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Abstract

A vertex separator, in general, refers to a set of vertices whose removal
disconnects the original graph into subgraphs possessing certain nice
properties. Such separators have proved useful for solving a variety of
graph problems. The core contribution of the paper is an I/O-efficient
algorithm that finds, on any d-dimensional grid graph, a small vertex
separator which mimics the well-known separator of [Maheshwari and Zeh,
SICOMP’08] for planar graphs. We accompany our algorithm with two
applications. First, by integrating our separators with existing algorithms,
we strengthen the current state-of-the-art results of three fundamental
problems on 2D grid graphs: finding connected components, finding single
source shortest paths, and breadth-first search. Second, we show how our
separator-algorithm can be deployed to perform density-based clustering
on d-dimensional points I/O-efficiently.
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1 Introduction

Given an integer d ≥ 1, a d-dimensional grid graph is an undirected graph
G = (V,E) with two properties:

• Each vertex v ∈ V is a distinct d-dimensional point in Nd, where N
represents the set of integers.

• If E has an edge between v1, v2 ∈ V , the two points v1, v2 must (i) be
distinct (i.e., no self-loops), and (ii) differ by at most 1 in coordinate on
every dimension.

See Figure 1 for two illustrative examples. We will limit ourselves to d = O(1),
under which a d-dimensional grid graph is sparse, that is, |E| = O(|V |), because
each vertex can have a degree at most 3d = O(1).

Past research on grid graphs has largely focused on d = 2, mainly motivated
by the practical needs to work with terrains [2, 5, 6], also known as land surfaces
[8, 20, 26, 31]. A terrain or land surface is essentially a function f : R2 → R that
maps every point on the earth’s longitude-altitude plane to an elevation. To
represent the function approximately, the plane is discretized into a grid, such
that functional values are stored only at the grid points. Real-world networks (of,
e.g., roads, rail-ways, rivers, etc.) are represented by “atom” line segments each
of which connects two points v1, v2 in N2 whose coordinates differ by at most
1 on each dimension. The atom segment is augmented with a weight, equal to
the Euclidean distance between the 3D points v′1 and v′2, where v′1 has the same
x- and y-coordinates as v1, and has z-coordinate f(v1) (v′2 is obtained from v2

similarly). The modeling gives a 2D grid graph where an atom segment becomes
a weighted edge. A variety of topics — e.g., flow analysis [5, 6], nearest-neighbor
queries [8, 26, 31], and navigation [20] — have been studied on gigantic networks
which may not fit in the main memory of a commodity machine. Crucial to the
solutions in [5, 6, 8, 20, 26, 31] are algorithms settling fundamental problems
(such as finding connected components, finding single-source shortest paths, and
breadth-first search, etc.) on massive 2D grid graphs I/O-efficiently.

On the other hand, d-dimensional grid graphs of d ≥ 3 seem to have attracted
less attention, maybe because few relevant applications have been identified in
practice ([25] is the only work on grid graphs of d ≥ 3 we are aware of, but no
concrete applications were described there). We will fill the void in this paper by
elaborating on an inherent connection between such graphs and density-based
clustering.

The main objective of our work is to understand how a grid graph can be
I/O-efficiently decomposed using “vertex separators” that are reminiscent of the
well-known vertex separators on planar graphs [12, 19, 21]. In particular, the
separator of Maheshwari and Zeh [21] can be found I/O-efficiently, and has proved
to be extremely useful in solving many problems on planar graphs with small
I/O cost (see, e.g., [4, 15, 21, 32]). This raises the hope that similar separators
on grid graphs would lead to I/O-efficient algorithms on those problems as well
(note that grid graphs are not always planar, even in 2D space). Following [21],
we focus on vertex separators defined as follows:
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(a) A 2-dimensional grid graph (b) A 3-dimensional grid graph

Figure 1: Multidimensional grid graphs

Definition 1 Let G = (V,E) be a d-dimensional grid graph with d = O(1).
Given a positive integer r ≤ |V |, a set S ⊆ V is an r-separator of G if

1. |S| = O(|V |/r1/d)

2. Removing the vertices in S disconnects G into h = O(|V |/r) subgraphs
G1 = (V1, E1), ..., Gh = (Vh, Eh), such that for each i ∈ [1, h]:

(a) |Vi| = O(r);

(b) The vertices of Vi are adjacent to O(r1−1/d) vertices of S.

The subgraphs G1, ..., Gh are said to be induced by S. �

Previous work [23, 28] has shown that such vertex separators definitely exist
for any r ∈ [1, |V |]. The r-separators of [23, 28] are constructed by repetitively
partitioning a d-dimensional grid graph with “surface cuts”. More specifically,
such a cut is performed with a closed d-dimensional surface (which is a sphere
in [23] and an axis-parallel rectangle in [28]). All vertices near the surface are
added to the separator, while the process is carried out recursively inside and
outside the surface, respectively. However, it still remains as a non-trivial open
problem how to find the separators of [23, 28] I/O-efficiently.

For grid graphs of d = 2, the existence of an r-separator is implied by the
planar separator of [21], as shown in [15]. The separator of [21] can be computed
I/O-efficiently (and hence, so can an r-separator of a 2D graph), subject to a
constraint on the size of the main memory. We will discuss the issue further in
Section 1.2.

1.1 Computation Model

We will work with the external memory (EM) computation model of [3], which
is the de facto model for studying I/O-efficient algorithms nowadays. In this
model, the machine is equipped with M words of (internal) memory, and a
disk that has been formatted into blocks, each of which has B words. The
values of M and B satisfy M ≥ 2B. An I/O either reads a block of data from
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the disk into memory, or writes B words of memory into a disk block. The
cost of an algorithm is measured in the number of I/Os performed. Denote by
sort(n) = Θ((n/B) logM/B(n/B)) the I/O complexity of sorting n elements [3].

1.2 Our Results

Let G = (V,E) be a d-dimensional grid graph. As mentioned, the existence of
r-separators of G is already known [21, 23, 28]. Our construction, however, uses
ideas different from those of [21, 23, 28]. Interestingly, as a side product, our
proof presents a new type of r-separators that can be obtained by a recursive
binary orthogonal partitioning of Nd. To formalize this, we introduce:

Definition 2 Let G = (V,E) be a d-dimensional grid graph. An orthogonal
partitioning of G is a pair (S,G) made by a subset S of V and a set G of
subgraphs of G, such that (S,G) satisfies either of the conditions below:

1. (S,G) = (∅, {G}).

2. (S,G) = (S0 ∪ S1 ∪ S2,G1 ∪ G2) where:

(a) S0 is the set of vertices on some plane π satisfying:

• π is perpendicular to one of the d dimensions;

• V has vertices on both sides of π.

(b) (S1,G1) and (S2,G2) are orthogonal partitionings of G1 and G2 re-
spectively, where G1 and G2 are the subgraphs of G induced by the
vertices on the two sides of π, respectively.

Note that since, in the second bullet, G1 and G2 have at least one less vertex
than G, the recursive definition is well defined (see Figure 2 for an illustration).
It is worth pointing out that, every vertex of V appears either in S, or exactly
one of the subgraphs in G.

Consider any r-separator S of G, and the set G of subgraphs induced by S.
We call S an orthogonal r-separator of G if (S,G) is an orthogonal partitioning.
The first main result of the paper is:

Theorem 1 Let G = (V,E) be a d-dimensional grid graph where d is a fixed
constant. G has an orthogonal r-separator for any integer r ∈ [1, |V |].

