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Abstract

It is known that every proper minor-closed class of graphs has bounded
stack-number (a.k.a. book thickness and page number). While this in-
cludes notable graph families such as planar graphs and graphs of bounded
genus, many other graph families are not closed under taking minors. For
fixed g and k, we show that every n-vertex graph that can be embedded
on a surface of genus g with at most k crossings per edge has stack-number
O(logn); this includes k-planar graphs. The previously best known bound
for the stack-number of these families was O(

√
n), except in the case of

1-planar graphs. Analogous results are proved for map graphs that can
be embedded on a surface of fixed genus. None of these families is closed
under taking minors. The main ingredient in the proof of these results is
a construction proving that n-vertex graphs that admit constant layered
separators have O(logn) stack-number.
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1 Introduction
A stack layout of a graph G consists of a total order σ of V (G) and a partition
of E(G) into sets (called stacks) such that no two edges in the same stack cross;
that is, there are no edges vw and xy in a single stack with v <σ x <σ w <σ y.
The minimum number of stacks in a stack layout of G is the stack-number of G.
Stack layouts, first defined by Ollmann [23], are ubiquitous structures with a
variety of applications (see [18] for a survey). A stack layout is also called a book
embedding and stack-number is also called book thickness and page number. The
stack-number is known to be bounded for planar graphs [25], bounded genus
graphs [21] and, most generally, all proper minor-closed graph families [4, 5].
The purpose of this note is to bring the study of the stack-number beyond the
proper minor-closed graph families.

Layered separators are a key tool for proving our results. They have already
led to progress on long-standing open problems related to 3D graph drawings [11,
16] and nonrepetitive graph colourings [14]. A layering {V0, . . . , Vp} of a graph
G is a partition of V (G) into layers Vi such that, for each e ∈ E(G), there is an
i such that the endpoints of e are both in Vi or one in Vi and one in Vi+1. A
graph G has a layered `-separator for a fixed layering {V0, . . . , Vp} if, for every
subgraph G′ of G, there exists a set S ⊆ V (G′) with at most ` vertices in each
layer (i.e., |Vi ∩ S| ≤ `, for i = 0, . . . , p) such that each connected component of
G′ − S has at most |V (G′)|/2 vertices. Our main technical contribution is the
following theorem.

Theorem 1 Every n-vertex graph that has a layered `-separator has stack-
number at most 5` · log2 n.

We discuss the implications of Theorem 1 for two well-known non-minor-
closed classes of graphs. A graph is (g, k)-planar if it can be drawn on a surface
of Euler genus at most g with at most k crossings per edge. Then (0, 0)-planar
graphs are planar graphs, whose stack-number is at most 4 [25]. Further, (0, k)-
planar graphs are k-planar graphs [24]; Bekos et al. [3] have recently proved that
1-planar graphs have bounded stack-number (see Alam et al. [1] for an improved
constant). The family of (g, k)-planar graphs is not closed under taking minors1
even for g = 0, k = 1; thus the result of Blankenship and Oporowski [4, 5],
stating that proper minor-closed graph families have bounded stack-number,
does not apply to (g, k)-planar graphs.

Dujmović et al. [12] showed that (g, k)-planar graphs have layered (4g +
6)(k + 1)-separators2. This and our Theorem 1 imply the following corollary.
For all g ≥ 0 and k ≥ 2, the previously best known bound was O(

√
n), following

from the O(
√
m) bound for m-edge graphs [22].

1The n×n× 2 grid graph is a well-known example of a 1-planar graph with an arbitrarily
large complete graph minor. Indeed, contracting the i-th row in the front n×n grid with the
i-th column in the back n× n grid, for 1 ≤ i ≤ n, gives a Kn minor.

2More precisely, Dujmović et al. [12] proved that (g, k)-planar graphs have layered treewidth
at most (4g+6)(k+1) and (g, d)-map graphs have layered treewidth at most (2g+3)(2d+1).
Just as the graphs of treewidth t have (classical) separators of size t− 1, so do the graphs of
layered treewidth ` have layered `-separators [16, 17].
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Corollary 1 For any fixed g and k, every n-vertex (g, k)-planar graph has
stack-number O(log n).

A (g, d)-map graph G is defined as follows. Embed a graph H on a surface
of Euler genus g and label some of its faces as “nations” so that any vertex of
H is incident to at most d nations; then the vertices of G are the faces of H
labeled as nations and the edges of G connect nations that share a vertex of H.
The (0, d)-map graphs are the well-known d-map graphs [6, 7, 8, 9, 19]. The
(g, 3)-map graphs are the graphs of Euler genus at most g [8], thus they are
closed under taking minors. However, for every g ≥ 0 and d ≥ 4, the (g, d)-map
graphs are not closed under taking minors [12], thus the result of Blankenship
and Oporowski [4, 5] does not apply to them.

