is a PCC simple topological graph, then G is
9-quasi-plane: Suppose for contradiction that G contains a set E′ of 9 pairwise
crossing edges and let V ′ be the set of their endpoints. Since G is a simple
topological graph, no two edges in E′ share an endpoint, therefore |V ′| = 18.
Let G′ be the subgraph of G that is induced by V ′ and let E′′ be the crossing-
free edges of G′. Clearly (V ′, E′′) is a plane graph. Moreover, all the edges in E′

must lie in the same face f of this plane graph, since they are pairwise crossing.
It follows that f is incident to every vertex in V ′ and therefore (V ′, E′′) is an
outerplanar graph. Thus, |E′′| ≤ 2 · 18− 3 = 33. On the other hand, since G′ is
also PCC topological and no two edges in E′ share an endpoint, it follows that
|E′′| ≥

(
9
2

)
= 36, a contradiction.

Therefore, Conjecture 2, if true, would immediately imply Theorem 1 for
simple topological graphs. However, this conjecture was only verified for k =
3 [4, 5, 15], for k = 4 [1], and (for any k) for convex geometric graphs [9]. For
k ≥ 5 the currently best upper bounds on the size of n-vertex k-quasi-plane
graphs are n(log n)O(log k) by Fox and Pach [11, 12], and Ok(n log n) for simple
topological graphs by Suk and Walczak [18].

Another conjecture that implies Theorem 1 (also for topological graphs that
are not necessarily simple) is related to grids in topological graphs. A k-grid in
a topological graph is a pair of edge subsets E1, E2 such that |E1| = |E2| = k,
and every edge in E1 crosses every edge in E2. Ackerman et al. [2] proved that
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every n-vertex topological graph that does not contain a k-grid with distinct
vertices has at most Ok(n log∗ n) edges and conjectured that this upper bound
can be improved to Ok(n). It is not hard to show, as before, that a PCC
topological graph does not contain an 8-grid with distinct vertices. Therefore,
this conjecture, if true, would also imply Theorem 1.

Outline. We prove Theorem 1 in the following section. In Section 3 we give a
lower bound on the maximum size of a PCC simple topological graph, generalize
the notion of planarly connected edges, and conclude with some open problems.

2 Proof of Theorem 1

Let G = (V,E) be an n-vertex topological graph such that for every two crossing
edges e and e′ it holds that e and e′ are independent and there is a crossing-free
edge that connects an endpoint of e and an endpoint of e′. Denote by E′ ⊆ E
the set of crossing-free (planar) edges in G, and by E′′ = E \ E′ the set of
crossed edges in G. Since G′ = (V,E′) is a plane graph, we have |E′| ≤ 3n, so
it remains to prove that |E′′| = O(n).

Let G′1 = (V1, E
′
1), . . . , G′k = (Vk, E

′
k) be the connected components of the

graph G′, and let E′′i,j = {(u, v) ∈ E′′ | u ∈ Vi and v ∈ Vj}.

Lemma 1 |E′′i,i| ≤ 96|Vi| for 1 ≤ i ≤ k.

Proof: Assume without loss of generality that i = 1 and consider the graph
G′1. Let f1, . . . , f` be the faces of the plane graph G′1. For a face fj , let V (fj)
be the vertices that are incident to fj , and let E′′(fj) be the edges in E′′1,1 that
lie within fj (thus, their endpoints are in V (fj)). Denote by |fj | the size of
fj , that is, the length of the shortest closed walk that visits every edge on the
boundary of fj . Recall that in the Introduction we argued that a PCC simple
topological graph is 9-quasi-plane. By the same argument we have the following
observation.2

Observation 2 There are no 9 pairwise crossing edges in E′′(fj).

Proposition 3 |E′′(fj)| ≤ 16|fj |, for 1 ≤ j ≤ `.

Proof: Define first an auxiliary graph Ĝj as follows. When traveling along
the boundary of fj in clockwise direction, we meet every vertex in V (fj) at
least once and possibly several times if the boundary of fj is not a simple cycle.
Let v1, v2, . . . , v|fj | be the list of vertices as they appear along the boundary of
fj , where a new instance of a vertex is introduced whenever a visited vertex is

revisited. The edge set of Ĝj corresponds to E′′(fj), however, we make sure to
pick the “correct” instance of a vertex in v1, v2, . . . , v|fj | for a vertex in V (fj)
that was visited more than once when traveling along the boundary of fj (see
Figure 1 for an example).