The above is not subsumed by the existence results of [21, 23, 28] because the
vertex separators in [21, 23, 28] are not orthogonal. Our proof of the theorem
is constructive, and can be implemented efficiently to obtain our second main
result:

Theorem 2 Let G = (V,E) be a d-dimensional grid graph where d is a fixed
constant. For any values of M,B satisfying M ≥ 2B, there is an algorithm that
computes in O(sort(|V |)) I/Os an M -separator S of G, as well as the O(|V |/M)
subgraphs induced by S.
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π

π′

(a) (b)

Figure 2: (a) shows a plane π on the grid graph G of Figure 1a; let S be the set of
white vertices, and G1 (resp., G2) the subgraph induced by the black vertices on
the left (resp., right) of π. (S, {G1, G2}) forms an orthogonal partitioning of G.
(b) shows another plane π′ on G2; let S′ be the set of white vertices on π′, and
G3 (resp., G4) the subgraph induced by the black vertices above (resp., below)
of π′. (S′, {G3, G4}) forms an orthogonal partitioning of G2. Furthermore,
(S ∪ S′, {G1, G3, G4}) is also an orthogonal partitioning of G.

It is notable that our algorithm in Theorem 2 works for all M,B satisfying
M ≥ 2B. When d = 2, an M -separator can also be computed in O(sort(n))
I/Os using the planar-separator algorithm of [21]. However, the algorithm of
[21] requires the tall-cache assumption of M ≥ B2 (when this assumption is not
true, the I/O cost of the algorithm is substantially larger). This difference is
what permits us to strengthen a number of existing results on 2D grid graphs,
as will be explained later. Remember, also, that the algorithm of [21] cannot be
applied to grid graphs of d ≥ 3.

Next, we will explain some new results made possible by our new algorithm.

1.2.1 Application 1: New Results on Grid Graphs

Single Source Shortest Path and Breadth First Search on 2D Grid
Graphs. As mentioned, an M -separator of 2D grid graphs can be obtained
using the planar-graph algorithm of [21]. This is a key step behind the state-
of-the-art algorithms for solving the single source shortest path (SSSP) and the
breadth first search (BFS) on 2D grid graphs I/O-efficiently. However, since the
algorithm of [21] is efficient only under the tall-cache assumption M ≥ B2, the
same assumption is inherited by the SSSP and BFS algorithms as well. Our
Theorem 2 remedies this defect by removing the tall-cache assumption altogether.

Specifically, for SSSP, we will prove:

Corollary 1 The single source shortest path (SSSP) problem on a 2D grid graph
G = (V,E) can be solved in O(|V |/

√
M + sort(|V |)) I/Os.

Previously, the state of the art was an algorithm in [15] that matches the
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performance guarantee of Corollary 1 under the tall cache assumption. For M =
o(B2), however, the I/O-complexity of [15] becomes O((|V |/

√
M) · logM |V |),

which we strictly improve. It is worth mentioning that, on a general undirected
graph G = (V,E), the fastest SSSP algorithm [18] in EM to our knowledge

requires O(|V | + |E|
B log2

|E|
B ) I/Os, which is much worse than the bound in

Corollary 1.

For BFS, we will prove:

Corollary 2 We can perform breadth first search (BFS) on a 2D grid graph
G = (V,E) in O(|V |/

√
M + sort(|V |)) I/Os.

The corollary nicely bridges the previous state of the art, which runs either
the SSSP algorithm of [15], or the best BFS algorithm [22] for general graphs.
When applied to a 2D grid graph G = (V,E), the algorithm of [22] performs
O(|V |/

√
B + sort(|V |)) I/Os. Corollary 2 improves the winner of those two

algorithms when M is between ω(B) and o(B2).

For fairness, it should be pointed out that the work of [21] focused on studying
the smallest memory size needed to achieve O(sort(n)) in computing vertex
separators for planar graphs. A topic, which was not explored in [21] but is
relevant to us, is the explicit I/O complexity of the algorithm in [21] when M is in
the range from 2B to B2. It appears that the techniques of [21] could be adapted
to compute an M -separator on 2D grid graphs in O(|V |/

√
M + sort(|V |)) I/Os

for all M ≥ 2B. If so, then Corollaries 1 and 2 can already be achieved with the
current state of the art [15]. We include our own proofs for the two corollaries
anyway because (i) the proofs are short, and make the claims official; (ii) they
indicate that, for M = o(B2), the performance bottleneck is not on computing an
M -separator (our algorithm finds an M -separator in O(sort(n)) I/Os); and (iii)
they explain the details unique to our M -separator when it comes to integration
with the existing SSSP/BFS algorithms.

Finding Connected Components on d-Dimensional Grid Graphs. It
has been stated [30, 33] that the connected components (CCs) of a 2D grid graph
G = (V,E) can be computed in O(sort(|V |)) I/Os. This is based on the belief
that a 2D grid graph has the property of being sparse under edge contractions.
Specifically, an edge contraction removes an edge between vertices v1, v2 from G,
combines v1, v2 into a single vertex v, replaces every edge adjacent to v1 or v2

with an edge adjacent to v, and finally removes duplicate edges thus produced
(see Figure 3); all these steps then create a new graph. The aforementioned
property says that, if one performs any sequence of edge contractions to obtain
a resulting graph G′ = (V ′, E′), G′ must still be sparse, namely, |E′| = O(|V ′|).
Surprisingly, the belief — perhaps too intuitive — seemed to have been taken
for granted, such that no proof has ever been documented.

We will formally disprove this belief:

Theorem 3 There exists a 2D grid graph that is not sparse under edge contrac-
tions.
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v1

v2 ⇒
v

Figure 3: Contracting the edge between v1, v2 from the graph on the left produces
the graph on the right

With the belief invalidated, the best existing deterministic algorithm for
computing the CCs of a 2D grid graph requires an I/O complexity that is the
minimum of O(sort(|V |) · log logB) [24] and O(sort(|V |) · log(|V |/|M |)) [16].
Equipped with Theorem 2, we will improve this result by proving:

Corollary 3 The connected components of a d-dimensional grid graph G =
(V,E) where d = O(1) can be computed in O(sort(|V |)) I/Os for all constant
d ≥ 2.

Note that the above corollary applies not only to d = 2, but also to any
constant d ≥ 2.

1.2.2 Application 2: Density-Based Clustering

Density-based clustering is an important class of problems in data mining (see
textbooks [14, 29]), where DBSCAN [11] is a well-known representative. The
input of the DBSCAN problem consists of:

• A constant integer minPts ≥ 1,

• A real number ε > 0, and

• A set P of n points in Rd, where R denotes the set of real values, and the
dimensionality d is a constant integer at least 2.

Denote by dist(p1, p2) the distance between two points p1 and p2, according
to a certain distance metric. A point p ∈ P is a core point if |{q ∈ P |dist(p, q) ≤
ε}| ≥ minPts; otherwise, p is a non-core point. Define a neighbor core graph G
as follows: (i) each vertex of G corresponds to a distinct core point, and (ii)
there is an edge between two vertices (a.k.a, core points) p1, p2 if and only if
dist(p1, p2) ≤ ε. Then, the clusters of P are uniquely determined in two steps:

1. Take each connected component of G as a cluster. After this step, each
cluster contains only core points.

2. For each non-core point p ∈ P , consider every core point q satisfying
dist(p, q) ≤ ε; assign p to the (only) cluster that contains q. This may add
p to minPts = O(1) clusters.
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square with side length 2ε

cluster 1

cluster 2

cluster 3noise

Figure 4: The square on the right illustrates the value of ε (all the points in the
square are within L∞ distance ε from the white point) and minPts = 4. All
the circle points are core points, while the two cross points are non-core points.
One non-core point is assigned to both Cluster 1 and Cluster 2, while the other
non-core point is classified as noise.