The (g, d)-map graphs have layered (2g + 3)(2d + 1)-separators [12]. This
and our Theorem 1 imply the following corollary. For all g ≥ 0 and d ≥ 4, the
best previously known bound was O(

√
n) [22].

Corollary 2 For any fixed g and d, every n-vertex (g, d)-map graph has stack-
number O(log n).

A “dual” concept to that of stack layouts are queue layouts. A queue layout
of a graph G consists of a total order σ of V (G) and a partition of E(G) into
sets (called queues), such that no two edges in the same queue nest ; that is,
there are no edges vw and xy in a single queue with v <σ x <σ y <σ w. If
v <σ x <σ y <σ w we say that xy nests inside vw. The minimum number of
queues in a queue layout of G is called the queue-number of G.

Queue layouts, like stack layouts, have been extensively studied. In par-
ticular, it is a long standing open problem to determine if planar graphs have
bounded queue-number. Logarithmic upper bounds have been obtained via lay-
ered separators [2, 11]. In particular, a result similar to Theorem 1 is known
for the queue-number: Every n-vertex graph that has a layered `-separator has
queue-number O(` log n) [11]; this bound was refined to 3` · log3(2n + 1) − 1
by Bannister et al. [2]. These results were established via a connection with
the track-number of a graph [15]. Together with the fact that planar graphs
have layered 2-separators [14, 20], these results imply an O(log n) bound for the
queue-number of planar graphs, improving on a earlier result by Di Battista et
al. [10]. The polylog bound on the queue-number of planar graphs extends to
all proper minor-closed families of graphs [16, 17].

Our approach to prove Theorem 1 also gives a new proof of the following
result (without using track layouts). We include it for completeness.

Theorem 2 Every n-vertex graph that has a layered `-separator has queue-
number at most 3` · log2 n.

2 Proofs of Theorem 1 and Theorem 2
Let G be a graph and L = {V0, . . . , Vp} be a layering of G such that G admits a
layered `-separator for layering L. Each edge of G is either an intra-layer edge,
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∈ V1 ∈ V2∈ V0

ρ0 σs1,0 σs2,0 σsk,0 ρ1 σsk,1 σs2,1 σs1,1 ρ2 σs1,2 σs2,2 σsk,2

Figure 1: The vertex ordering σs.

that is, an edge between two vertices in a set Vi, or an inter-layer edge, that is,
an edge between a vertex in a set Vi and a vertex in a set Vi+1.

A total order on a set of vertices R ⊆ V (G) is a vertex ordering of R.
The stack layout construction computes a vertex ordering σs of V (G) satisfying
the layer-by-layer invariant, which is defined as follows: For 0 ≤ i < p, the
vertices in Vi precede the vertices in Vi+1 in σs. Analogously, the queue layout
construction computes a vertex ordering σq of V (G) satisfying the layer-by-layer
invariant.

Let S be a layered `-separator for G with respect to L. Let G1, . . . , Gk
be the graphs induced by the vertices in the connected components of G − S
(the vertices of S do not belong to any graph Gj). These graphs are labeled
G1, . . . , Gk arbitrarily. Recall that, by the definition of a layered `-separator for
G, we have |V (Gj)| ≤ n/2, for each 1 ≤ j ≤ k. Let Si = S ∩ Vi and let ρi be an
arbitrary vertex ordering of Si, for i = 0, . . . , p.

Both the stack and the queue layout constructions recursively construct ver-
tex orderings of V (Gj) satisfying the layer-by-layer invariant, for j = 1, . . . , k.
Let σsj be the vertex ordering of V (Gj) computed by the stack layout construc-
tion; we also denote by σsj,i the restriction of σsj to the vertices in layer Vi. Note
that σsj = σsj,1, σ

s
j,2, . . . , σ

s
j,p by the layer-by-layer invariant. Vertex orderings σqj

and σqj,i are defined analogously for the queue layout construction.
We now show how to combine the recursively constructed vertex orderings

to obtain a vertex ordering of V (G). The way this combination is performed
differs for the stack layout construction and the queue layout construction.