2However, we cannot use this argument when crossing edges might share an endpoint.
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fj

(a) A face fj of G′
1

Ĝj

(b) The corresponding graph Ĝj .

Figure 1: Illustrations for the proof of Proposition 3.

Let ê1 and ê2 be a pair of crossing edges in Ĝj and let e1 and e2 be their
corresponding edges in G. Clearly, e1 and e2 are crossing edges and therefore
are independent and planarly connected. It follows from Observation 2 that Ĝj

does not contain 9 pairwise crossing edges.3

We now realize the underlying abstract graph of Ĝj as a convex geometric
graph: The vertices v1, v2, . . . , v|fj | are the vertices of a convex polygon (in that

order), and the edges of Ĝj are realized as straight-line segments. Suppose
that two edges (vi1 , vi2) and (vi3 , vi4) cross in this realization. Assume without
loss of generality that i1 < i2, i3 < i4 and i1 < i3. Since these edges are the
chords of a convex polygon it must be that i1 < i3 < i2 < i4. It follows that
(vi1 , vi2) and (vi3 , vi4) also cross in Ĝj . Thus, the realization of Ĝj as a convex
geometric graph does not contain 9 pairwise crossing edges. According to a
result of Capoyleas and Pach [9], an n-vertex convex geometric graph with no
k + 1 pairwise crossing edges has at most

(
n
2

)
edges if n ≤ 2k + 1 and at most

2kn−
(
2k+1

2

)
edges if n ≥ 2k + 1. Therefore, |E′′(fj)| ≤ 16|fj |. This completes

the proof of Proposition 3. �

We now return to proving that |E′′1,1| = O(|V1|). Using the fact that∑`
j=1 |fj | = 2|E′1| ≤ 6|V1|, we have

|E′′1,1| =
∑̀
j=1

|E′′(fj)| ≤
∑̀
j=1

16|fj | ≤ 96|V1|,

which completes the proof of the lemma. �

It remains to bound the number of edges in E′′ between different connected

3Here again our proof fails for topological graphs that are not simple: if G is not a simple
topological graph, then it is possible that e1 and e2 share a vertex and therefore need not be
planarly connected.
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(a) G′ has three connected components.

u1

u2

u3

T1

T2

T3

(b) A drawing H′ of H.

Figure 2: Illustrations for the proof of Lemma 4.

components of G′. Let H be a simple (abstract) graph whose vertex set is
{u1, . . . , uk} and whose edge set consists of the edges (ui, uj) such that E′′i,j 6= ∅.

Lemma 4 H is a planar graph.

Proof: For 1 ≤ i ≤ k identify ui with one of the vertices of G′i and let Ti

be a spanning tree of G′i. We draw every edge (ui, uj) of H as follows: Pick
arbitrarily a pair vi ∈ Vi and vj ∈ Vj such that (vi, vj) ∈ E′′. The edge (ui, uj)
consists of the unique path in Ti from ui to vi, the edge (vi, vj) and the unique
path in Tj from vj to uj . See Figure 2 for an example. Note that in the drawing
of H that is obtained this way all the crossing points are inherited from G,
however, there are overlaps between edges. Still, each such (maximal) overlap
contains an endpoint of an edge, and it is not hard to show that the edges in
such a drawing can be slightly perturbed so that all the overlaps are removed
and no new crossings are introduced (see [3, Lemma 2.4]). We denote such a
drawing of H by H ′.

The important observation is that if two edges in H ′ cross, then they must
share an endpoint. Indeed, suppose for contradiction that (ua, ub) and (uc, ud)
are two independent and crossing edges. Then it follows that G contains two
independent and crossing edges (va, vb) and (vc, vd), such that va ∈ Va, vb ∈ Vb,
vc ∈ Vc and vd ∈ Vd. Since these two edges are planarly connected, there
should be a crossing-free edge that connects a vertex in {va, vb} with a vertex in
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{vc, vd}. However, this is impossible since these four vertices belong to distinct
connected components of G′.

Finally, a graph that can be drawn so that each crossing is between two edges
that share a common vertex is planar: this follows from the strong Hanani-Tutte
Theorem (see, e.g., [10, 17, 20]). �

Now we introduce some more notation. For every j 6= i, let Vi,j be the
vertices of Vi that are connected to some vertex in Vj , i.e., Vi,j := {vi ∈ Vi |
(vi, vj) ∈ E′′ for some vj ∈ Vj}.