The clusters after Step 2 constitute the final clusters on P . It is possible that
some non-core points are not assigned to any clusters; those points are classified
as noise. The goal of the DBSCAN problem is to compute the DBSCAN clusters
on the input set P with respect to the parameters ε and minPts.

Figure 4 illustrates an example where the distance metric is the L∞ norm.
Note that there can be Ω(n2) edges in G (for simplicity, no edges are given in
the example, but the square as shown should make it easy to imagine which
edges are present). Thus, one should not hope to solve the problem efficiently
by materializing all the edges.

We will prove:

Theorem 4 For any fixed-dimensionality d, the DBSCAN problem under the
L∞ norm can be solved in

• O(sort(n)) I/Os for d = 2 and 3;

• O((n/B) logd−2
M/B(n/B)) for any constant d ≥ 4.

Our proof relies on the proposed separator algorithm in Theorem 2, and
manifests on the usefulness of d-dimensional grid graphs in algorithm design.

It is worth mentioning the DBSCAN problem is known to be hard under
the L2 norm: it demands Ω(n4/3) time to solve for d ≥ 3 [13], unless Hopcroft’s
problem1 [10] could be solved in o(n4/3) time, which is commonly believed
to be impossible [9, 10]. Consequently, the L2 norm is unlikely to admit an
EM algorithm with near linear I/O complexity (otherwise, one could obtain
an efficient RAM algorithm by setting M and B to constants). Theorem 4,
therefore, separates the L∞ norm (and hence, also the L1 norm) from the L2

norm, subject to the above hardness assumption on Hopcroft’s problem.

1Let Spt be a set of points, and Sline be a set of lines, all in R2. Hopcroft’s problem is to
determine whether there is a point in Spt that lies on some line of Sline .
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1.3 Paper Organization

The rest of the paper is organized as follows. Section 2 gives a constructive
proof to show the existence of a new class of r-separators. Section 3 describes an
algorithm for computing an M -separator in O(sort(n)) I/Os. Section 4 presents
our algorithm for solving the DBSCAN problem under the L∞ norm in EM,
and as a side product, also an algorithm for finding the CCs of a d-dimensional
grid graph. Section 5 proves the other results on grid graphs mentioned in
Section 1.2.1. Finally, Section 6 concludes the paper with some open questions.

2 Orthogonal Separators

This section is devoted to establishing Theorem 1. We will explain our proof in
four steps, each of which is presented in a different subsection.

Let G = (V,E) be a d-dimensional grid graph, and (S,G) be an orthogonal
partitioning of G. Consider any subgraph G′ ∈ G. A vertex v in G′ is a boundary
vertex of G′ if v is adjacent in G to at least one vertex in S. Define the minimum
bounding box of G′ — denoted as MBB(G′) — as the smallest d-dimensional
axis-parallel rectangle that contains all the vertices of G′. The fact that G is a
grid graph implies that all boundary vertices of G′ must be on the boundary
faces of MBB(G′).

2.1 A Binary Partitioning Lemma

Recall that an r-separator can be multi-way because it may induce any number
h = O(|V |/r) of subgraphs. Let us first set h = 2, and prove the existence of a
binary orthogonal separator:

Lemma 1 Let G = (V,E) be a d-dimensional grid graph satisfying

|V | ≥ 2d · (2d+ 1)d+1.

There exists an orthogonal partitioning (S, {G1, G2}) of G such that:

• |S| ≤ (2d+ 1)1/d · |V |1−1/d

• G1 and G2 each have at least |V |/(4d+ 2) vertices.

Proof: Given a point p ∈ Nd, denote by p[i] its coordinate on dimension i ∈ [1, d].
Given a vertex v ∈ V , an integer x, and a dimension i, we say that v is on the
left of x on dimension i if v[i] < x, and similarly, on the right of x on dimension
i if v[i] > x. We define the V -occupancy of x on dimension i as the number of
vertices v ∈ V satisfying v[i] = x.

To prove Lemma 1, our strategy is to identify an integer x and a dimension i
such that (i) the V -occupancy of x on dimension i is at most (2d+1)1/d · |V |1−1/d,
and (ii) there are at least |V |/(4d+2) points on the left and right of x on dimension
i, respectively. Choosing (i) S as the set of vertices v ∈ V with v[i] = x, and (ii)
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G1 (resp., G2) as the graph induced by the vertices on the left (resp., right) of
x on dimension i will satisfy the lemma — in this case, we say that a split is
performed using a plane perpendicular to dimension i. We will prove that such
a pair of x and i definitely exists.

For each j ∈ [1, d], define yj to be the largest integer y such that V has at
most |V |/(2d+ 1) vertices on the left of y on dimension j, and similarly, zj to
be the smallest integer z such that V has at most |V |/(2d+ 1) vertices on the
right of z on dimension j. It must hold that yj ≤ zj .

Consider the axis-parallel box whose projection on dimension j ∈ [1, d] is
[yj , zj ]. By definition of yj , zj , the box must contain at least

|V |
(

1− 2d

2d+ 1

)
= |V | · 1

2d+ 1

vertices. This implies that the box must contain at least |V |/(2d+ 1) points in
Nd, that is:

d∏
j=1

(zj − yj + 1) ≥ |V |
2d+ 1

Therefore, there is at least one j satisfying

zj − yj + 1 ≥
( |V |

2d+ 1

)1/d

.

Set i to this j. Since the box can contain at most |V | vertices, there is one
integer x ∈ [yi, zi] such that the V -occupancy of x on dimension i is at most

|V |
|V |1/d/(2d+ 1)1/d

= (2d+ 1)1/d · |V |1−1/d.

We now argue that there must be at least |V |/(4d+ 2) vertices on the left of
x on dimension i. For this purpose, we distinguish two cases:

• x = yi: By definition of yi and x, the number of vertices on the left of x
on dimension i must be at least

|V |
2d+ 1

− (2d+ 1)1/d · |V |1−1/d

which is at least |V |/(4d+ 2) for |V | ≥ 2d(2d+ 1)d+1.

• x > yi: By definition of yi, there are at least |V |/(2d+ 1) vertices whose
coordinates on dimension i are at most yi. All those vertices are on the
left of x on dimension i.

A symmetric argument shows that at least |V |/(4d+ 2) vertices are on the
right of x on dimension i. This finishes the proof of Lemma 1. �
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2.2 A Multi-Way Partitioning Lemma

In this subsection, we establish a multi-way version of the previous lemma:

Lemma 2 Let G = (V,E) be a d-dimensional grid graph. For any positive
integer r satisfying

2d · (2d+ 1)d+1 ≤ r (1)

G has an orthogonal partitioning (S,G) such that |S| = O(|V |/r1/d) and G has
O(|V |/r) subgraphs, each of which has at most r vertices.

Proof: Motivated by [12], we perform the binary split enabled by Lemma 1
recursively until every subgraph has at most r vertices. This defines an orthogonal
partitioning (S,G) as follows. At the beginning, S = ∅ and G = {G}. Every
time Lemma 1 performs a split on a subgraph G′ ∈ G, it outputs an orthogonal
partitioning (S′, {G1, G2}) of G′; we update (S,G) by (i) adding all the vertices
of S′ into S, (ii) deleting G′ from G, and (iii) adding G1, G2 to G.

Focus now on the final (S,G). Each subgraph in G has at least (r + 1)/(4d+
2) = Ω(r) vertices because each application of Lemma 1 is on a subgraph of
at least r + 1 vertices. It thus follows that the number of subgraphs in G is
O(|V |/r).

It remains to show |S| = O(|V |/r1/d). For this purpose, define function f(n)
which gives the maximum possible |S| when the original graph has n = |V |
vertices. If r

4d+2 ≤ n ≤ r, f(n) = 0. Otherwise, Lemma 1 indicates

f(n) ≤ (2d+ 1)1/d · n1−1/d + max
α∈[ 1

4d+2 ,
4d+1
4d+2 ]

f(αn) + f((1− α)n).