Stack layout construction. The vertex ordering σs is defined as (refer to
Figure 1):

ρ0, σ
s
1,0, σ

s
2,0, . . . , σ

s
k−1,0, σ

s
k,0, ρ1, σ

s
k,1, σ

s
k−1,1, . . . , σ

s
2,1, σ

s
1,1,

ρ2, σ
s
1,2, σ

s
2,2, . . . , σ

s
k−1,2, σ

s
k,2, ρ3, σ

s
k,3, σ

s
k−1,3, . . . , σ

s
2,3, σ

s
1,3, . . . .

The vertex ordering σs satisfies the layer-by-layer invariant, given that vertex
ordering σsj does, for j = 1, . . . , k. Then Theorem 1 is implied by the following.

Lemma 1 G has a stack layout with 5` · log2 n stacks with vertex ordering σs.

Proof: We use distinct sets of stacks for the intra- and the inter-layer edges.
Stacks for the intra-layer edges. We assign each intra-layer edge uv with

u ∈ S or v ∈ S to one of ` stacks P1, . . . , P` as follows. Since uv is an intra-
layer edge, we have {u, v} ⊆ Vi, for some 0 ≤ i ≤ p. Assume w.l.o.g. that
u <σs v. Then u ∈ S and let it be x-th vertex in ρi (recall that ρi contains
at most ` vertices). Assign uv to Px. The only intra-layer edges that are not
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∈ Vi ∈ Vi′

e e′

(a)

∈ Vi

ρi
∈ Px

x-th vertex in ρi

e′
e

(b)

∈ Vi

e e′

σsj,i σsj′,i

(c)

Figure 2: The intra-layer edges e and e′, whose endpoints are in Vi and Vi′ ,
respectively, do not cross. (a) The case in which i < i′. (b) The case in which
i = i′ and e and e′ are in a stack Px. (c) The case in which i = i′, e and e′ are
in a stack different from P1, . . . , P`, and e ∈ E(Gj) and e′ ∈ E(Gj′) with j 6= j′.

yet assigned to stacks belong to graphs G1, . . . , Gk. These edges are assigned to
stacks different from P1, . . . , P`. Indeed, the assignment of the intra-layer edges
of the graph Gj is the one computed recursively; however, we use the same set
of stacks to assign the intra-layer edges of all the graphs G1, . . . , Gk.

We now prove that no two intra-layer edges in the same stack cross. Let e
and e′ be two intra-layer edges of G and let both the endpoints of e be in Vi
and both the endpoints of e′ be in Vi′ . Assume w.l.o.g. that i ≤ i′.

• If i < i′, as in Fig. 2a, then, since σs satisfies the layer-by-layer invariant,
the endpoints of e precede those of e′ in σs, hence e and e′ do not cross.

• Suppose now that i = i′.

– If e and e′ are in the same stack Px, for some x ∈ {1, . . . , `}, as in
Fig. 2b, then they are both incident to the x-th vertex in ρi, thus
they do not cross.

– If e and e′ are in some stack different from P1, . . . , P`, then e ∈ E(Gj)
and e′ ∈ E(Gj′), for some j, j′ ∈ {1, . . . , k}.
∗ If j = j′, then e and e′ do not cross by induction.
∗ Otherwise (that is, if j 6= j′, as in Fig. 2c) both the endpoints

of e precede both the endpoints of e′ or vice versa, since the
vertices in σsmin{j,j′},i precede those in σsmax{j,j′},i in σ

s or vice
versa, depending on whether i is even or odd; hence e and e′ do
not cross.

We now bound the number of stacks we use for the intra-layer edges of G; we
claim that this number is at most ` · log2 n. The proof is by induction on n; the
base case n = 1 is trivial. For any subgraph H of G, let p1(H) be the number
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e e′

∈ Vi ∈ Vi+1 ∈ Vi′ ∈ Vi′+1

(a)

e e′

σsj,i σsj′,i
∈ Vi

σsj′,i+1 σsj,i+1

∈ Vi+1

(b)

Figure 3: The even inter-layer edges e and e′, whose endpoints are in Vi and
Vi+1 and in Vi′ and Vi′+1, respectively, do not cross. (a) The case in which
i < i′. (b) The case in which i = i′, e and e′ are in a stack different from
P ′1, . . . , P

′
2`, e ∈ E(Gj), and e′ ∈ E(Gj′) with j < j′.

of stacks we use for the intra-layer edges of H, and let p1(n′) = maxH{p1(H)}
over all subgraphs H of G with n′ vertices. As proved above, p1(G) ≤ ` +
max{p1(G1), . . . , p1(Gk)}. Since each graph Gj has at most n/2 vertices, we
get that p1(G) ≤ `+p1(n/2). By induction p1(G) ≤ `+ ` · log2(n/2) = ` · log2 n.