Lemma 5 |E′′i,j | ≤ 8(|Vi,j |+ |Vj,i|) for every 1 ≤ i < j ≤ k.

Proof: Since G′i and G′j are planar graphs, we can properly color their vertices
with four colors by the Four Color Theorem [6, 7]. Denote the colors by 1, 2, 3, 4,
and let V c

i,j (resp., V c
j,i) be the vertices of color c in Vi,j (resp., Vj,i). We claim

that the number of edges in E′′i,j that connect a vertex from V c
i,j and a vertex

from V c′

j,i is at most 2(|V c
i,j |+|V c′

j,i|) for every c, c′ ∈ {1, 2, 3, 4}. Indeed, denote the
graph that consists of these edges by G∗ and consider its drawing as inherited
from G. It is not hard to see that G∗ is a planar graph: Suppose that two
edges in G∗ cross and denote them by (u, v) and (x, y) such that u, x ∈ V c

i,j

and v, y ∈ V c′

j,i. Since u and x are both of color c, there is no crossing-free edge
in G′i that connects them. Similarly, there is no crossing-free edge in G′j that
connects v and y. Since there are also no crossing-free edges in E′′i,j , it follows
that (u, v) and (x, y) are not independent, a contradiction.

Therefore, G∗ is a plane graph. Because G∗ is also bipartite, its number of
edges is at most twice its number of vertices. Thus,

|E′′i,j | ≤ 2
∑

1≤c≤4

∑
1≤c′≤4

(|V c
i,j |+ |V c′

j,i|) = 8(|Vi,j |+ |Vj,i|),

and the lemma follows. �

Lemma 6
∑

j 6=i |Vi,j | ≤ 3(|Vi|+ 4 degH(ui)) for every 1 ≤ i ≤ k.

Proof: We use again ideas from the proofs of Lemma 4 and Lemma 5. Assume
without loss of generality that i = 1 and consider the graph G′1. Since G′1
is a planar graph, we can properly color its vertices with four colors. Denote
the colors by 1, 2, 3, 4, and let V c

1 (resp., V c
1,j) be the vertices of color c in V1

(resp., V1,j). Clearly,
∑k

j=2 |V1,j | =
∑4

c=1

∑k
j=2 |V c

1,j |. Therefore it is enough to

consider
∑k

j=2 |V c
1,j | for a fixed color c.

Recall that in the proof of Lemma 4, for 1 ≤ j ≤ k, we have identified
uj with one of the vertices of G′j and denoted by Tj a spanning tree of G′j .
We define a graph Hc whose vertex set consists of V c

1 and the vertices uj that
are adjacent to u1 in H. For each such vertex uj and every vertex v1 ∈ V c

1,j

pick arbitrarily an edge (v1, vj) such that vj ∈ Vj (such an edge exists by the
definition of V1,j), and draw an edge (v1, uj) as follows: (v1, uj) consists of the
edge (v1, vj) in G and the unique path in Tj from vj to uj .
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Observe that Hc is a simple graph (i.e., it has no parallel edges or loops).
Moreover, in the drawing of Hc that is obtained as above, all the crossing points
are inherited from G, however, there are overlaps between edges. Still, each such
(maximal) overlap contains an endpoint of an edge, and thus, as in the proof of
Lemma 4, the edges of Hc can be slightly perturbed so that all the overlaps are
removed and no new crossings are introduced.

Consider such a drawing of Hc and observe that if two edges cross in this
drawing, then they must share an endpoint. Indeed, suppose for contradiction
that (v1, ua) and (v′1, ub) are two independent and crossing edges. Then G
contains two independent and crossing edges (v1, va) and (v′1, vb), such that
v1, v

′
1 ∈ V1, va ∈ Va, and vb ∈ Vb. Since these two edges are planarly connected,

there should be a crossing-free edge that connects a vertex in {v1, va} with a
vertex in {v′1, vb}. However, this is impossible because there is no crossing-free
edge between two vertices from different connected components of G′ and there
is also no crossing-free edge (v1, v

′
1) since both v1 and v′1 are of color c.