It is not difficult to verify (by the substitution method [7]) that f(n) = O(n/r1/d)
for n > r. �

Note that the lemma does not necessarily yield an r-separator because the
set S produced may not satisfy Condition 2(b) in Definition 1.

2.3 Binary Partitioning with Colors

We say that a d-dimensional grid graph G = (V,E) is r-colored if

• |V | ≤ r;

• Every vertex in V is colored either black or white;

• There are at least 8d2 · r1−1/d black vertices, all of which are on the
boundary faces of MBB(G).

Next, we prove a variant of Lemma 1, which concentrates on splitting only
the black vertices evenly (recall that Lemma 1 aims at an asymptotically even
split of all the vertices):
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Lemma 3 Let G = (V,E) be an r-colored d-dimensional grid graph with b black
vertices. There is an orthogonal partitioning (S, {G1, G2}) of G satisfying:

• |S| ≤ r1−1/d.

• G1 and G2 each have at least b
8d2 black vertices.

Proof: We will adopt the strategy in Section 2.1 but with extra care. Since
MBB(G) has 2d faces, one of them contains at least b/(2d) black vertices. Fix R
to be this face, which is a (d− 1)-dimensional rectangle. Assume, without loss
of generality, that R is orthogonal to dimension d.

For each j ∈ [1, d− 1], define yj to be the largest integer y such that R has
at most b

2d · 1
2d black vertices on the left of y on dimension j, and similarly, zj

to be the smallest integer z such that R has at most b
2d · 1

2d black vertices on
the right of z on dimension j. It must hold that yj ≤ zj .

Consider the axis-parallel box in R whose projection on dimension j ∈ [1, d−1]
is [yj , zj ]. By definition of yj , zj , the box must contain at least

b

2d

(
1− 2(d− 1)

2d

)
=

b

2d
· 1

d

black vertices. Therefore, there is at least one dimension j ∈ [1, d− 1] on which
the projection of the box covers at least(

b

2d2

)1/(d−1)

coordinates. Set i to this j. Since the box can contain at most |V | ≤ r vertices,
there is one integer x ∈ [yi, zi] such that the V -occupancy of x on dimension i is
at most

r

b1/(d−1)
· (2d2)1/(d−1) ≤ r1−1/d ≤ b

8d2
(2)

where both inequalities used b ≥ 8d2 · r1−1/d (which is true because G is r-
colored).

We perform a split perpendicular to dimension i at x; namely, choose S as
the set of vertices v ∈ V with v[i] = x, and set G1 (resp., G2) to be the subgraph
induced by the vertices on the left (resp., right) of x on dimension i. To show
that G1 has at least b

8d2 black vertices, we distinguish two cases:

• x = yi: By the definitions of yi and x, the number of black vertices on the
left of x on dimension i must be at least

b

4d2
− r

b1/(d−1)
· (2d2)1/(d−1) ≥ b

4d2
− b

8d2
=

b

8d2
(3)

where the first inequality is due to (2).

• x > yi: The definitions of yi and x imply at least b
4d2 black vertices on the

left of x on dimension i.

A symmetric argument shows that G2 must have at least b
8d2 black vertices.

This completes the proof of Lemma 3. �
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2.4 Existence of Orthogonal Separators (Proof of Theo-
rem 1)

We are now ready to prove Theorem 1. It suffices to do so for r ≥ 2d · (2d+1)d+1,
because an orthogonal (2d · (2d + 1)d+1)-separator is also a valid orthogonal
r-separator for any r < 2d · (2d+ 1)d+1 when d = O(1). The following discussion
concentrates on r ≥ 2d · (2d+ 1)d+1.

Let G = (V,E) be the input d-dimensional grid graph. First, apply Lemma 2
on G to obtain an orthogonal partitioning (S,G). The lemma ensures that
|S| = O(|V |/r1/d) and that each of the O(|V |/r) subgraphs in G has at most r
vertices. We say that a subgraph in G is bad if it has more than

8d2 · 3d−1 · r1−1/d

boundary vertices. We refer to each bad subgraph in G at this moment as a raw
bad subgraph (the content of G may change later).

Motivated by [12], we deploy Lemma 3 to get rid of all the bad subgraphs
with an elimination procedure. As long as G still has at least one bad subgraph,
the procedure removes an arbitrary bad subgraph Gbad from G, and executes
the following steps on it:

1. Color all the boundary vertices of Gbad black, and the other vertices white.
Gbad thus becomes r-colored (by definition of bad subgraph).

2. Apply Lemma 3 to find an orthogonal partitioning (S′, {G1, G2}) of Gbad.

3. Add all the vertices in S′ to S. Delete Gbad from G, and add G1, G2 to G.
Note that (S,G) still remains as an orthogonal partitioning of G.

When G has no more bad subgraphs, we return the set S of the current (S,G).
Next, we show that the final S obtained is an orthogonal r-separator, namely:

(i) |S| = O(|V |/r1/d), (ii) the final G has O(|V |/r) subgraphs, and (iii) every
subgraph in G has O(r1−1/d) boundary vertices. The elimination procedure
already guarantees (iii); the rest of the section will focus on proving (i) and (ii).

Denote by (Sbefore ,Gbefore) the content of (S,G) before the elimination pro-
cedure, while still using (S,G) to denote the orthogonal partitioning at the end.
Gbefore has O(|V |/r) subgraphs. Some of those subgraphs are also in G. Every
“new” subgraph in G but not in Gbefore must be created during the elimination
procedure. We can think of the subgraph creation during the elimination proce-
dure as a forest. Each tree in the forest is rooted at a raw bad subgraph; and
every node in the tree corresponds to a subgraph created in the elimination
procedure. Every internal node of a tree has two child nodes, corresponding to
the splitting of a subgraph Gbad into G1, G2 at Step 2. Each leaf of a tree is a
subgraph in G. The next lemma bounds the size of each tree:

Lemma 4 Let Graw be a raw bad subgraph with b boundary vertices. The
elimination procedure generates O(b/r1−1/d) leaf subgraphs in the tree rooted at
Graw .
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Proof: Let Gbad be a bad subgraph that is split with Lemma 3 in the elimination
procedure. Define f(n) as the maximum number of leaf subgraphs in the subtree
rooted at Gbad, when Gbad has n boundary vertices.

If n ≤ 8d2 · 3d−1 · r1−1/d, f(n) = 1. Now assume n > 8d2 · 3d−1 · r1−1/d.
An application of Lemma 3 on Gbad generates G1 and G2. Let us analyze the
number of boundary vertices that G1 can have. Every boundary vertex of G1

may be (i) inherited from Gbad, or (ii) newly created during the split performed
by Lemma 3. The second bullet of Lemma 3 shows that there can be at most
α · n vertices of type (i), for some α ∈ [ 1

8d2 , 1− 1
8d2 ]. As for (ii), note that every

vertex of this type must be adjacent to some vertex of the vertex set in the first
bullet of Lemma 3. Since Gbad is r-colored, the number of vertices of type (ii)
must be at most 3d−1 · r1−1/d (the vertex set in the first bullet of Lemma 3 has
size r1−1/d, while each vertex in that set has at most 3d−1 neighbors in G1).
After extending the analysis to G2, we obtain the following recurrence:

f(n) ≤
max

α∈[ 1
8d2

,1− 1
8d2

]

(
f
(
αn+ 3d−1 · r1−1/d

)
+ f

(
(1− α)n+ 3d−1 · r1−1/d

)
− 1
)
.