Stacks for the inter-layer edges. We use distinct sets of stacks for the even
inter-layer edges – connecting vertices on layers Vi and Vi+1 with i even – and
for the odd inter-layer edges – connecting vertices on layers Vi and Vi+1 with
i odd. We only describe how to assign the even inter-layer edges to 2` · log2 n
stacks so that no two edges in the same stack cross; the assignment for the odd
inter-layer edges is analogous.

We assign each even inter-layer edge uv with u ∈ S or v ∈ S to one of 2`
stacks P ′1, . . . , P ′2` as follows. Since uv is an inter-layer edge, u and v respectively
belong to layers Vi and Vi+1, for some 0 ≤ i ≤ p − 1. If u ∈ S, then u is the
x-th vertex in ρi, for some 1 ≤ x ≤ `; assign edge uv to P ′x. If u /∈ S, then
v ∈ S is the y-th vertex in ρi+1, for some 1 ≤ y ≤ `; assign edge uv to P ′`+y.
The only even inter-layer edges that are not yet assigned to stacks belong to
graphs G1, . . . , Gk. These edges are assigned to stacks different from P ′1, . . . , P

′
2`.

Indeed, the assignment of the even inter-layer edges of the graph Gj is the one
computed recursively; however, we use the same set of stacks to assign the even
inter-layer edges of all the graphs G1, . . . , Gk.

We prove that no two even inter-layer edges in the same stack cross. Let
e and e′ be two even inter-layer edges of G. Let Vi and Vi+1 be the layers
containing the endpoints of e. Let Vi′ and Vi′+1 be the layers containing the
endpoints of e′. Assume w.l.o.g. that i ≤ i′.

• If i < i′, as in Fig. 3a, then i + 1 < i′, given that both i and i′ are even.
Then, since σs satisfies the layer-by-layer invariant, both the endpoints of
e precede both the endpoints of e′, thus e and e′ do not cross.

• Suppose now that i = i′.

– If e and e′ are in some stack P ′h for h ∈ {1, . . . , 2`}, then e and e′

are both incident either to the h-th vertex of ρi or to the (h− `)-th
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∈ V1 ∈ V2∈ V0

ρ0 σq1,0 σq2,0 σqk,0 ρ1 σq1,1 σq2,1 σqk,1 ρ2 σq1,2 σq2,2 σqk,2

Figure 4: The vertex ordering σq.

vertex of ρi+1, hence they do not cross.

– If e and e′ are in some stack different from P ′1, . . . , P
′
2`, then e ∈

E(Gj) and e′ ∈ E(Gj′), for j, j′ ∈ {1, . . . , k}.
∗ If j = j′, then e and e′ do not cross by induction.
∗ Otherwise (that is, if j 6= j′, as in Fig. 3b) e nests inside e′ or vice

versa, since the vertices in σsmin{j,j′},i precede those in σ
s
max{j,j′},i

and the vertices in σsmax{j,j′},i+1 precede those in σsmin{j,j′},i+1

in σs; hence e and e′ do not cross.

We now bound the number of stacks we use for the even inter-layer edges of
G; we claim that this number is at most 2` · log2 n. The proof is by induction
on n; the base case n = 1 is trivial. For any subgraph H of G, let p2(H)
be the number of stacks we use for the even inter-layer edges of H, and let
p2(n

′) = maxH{p2(H)} over all subgraphs H of G with n′ vertices. As proved
above, p2(G) ≤ 2` + max{p2(G1), . . . , p2(Gk)}. Since each graph Gj has at
most n/2 vertices, we get that p2(G) ≤ 2` + p2(n/2). By induction p2(G) ≤
2`+ 2` · log2(n/2) = 2` · log2 n.

The described stack layout uses ` · log2 n stacks for the intra-layer edges,
2` · log2 n stacks for the even inter-layer edges, and 2` · log2 n stacks for the odd
inter-layer edges, thus 5` · log2 n stacks in total. This concludes the proof. �

Queue layout construction. The vertex ordering σq is defined as (refer
to Figure 4):

ρ0, σ
q
1,0, σ

q
2,0, . . . , σ

q
k,0, ρ1, σ

q
1,1, σ

q
2,1, . . . , σ

q
k,1, ρ2, σ

q
1,2, σ

q
2,2, . . . , σ

q
k,2,

. . . , ρp−1, σ
q
1,p−1, σ

q
2,p−1, . . . , σ

q
k,p−1, ρp, σ

q
1,p, σ

q
2,p, . . . , σ

q
k,p.

The vertex ordering σq satisfies the layer-by-layer invariant, given that vertex
ordering σqj does, for j = 1, . . . , k. Then Theorem 2 is implied by the following.