This implies that Hc is a planar graph. Observe that
∑k

j=2 |V c
1,j | is precisely

the number of edges in Hc. Thus,
∑k

j=2 |V c
1,j | ≤ 3|V (Hc)| = 3(|V c

1 |+degH(u1)),

and it follows that
∑k

j=2 |V1,j | =
∑4

c=1

∑k
j=2 |V c

1,j | ≤ 3|V1|+ 12 degH(u1). �

Recall that it remains to show that |E′′| = O(n):

|E′′| =
∑

1≤i≤k

|E′′i,i|+
∑

1≤i<j≤k

|E′′i,j |

≤ 96n + 8
∑

1≤i<j≤k

(|Vi,j |+ |Vj,i|)

= 96n + 8
∑

1≤i≤k

∑
j 6=i

|Vi,j |

≤ 96n + 24
∑

1≤i≤k

(|Vi|+ 4 degH(ui))

≤ 96n + 24n + 96 · 2|E(H)| ≤ 120n + 192 · 3n = 696n.

Note that in the last inequality we used the fact that H is a planar graph.
We conclude that |E| = |E′|+ |E′′| ≤ 699n. Theorem 1 is proved. �

3 Discussion

Recall that we leave open the question of whether Theorem 1 holds for PCC
topological graphs in which every pair of crossing edges shares a vertex or is
planarly connected.

It would also be interesting to find the maximum size of an n-vertex PCC
simple topological graph. The proof of Theorem 1 shows that this quantity is at
most 699n, but we believe that a linear bound with a much smaller multiplicative
constant holds. Figure 3 describes a construction of an n-vertex PCC simple
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Figure 3: A construction of a PCC topological graph with 9n−O(1) edges.

topological graph with 9n − O(1) edges. This construction was given by Géza
Tóth [19], and it improves a construction of ours with 6.6n − O(1) edges that
appeared in an earlier version of this paper. It goes as follows: place n−6 points
on the y-axis, say at (0, i) for i = 0, 1, . . . , n− 7; for every i = 0, . . . , n− 8 add
a straight-line edge connecting (0, i) and (0, i+ 1) (these edges will be crossing-
free); for every i = 0, . . . , n− 9 add an edge connecting (0, i) and (0, i + 2) that
goes slightly to the left of the y-axis; for every i = 0, . . . , n − 10 add an edge
connecting (0, i) and (0, i + 3) that goes slightly to the right of the y-axis; add
three points with the same x coordinate to the left (resp., right) of the y-axis
and connect each of them by straight-line edges to each of the points on the
y-axis; connect every pair of points to the left (resp., right) of the y-axis by a
crossing-free edge. One can easily verify that the resulting graph is indeed a
PCC simple topological graph and has 9n−O(1) edges.

The notion of planarly connected edges can be generalized as follows. For an
integer k ≥ 0, we say that two crossing edges e and e′ in a topological graph G
are k-planarly connected if there is a path of at most k crossing-free edges in G
that connects an endpoint of e with an endpoint of e′. Call a graph k-planarly
connected crossing (k-PCC for short) graph if it can be drawn as a topological
graph in which every pair of crossing edges is k-planarly connected. Thus, PCC
graphs are 1-PCC graphs.

For k = 0, graphs that can be drawn as topological graphs in which every
pair of crossing edges share a vertex are actually planar graphs, as noted in
the proof of Lemma 4. For k ≥ 2 we can no longer claim that a k-PCC graph
is sparse. Indeed, it is easy to see that Kn is a 2-PCC graph: simply pick a
vertex v and draw it with all of its neighbors as a crossing-free star. Now every
remaining edge can be drawn such that we get a simple topological graph in
which for any two crossing edges there is a path (through v) of two crossing-free
edges that connects their endpoints.

Note that if G is a k-PCC graph and G′ is a subgraph of G, then this does
not imply that G′ is also a k-PCC graph. For example, it is not hard to see that
for any k there is a (sparse) graph that is not k-PCC: simply replace every edge
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of K5 (or any non-planar graph) with a path of length k + 1. Call the resulting
graph G′ and observe that any drawing of G′ must contain two independent
and crossing edges such that there is no path of length at most k between their
endpoints. On the other hand, if k ≥ 2 then clearly G′ is a subgraph of the
k-PCC graph Kn.

We conclude with a few interesting questions one can ask about the notion
of planarly connected crossings: Is it possible to construct for any n and k a
graph with quadratically many edges which is not k-PCC? Can we recognize
PCC graphs efficiently? Given that a graph is a PCC graph, is it possible to
find efficiently such an embedding?
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[15] J. Pach, R. Radoičić, and G. Tóth. Relaxing planarity for topological
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