It is not difficult to verify (with the substitution method [7]) that f(n) =
O(n/r1−1/d). The lemma then follows by setting n = b. �

Suppose that there are h′ raw bad subgraphs. Let bi (1 ≤ i ≤ h′) be the
number of boundary vertices of the i-th raw bad subgraph. From Lemma 2 and
by the fact that each vertex in a d-dimensional grid graph has degree O(1), we
know

h′∑
i=1

bi = O(|V |/r1/d).

Combining this with Lemma 4 shows that the elimination procedure introduces
at most

O

( |V |
r1/d

· 1

r1−1/d

)
= O(|V |/r)

new subgraphs. Therefore, in total there are h′+O(|V |/r) = O(|V |/r) subgraphs
in G at the end of the elimination procedure.

The above analysis also indicates that the elimination procedure can apply
Lemma 3 no more than O(|V |/r) times, each of which adds O(r1−1/d) vertices
into S. Therefore, the final separator S has size at most

|Sbefore |+O

( |V |
r
· r1−1/d

)
= O(|V |/r1/d).

This concludes the whole proof of Theorem 1.
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3 I/O-Efficient Separator Computation

This section will prove Theorem 2 by giving an algorithm to construct an M -
separator. Our proof is essentially an efficient implementation of the strategy
explained in Section 2 for finding an orthogonal M -separator. Recall that the
strategy involves two phases: (i) Lemma 2, and (ii) the elimination procedure in
Section 2.4. The second phase, as far as algorithm design is concerned, is trivial.
Every subgraph produced by the first phase has — by definition of M -separator

— O(M) edges, which can therefore be loaded into memory so that the algorithm
in Section 2.4 runs with no extra I/Os. In other words, the second phase can be
accomplished in only O(|V |/B) I/Os.

Henceforth, we will focus exclusively on the first phase, assuming

M ≥ 2d · (4d+ 2)2d ·B. (4)

Note that this assumption is made without loss of generality as long as d is a
constant. It is folklore that, in general, any algorithm assuming M ≥ cB for any
constant c > 2 can be adapted to work under M ≥ 2B, with only a constant
blowup in the I/O cost.

The construction algorithm of Lemma 2 recursively applies binary splits
to the input graph until all the obtained subgraphs have at most M vertices.
This process can be imagined as a split tree, where G = (V,E) is the parent of
G1 = (V1, E1), G2 = (V2, E2) if the splitting of G spawns G1 and G2. The split
is balanced in the sense that both |V1| and |V2| are at least |V |/(4d+ 2). Hence,
the split tree has a height of O(log(|V |/M)).

3.1 One Split

In this subsection, we describe an algorithm that performs a single split on
a d-dimensional grid graph G = (V,E) with |V | > M using sublinear I/Os,
assuming certain preprocessing has been done. This algorithm will play an
essential role in our final solution.

Recall that, given a coordinate x on dimension i ∈ [1, d], the V -occupancy of
x is the number of vertices v ∈ V with v[i] = x. We now extend this concept to
an interval σ = [x1, x2] on dimension i: the average V -occupancy of σ equals

|{v ∈ V | v[i] ∈ σ}|
x2 − x1 + 1

.

Preprocessing Assumed. Prior to invoking the algorithm below, each dimen-
sion i ∈ [1, d] should have been partitioned into at most s disjoint intervals —
called slabs — where

s = (M/B)1/d. (5)

A slab σ of dimension i is said to cover a vertex v ∈ V if v[i] ∈ σ. A slab
σ = [x1, x2] is called a singleton slab if it contains only a single coordinate, i.e.,
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x1 = x2. We call σ heavy if it covers more than |V |/(4d + 2) vertices. Our
algorithm demands an important heavy-singleton property:

If a slab σ = [x1, x2] of any dimension is heavy, then σ must be a
singleton slab.

All the slabs naturally define a d-dimensional histogram H. Specifically, H
is a d-dimensional grid with at most sd cells, each of which is a d-dimensional
rectangle whose projection on dimension i ∈ [1, d] is a slab on that dimension.
For each cell φ of H, the following information should already be available:

• A vertex count, equal to the number of vertices v ∈ V that φ contains (i.e,
the point v falls in φ). Denote by φ(V ) the set of these vertices.

• d vertex lists, where the i-th (1 ≤ i ≤ d) one sorts all the vertices of φ(V )
by dimension i. This means that a vertex v ∈ φ(V ) is duplicated d times.
We store with each copy of v all its O(1) adjacent edges.

All the vertex counts are kept in memory. The sorted vertex lists in all the cells,
on the other hand, occupy O(sd + |V |/B) = O(|V |/B) blocks on disk.

Given a slab σ on any dimension, we denote by σ(V ) the set of vertices
covered by σ. The vertex counts in H allow us to obtain |σ(V )| precisely, and
hence, the average V -occupancy of σ precisely, without any I/Os. Define

K = max
non-singleton σ

|σ(V )| (6)

Note that the maximum ranges over all non-singleton slabs of all dimensions.
As in Section 2.1, our aim is to find a dimension i and a coordinate x such

that (i) the V -occupancy of x is at most (2d+ 1)1/d|V |1−1/d, and (ii) at least
|V |/(4d+ 2) vertices are on the left and right of x on dimension i, respectively.
Our algorithm will perform O((M/B)1−1/d +K/B) I/Os.

Algorithm. Suppose that the slabs on dimension i are numbered from left to
right, i.e., the leftmost one is numbered 1, the next 2, and so on. For dimension
j ∈ [1, d], let yj be the largest integer y such that at most |V |/(2d+ 1) points
are covered by the slabs on this dimension whose numbers are less than y, and
similarly, let zj be the smallest integer z such that at most |V |/(2d+ 1) points
are covered by the slabs on this dimension whose numbers are greater than z. It
must hold that yj ≤ zj .

Let R be the d-dimensional rectangle whose projection on dimension each
j ∈ [1, d] is the union of the slabs numbered yj , yj + 1, ..., zj . As R contains
at least |V |/(2d + 1) vertices, its projection on at least one dimension covers
at least (|V |/(2d + 1))1/d coordinates. Fix i to be this dimension. Note that
the projection of R on dimension i (i.e., an interval on the dimension) has an
average V -occupancy of at most (2d+ 1)1/d|V |1−1/d. Therefore, at least one of
the slabs numbered yi, yi + 1, ..., zi on dimension i has an average V -occupancy
at most (2d+ 1)1/d|V |1−1/d. Let σ be this slab.

It thus follows that at least one coordinate x within σ has V -occupancy of at
most (2d+ 1)1/d|V |1−1/d. If σ is a singleton slab, then x is the (only) coordinate
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contained in σ. Otherwise, to find such an x, we scan the vertices of σ(V ) in
ascending order of their coordinates on dimension i. This can be achieved by
merging the vertex lists of all the at most sd−1 cells in σ — more specifically,
the lists sorted by dimension i. The merge takes

O(sd−1 + |σ(V )|/B) = O((M/B)1−1/d +K/B)

I/Os, by keeping a memory block as the reading buffer for each cell in σ.
To prove the algorithm’s correctness, we first argue that at least |V |/(4d+ 2)

vertices are on the left of x on dimension i. Because of |V | > M and (4), it holds
that

(2d+ 1)1/d|V |1−1/d ≤ |V |
4d+ 2

.

This implies that σ — the slab which x comes from — cannot be heavy. In

other words, σ contains no more than |V |
4d+2 vertices. Therefore, by definition of

yi, there must be at least

|V |
2d+ 1

− |V |
4d+ 2

=
|V |

4d+ 2

vertices in the slabs of dimension i whose numbers are less than yi. All those
vertices are on the left of x on dimension i. A symmetric argument shows that
at least |V |/(4d+ 2) vertices are on the right of x on dimension i.