Lemma 2 G has a queue layout with 3` · log2 n queues with vertex ordering σq.

Proof: We use distinct sets of queues for the intra- and the inter-layer edges.
Queues for the intra-layer edges. We assign each intra-layer edge uv with

u ∈ S or v ∈ S to one of ` queues Q1, . . . , Q` as follows. Since uv is an intra-layer
edge, we have {u, v} ⊆ Vi, for some 0 ≤ i ≤ p. Assume w.l.o.g. that u <σq v.
Then u ∈ S and let it be the x-th vertex of ρi. Assign uv to Qx. The only intra-
layer edges that are not yet assigned to queues belong to graphs G1, . . . , Gk.
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These edges are assigned to queues different from Q1, . . . , Q`. Indeed, the as-
signment of the intra-layer edges of the graph Gj is the one computed recur-
sively; however, we use the same set of queues to assign the intra-layer edges of
all the graphs G1, . . . , Gk.

The proof that no two intra-layer edges in the same queue nest is the same
as the proof no two intra-layer edges in the same stack cross in Lemma 1 (with
the word “nest” replacing “cross” and with σq replacing σs). The proof that the
number of queues we use for the intra-layer edges is at most ` · log2 n is also the
same as the proof that the number of stacks we use for the intra-layer edges is
at most ` · log2 n in Lemma 1.

Queues for the inter-layer edges. We assign each inter-layer edge uv with
u ∈ S or v ∈ S to one of 2` queues Q′1, . . . , Q′2` as follows. Since uv is an
inter-layer edge, u and v respectively belong to layers Vi and Vi+1, for some
0 ≤ i ≤ p − 1. If u ∈ S, then u is the x-th vertex in ρi, for some 1 ≤ x ≤ `;
assign edge uv to Q′x. If u /∈ S, then v ∈ S is the y-th vertex in ρi+1, for some
1 ≤ y ≤ `; assign edge uv to Q′`+y. The only inter-layer edges that are not
yet assigned to queues belong to graphs G1, . . . , Gk. These edges are assigned
to queues different from Q′1, . . . , Q

′
2`. Indeed, the assignment of the inter-layer

edges of the graph Gj is the one computed recursively; however, we use the
same set of queues to assign the inter-layer edges of all the graphs G1, . . . , Gk.

We prove that no two inter-layer edges e and e′ in the same queue nest. Let
Vi and Vi+1 be the layers containing the endpoints of e. Let Vi′ and Vi′+1 be
the layers containing the endpoints of e′. Assume w.l.o.g. that i ≤ i′.

• If i < i′, then both the endpoints of e precede the endpoint of e′ in Vi′+1

(hence e′ is not nested inside e) and both the endpoints of e′ follow the
endpoint of e in Vi (hence e is not nested inside e′), since σq satisfies the
layer-by-layer invariant; thus e and e′ do not nest.

• Suppose now that i = i′.

– If e and e′ are in some queue Q′h for h ∈ {1, . . . , 2`}, then e and e′
are both incident either to the h-th vertex of ρi or to the (h− `)-th
vertex of ρi+1, hence they do not nest.

– If e and e′ are in some queue different from Q′1, . . . , Q
′
2`, then e ∈

E(Gj) and e′ ∈ E(Gj′), for j, j′ ∈ {1, . . . , k}.
∗ If j = j′, then e and e′ do not nest by induction.
∗ Otherwise (that is, if j 6= j′) the endpoints of e alternate with

those of e′ in σq, since the vertices in σqmin{j,j′},i precede those
in σqmax{j,j′},i and the vertices in σqmin{j,j′},i+1 precede those in
σqmax{j,j′},i+1 in σq; hence e and e′ do not nest.

We now bound the number of queues we use for the inter-layer edges of G;
we claim that this number is at most 2` · log2 n. The proof is by induction on n;
the base case n = 1 is trivial. For any subgraph H of G, let q(H) be the number
of queues we use for the inter-layer edges of H, and let q(n′) = maxH{q(H)}
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over all subgraphs H of G with n′ vertices. As proved above, q(G) ≤ 2` +
max{q(G1), . . . , q(Gk)}. Since each graph Gj has at most n/2 vertices, we get
that q(G) ≤ 2`+ q(n/2). By induction q(G) ≤ 2`+ 2` · log2(n/2) = 2` · log2 n.

Thus, the described queue layout uses ` · log2 n queues for the intra-layer
edges and 2` · log2 n queues for the inter-layer edges, thus 3` · log2 n queues in
total. This concludes the proof. �
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