3.2 2Ω(log(M/B)) Splits

Let G = (V,E) be a d-dimensional grid graph with |V | > M that is stored as
follows. First, V is duplicated in d lists, where the i-th one sorts all the vertices
v ∈ V by dimension i. Second, each copy of v stores all the O(1) edges adjacent
to v.

In this section, we present an algorithm that achieves the following purpose
in O(|V |/B) I/Os: recursively split G using the one-split algorithm of Section 3.1
such that, in each resulting subgraph, the number of vertices is at most

max

{
M,O

( |V |
2Ω(log(M/B))

)}
but at least M/(4d+ 2).

Our algorithm is inspired by an algorithm of Agarwal et al. [1] for bulkloading
the kd-tree I/O-efficiently (but the two algorithms differ considerably in details).
Recall that our one-split algorithm has sub-linear cost as long as the histogram
is available. The histogram, on the other hand, requires linear cost to prepare,
because of which we cannot afford to compute from scratch the histogram for
the next split. A crucial observation is that we do not need to do so from scratch.
This is because a split only affects a small part of the histogram, such that
the histograms for the next two splits can be generated from the old histogram
incrementally with sub-linear cost.
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Constructing the Initial Histogram. Define

t =
1

2
· (M/B)1/d.

Partition each dimension i ∈ [1, d] into disjoint intervals (a.k.a., slabs) σ = [x1, x2]
satisfying two conditions:

• σ covers no more than |V |/t vertices, unless σ is singleton (i.e., x1 = x2).

• The right endpoint x2 of σ cannot be increased any further without violating
the above condition, unless σ is the rightmost slab on this dimension.
Equivalently, this means that, if σ is not the rightmost slab, there must be
more than |V |/t vertices v ∈ V satisfying v[i] ∈ [x1, x2 + 1].

These conditions can be understood intuitively as follows. To create a slab of
dimension i starting at coordinate x1, one should set its right endpoint x2 (≥ x1)
as large as possible, provided that the slab still covers at most |V |/t points. But
such an x2 does not exist if x1 itself already has a V -occupation of more than
|V |/t; in this case, create a singleton slab containing only x1. It is easy to obtain
these slabs in O(|V |/B) I/Os from the vertex list of V sorted by dimension i.

Proposition 1 Each dimension has less than 2t slabs.

Proof: The union of any two consecutive slabs must cover more than |V |/t
vertices. Consider the following pairs of consecutive slabs: (1st, 2nd), (3rd, 4th),
..., leaving out possibly the rightmost slab. A vertex is covered by the union of
at most one such pair. Therefore, there can be at most⌊ |V |

b|V |/tc+ 1

⌋
≤ t− 1

pairs, making the number of slabs at most 2(t− 1) + 1 = 2t− 1. �

Construct the histogram H on G as defined in Section 3.1. This can be
accomplished in O(|V |/B) I/Os. To understand this, observe that, by Propo-
sition 1, the total number of cells in the histogram is at most (2t)d ≤ M/B,
which allows us to allocate one memory block to each cell. Using these blocks
as writing buffers, we can create all the cells’ vertex lists on a dimension by
scanning V only once.

Recursive One-Splits. We invoke the one-split algorithm on G (notice that
all its preprocessing requirements have been fulfilled), which returns a coordinate
x and dimension i. The I/O cost is O((M/B)1−1/d + |V |/(tB)) I/Os, because
the value of K in (6) is at most |V |/t (every non-singleton slab covers at most
|V |/t vertices).

The pair x and i defines a separator S, which consists of all the vertices
v ∈ V with v[i] = x. Removing S splits G into G1 = (V1, E1) and G2 = (V2, E2).
Let σ be the slab on dimension i containing x. Extracting S from σ requires
O(1 + |S|/B + |σ(V )|/B) = O(|S|/B + |V |/(tB)) I/Os.
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We will then recursively apply the one-split algorithm on G1 and G2, respec-
tively, before that, however, we need to prepare their histograms H1, H2. If σ is
singleton, H1 and H2 can be obtained trivially with no I/Os: H1 (or H2, resp.)
includes all the cells of H on the left (or right, resp.) of x on dimension i.

If σ is non-singleton, each cell φ in σ needs to be split (at x on dimension i)
into φ1, φ2, whose information is not readily available yet. We can produce the
information of all such φ1, φ2 by inspecting each φ as follows:

1. Assign the vertices in φ — if not in S — to φ1 or φ2.

2. Prepare the d sorted lists of φ1 and φ2 by splitting the corresponding lists
of φ.

As there are O((M/B)1−1/d) cells in σ, the above steps finish in O((M/B)1−1/d+
|V |/(tB)) I/Os.

If |V1| > M (or |V2| > M), we now apply the one-split algorithm on G1 (or
G2, resp.) — descending one level from G in the split tree — which is recursively
processed in the same manner. The recursion ends after we have moved

` =
⌊
(log4d+2 t)− 1

⌋
(7)

levels down in the split tree from G. It can be verified that ` ≥ 1 (applying (4))
and 2` = O(t).

Correctness. Recall that the one-split algorithm requires the heavy-singleton
property to hold. We now prove that this property is always satisfied during the
recursion. Let G′ = (V ′, E′) be a graph processed by the one-split algorithm.
Since G′ is at most ` levels down in the split tree from G, we know (by the fact
that each split is balanced) that

|V ′| ≥ |V |
(4d+ 2)`

which together with (7) shows

|V ′|
4d+ 2

≥ |V |
t
.

Therefore, a heavy slab σ′ of any dimension for G′ must contain more than |V |/t
vertices. On the other hand, σ′ must be within a slab σ defined for G, which
thus also needs to cover more than |V |/t vertices. By our construction, σ must
be singleton, and therefore, so must σ′.

Finally, it is worth pointing out that each split will generate O((M/B)1−1/d)
cells, and hence, demands the storage of this many extra vertex counts in memory.
This is fine because the total number of vertex counts after 2` = O(t) splits is
O((M/B)1−1/d · t) = O(M/B).
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Bounding the Total Cost. The one-split algorithm is invoked at most 2`

times in total. By the above analysis, the overall I/O cost is

O

(
|S|
B

+

((
M

B

)1−1/d

+
|V |
tB

)
· 2`
)

= O

(
|S|
B

+

((
M

B

)1−1/d

+
|V |
tB

)
· t
)

= O

( |S|
B

+
M

B
+
|V |
B

)
= O

( |V |
B

)

utilizing two facts: (i) every vertex v contributes to the |S|/B term at most once
— once included in a separator, v is removed from further consideration in the
rest of the recursion, and (ii) a non-singleton slab of any histogram throughout
the recursion is within a non-singleton slab of H (the histogram of G), and hence,
covers no more than |V |/t vertices.

3.3 The Overall Algorithm

We are ready to describe how to compute an M -separator on a d-dimensional
grid graph G = (V,E) in O(sort(|V |)) I/Os which, according to the discussion
at the beginning of Section 3, will complete the proof of Theorem 2.

First, sort the vertices of V d times, each by a different dimension, thus
generating d sorted lists of V . We store with each copy of v all its O(1) edges.
The production of these lists takes O(sort(|V |)) I/Os.

We now invoke the algorithm of Section 3.2 on G. For each subgraph
G′ = (V ′, E′) thus obtained, we materialize it into d sorted lists, where the i-th
one sorts V ′ by dimension i, ensuring that each copy of a vertex is stored along
with its O(1) edges. This can be done in O(|V ′|/B) I/Os as follows. Recall that
the algorithm maintains a histogram of at most M/B cells. By allocating a
memory block as the writing buffer for each cell, we can generate the sorted list
of V ′ on a dimension by one synchronous scan of the corresponding vertex lists
of all cells for the same dimension. The cost is O(M/B + |V ′|/B) = O(|V ′|/B)
because |V ′| ≥M/(4d+ 2).

Finally, if |V ′| > M , we recursively apply the algorithm of Section 3.2 on G′,
noticing that the preprocessing requirements of the algorithm have been fulfilled
on G′.

Now we prove that the total cost of the whole algorithm is O(sort(|V |)).
One application of the algorithm of Section 3.2 on a graph G′ = (V ′, E′) costs
O(|V ′|/B) I/Os, or equivalently, charging O(1/B) I/Os on each vertex of V ′.
A vertex can be charged O(logM/B(|V |/M)) times, adding up to O(sort(|V |))
I/Os overall for all vertices.
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4 Density-Based Clustering

In Section 4.1, we will describe an algorithm to solve the DBSCAN problem
under the L∞ norm with the I/O complexities stated in Theorem 4. Our
algorithm demonstrates an elegant application of d-dimensional grid graphs. The
application requires Corollary 3, which we prove in Section 4.2.

4.1 Proof of Theorem 4

Recall that the input to the DBSCAN problem involves a constant integer
minPts ≥ 1, a real number ε > 0, and a set P of n points in Rd. Also recall that
a point p ∈ P is a core point if P has at least minPts points within distance ε
from p (counting p itself). Our DBSCAN algorithm under the L∞ norm includes
three main steps: (i) core point identification, (ii) core point clustering, and
(iii) non-core point assignment. Our discussion will focus on the case where
B > minPts (recall that minPts = O(1)).

Core Point Identification. We impose an arbitrary grid G on Rd, where each
cell is an axis-parallel d-dimensional square with side length ε. Assign each point
p ∈ P to the cell of G which covers p. If p happens to lie on the boundaries of
multiple cells, assign p to an arbitrary one of them. For each cell φ of G, denote
by φ(P ) the set of points assigned to φ. If φ(P ) is not empty, φ is a non-empty
cell. Obviously, there can be at most n non-empty cells; we can find all of them
in O(sort(n)) I/Os.

We say that a non-empty cell φ is sparse if |φ(P )| ≤ B; otherwise, φ is dense.
Also, another cell φ′ is a neighbor of φ if the minimum L∞ distance between the
boundaries of the two cells is at most ε. Note that a cell has less than 3d = O(1)
neighbors.

The non-empty neighbors of all non-empty cells can be produced in O(sort(n))
I/Os as follows. For each non-empty cell φ, generate 3d − 1 pairs (φ, φ′), one for
each of all its neighbors φ′, regardless of whether φ′ is empty. Put all such pairs
together, and join them with the list of non-empty cells to eliminate all such
pairs (φ, φ′) where φ′ is empty. The non-empty neighbors of each non-empty cell
can then be easily derived from the remaining pairs.

Define the neighbor point set of a non-empty cell φ — denoted as Nφ — to
be the set that unions the point sets φ′(P ) of all non-empty neighbors φ′ of φ.
Since we already have the non-empty neighbors of all non-empty cells, it is easy
to create the Nφ of all φ in O(sort(n)) I/Os. While doing so, we also ensure
that the points of Nφ are sorted by which φ′(P ) they come from. Note that as
each point can belong to O(1) neighbor point sets, all the neighbor point sets
can be stored in O(n/B) blocks in total.

Observe that the points in dense cells must be core points. For each sparse
cell φ, we load φ(P ) in memory and scan through Nφ to decide the label (i.e.,
core or non-core) for each point in φ. Clearly, after arranging φ(P ) (resp., Nφ)
of all the sparse cells φ to be stored together in O(sort(n)) I/Os, this can be
done in O(n/B) I/Os. Therefore, the total I/O cost for core point identification
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is bounded by O(sort(n)).

Core Point Clustering. Let us first mention a relevant result on the max-
ima/minima problem. Let P be a set of n distinct points in Rd. A point p1 ∈ P
dominates another p2 ∈ P if p1[i] ≥ p2[i] for all dimensions i ∈ [1, d] — recall
that p[i] denotes the coordinate of p on dimension i. The maxima set of P is the
set of points p ∈ P such that p is not dominated by any point in P . Conversely,
the minima set of P is the set of points p ∈ P such that p does not dominate
any point in P . A point in the maxima or minima set is called a maximal or
minimal point of P , respectively. In EM, both the maxima and minima sets
of P can be found in O(sort(n)) I/Os for d = 2, 3, and O((n/B) logd−2

M/B(n/B))

I/Os for d ≥ 4 [27].
Next, we show how to compute the clusters on the core points I/O efficiently.

Denote by Pcore the set of core points of P and by φ(Pcore) the set of core points
assigned to cell φ of G. A cell φ is called a core cell if φ(Pcore) is non-empty.
Let Nφ(Pcore) be the set of core points in Nφ. The φ(Pcore) and Nφ(Pcore) of
all the core cells φ can be extracted from the results of the previous step in
O(sort(n)) I/Os. Meanwhile, we also ensure that the points of Nφ(Pcore) are
sorted by which cell they come from.

It is also clear that two core points assigned to the same cell φ must belong
to the same cluster. As a result, it allows us to “sparsify” Pcore by computing
the primitive clusters at the cell level. For this purpose, we define a graph
G = (V,E) as follows:

• Each vertex V corresponds to a distinct core cell of G.

• Two different vertices (a.k.a. core cells) φ1, φ2 ∈ V are connected by an edge
if and only if there exists a point p1 ∈ φ1(Pcore) and a point p2 ∈ φ2(Pcore)
such that dist(p1, p2) ≤ ε.

We will explain later how to generate G efficiently, but a crucial observation
at the moment is that G is a d-dimensional grid graph. To see this, embed the
grid G naturally in a space Nd with one-one mapping between the cells of G and
the points of Nd. It is easy to verify that there can be an edge between two core
cells φ1 and φ2 only if their coordinates differ by at most 1 on every dimension.

Thus, we can compute the clusters on core points by computing the CCs
(connected components) of G. Corollary 3, which will be proved in Section 4.2,
permits us to achieve the purpose in O(sort(n)) I/Os. For each CC, collect the
union of φ(Pcore) for each vertex (i.e., core cell) φ therein. The union corresponds
to a cluster on the core points.

We now discuss the generation of G. Given a core cell φ, we elaborate on
how to obtain its edges in G. This is easy if φ is sparse, in which case we
can achieve the purpose by simply loading the entire φ(Pcore) in memory and
scanning through Nφ(Pcore). The I/O cost of doing so for all the sparse cells is
therefore O(n/B).

Consider instead φ to be a dense cell. A core cell φ′ that is a neighbor of
φ is called a core neighbor of φ. We examine every core neighbor φ′ of φ, in
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ascending order of the appearance of φ′(Pcore) in Nφ(Pcore). Let us assume —
without loss of generality due to symmetry — that the coordinate of φ is at most
that of φ′ on every dimension of Nd. We determine whether there is an edge in
G between φ and φ′ by solving three d-dimensional maxima/minima problems,
each on no more than |φ(Pcore)|+ |φ′(Pcore)| points:

1. Find the maxima set Σ1 of φ(Pcore), and the minima set Σ2 of φ′(Pcore).

2. Construct a set Π of points as follows: (i) add all points of Σ1 to Π, and
(ii) for each point p ∈ Σ2, decrease its coordinate by ε on every dimension,
and add the resulting point to Π.

3. If Π contains two points with the same coordinates, declare yes (i.e., there
is an edge between φ and φ′), and finish. This implies the existence of
p1 ∈ Σ1 and p2 ∈ Σ2 with p1[i] + ε = p2[i] for all i ∈ [1, d].

4. Find the minima set Σ3 of Π.

5. If any point of Σ1 is absent from Σ3, declare yes; otherwise, declare no.

To see the correctness, suppose first that there should be an edge. Then,
there must be a maximal point p1 of φ(Pcore) and a minimal point p2 of φ′(Pcore)
that have L∞ distance at most ε. Let p′2 be the point shifted from p2 after
decreasing its coordinate by ε on all dimensions; p′2 either is dominated by p1 or
coincides with p1. It follows that p1 will not appear in Σ3 if the execution comes
to Step 5, prompting the algorithm to output yes. Similarly, one can show that
if there should not be an edge, the algorithm definitely reports no.

For d = 2, 3, running the above algorithm for all dense cells φ and their core
neighbors φ′ entails I/O cost (applying the aforementioned result of [27] on the
minima/maxima problem)∑

dense φ, core neighbor φ′

O(sort(|φ(Pcore)|+ |φ′(Pcore)|)) = O(sort(n))

using the fact that each cell φ is a neighbor of less than 3d = O(1) dense cells.
In the same fashion using the d ≥ 4 result of [27], we can bound the I/O cost by
O((n/B) logd−2

M/B(n/B)).

Non-Core Point Assignment. For each non-core point p ∈ P , we first find
all the core points q such that dist(p, q) ≤ ε; for each q, assign p to the cluster
that contains q. If a non-core point is assigned to no clusters, it is classified as
noise. The assignment process can be implemented by loading φ(P ) in memory
and scanning through Nφ for each non-empty sparse cell φ. The I/O cost is
bounded by O(sort(n)).

The total cost of our algorithm is therefore O(sort(n)), subject to Corollary 3.
The next subsection will prove the correctness of this corollary, which will
complete the whole proof of Theorem 4.
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4.2 Proof of Corollary 3

Given a d-dimensional grid graph G = (V,E), apply Theorem 2 to compute an
M -separator S, as well as its induced subgraphs G1 = (V1, E1), ..., Gh = (Vh, Eh)
where h = O(|V |/M). For each i ∈ [1, h], define G+

i as an extended subgraph
whose

• Vertices include (i) those in Vi and (ii) the separator vertices (i.e., vertices in
S) that are adjacent to any boundary vertices of Gi. There are O(M1−1/d)
such separator vertices, i.e., the same order as the number of boundary
vertices.

• Edges include (i) those in Ei, and (ii) the edges between the boundary
vertices of Gi and separator vertices. G+

i has O(M) edges in total.

All these graphs can be generated in O(sort(|V |)) I/Os.
Construct a graph G′ = (V ′, E′) with V ′ = S as follows. First, E′ includes

all the edges in E among the separator vertices of S. O(|S|) = O(|V |/M1/d)
edges are added this way. Second, we add to E′ additional edges that reflect the
connectivity of the separator vertices within each extended subgraph. Specifically,
for each i ∈ [1, h], load into memory G+

i and compute its CCs. If a CC contains
x ≥ 2 separator vertices, add to E′ x − 1 edges that form a tree connecting
those vertices. The total number of edges inserted to E′ in the second step
is O((|V |/M) ·M1−1/d) = O(|V |/M1/d). Both steps can be done in O(|V |/B)
I/Os.

We apply the algorithm2 of [24] to find the CCs of G′ in

O

( |E′|
B

logM/B

|E′|
B
· log logB

)
= O

( |V |
BM1/d

logM/B

|V |
B
· log logB

)
= O(sort(|V |))

I/Os because M1/d ≥ B1/d = ω(log logB). Label the vertices of V ′ (i.e., S) so
that vertices in a CC receive the same unique label.

Finally, for i ∈ [1, h], load G+
i into memory again. For each non-separator

vertex vi, give it the same label as any separator vertex that vi can reach in
G+
i . If no such separator vertex exists, vi is in a CC that does not involve any

separator vertex; all the vertices in the CC are thus given a new label. Doing so
for all i entails O(|V |/B) extra I/Os. This establishes Corollary 3.

5 Results on 2D Grid Graphs

This section will concentrate on d = 2. Section 5.1 will demonstrate additional
applications of Theorem 2 by revisiting the SSSP (single source shortest path)
and BFS (breadth first search) problems and proving Corollaries 1 and 2. Sec-
tion 5.2 will disprove the “sparsity under edge contraction” belief by establishing
Theorem 3.

2In general, given an undirected graph G = (V,E), the algorithm of [24] finds the CCs in
O(sort(|V |) + sort(|E|) log log(|V |B/|E|)) I/Os.
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5.1 SSSP and BFS

Consider a grid graph G = (V,E) where each edge in E is associated with a
non-negative weight. Given two vertices v1, v2, a path from v1 to v2 is a sequence
of edges in E that allows us to walk from v1 to v2 without leaving the graph.
The length of a path is the sum of the weights of all its edges. The shortest path
from v1 to v2 is a path from v1 to v2 with the smallest length; the length of the
path is the shortest distance from v1 to v2.

In the SSSP problem, besides G, we are also given a source vertex vsrc , and
need to output the shortest paths and distances from vsrc to all the other vertices
in V . In particular, all the shortest paths must be reported space-economically
in a shortest path tree where (i) each node corresponds to a distinct vertex in
V , (ii) vsrc is the root, and (iii) the shortest path from vsrc to any other vertex
v in G goes through the same sequence of vertices as in the path from vsrc to
v in the tree3. The tree should be stored in the disk using the child adjacency
format where each node is associated with a list of its children.

Consider an M -separator S of G and its h = O(|V |/M) subgraphs G1, ..., Gh.
Given a separator vertex v ∈ S, its adjacent set is the set of all Gi (i ∈ [1, h])
such that E has an edge between v and at least one vertex in Gi. Arge et al. [4]
proved that the SSSP problem can be solved in O(|V |/

√
M + sort(|V |)) I/Os,

as long as S fulfills the following separator-decomposition requirement:

S has been divided into g = O(|V |/M) disjoint subsets S1, ..., Sg such
that the vertices in each Si (1 ≤ i ≤ g) have the same adjacent set.

Our objective is to strengthen the M -separator S in Theorem 2 to satisfy the
above requirement in O(sort(|V |)) I/Os.

Let S and G1, ..., Gh be the separator and subgraphs that Theorem 2 returns
for G. Recall that our algorithm of Theorem 2 recursively performs binary splits
using vertical/horizontal line segments in N2. If we remove these segments, the
remaining portion of the data space consists of disjoint axis-parallel rectangles,
which we call residue rectangles. It must hold that (i) separator vertices can lie
only on these line segments, and (ii) each Gi (i ≤ [1, h]) is induced by the vertices
in a distinct residue rectangle. This property motivates a simple algorithm for
dividing S to satisfy the separator-decomposition requirement. First, label the
subgraphs arbitrarily from 1 to h. For each vertex v ∈ S, generate a label list
that sorts in ascending order the labels of the subgraphs in the adjacent set of v.
The list has length O(1). We now partition S into disjoint subsets, where the
vertices in each subset have the same label list. The aforementioned property
implies that there are only O(|V |/M) subsets. The partitioning can be easily
done by sorting in O(sort(|V |)) I/Os, thus establishing Corollary 1.

The BFS problem is, essentially, an instance of SSSP on a grid graph where
all edges have the same weight. In particular, the shortest path tree corresponds
to the BFS tree. Corollary 1 immediately implies Corollary 2. It is worth
mentioning that, in O(sort(|V |)) I/Os, one can compute from the BFS tree an

3Equivalently, the parent of each node v is the predecessor of v on the shortest path from
vsrc to v.
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alternative encoding where every node in the tree keeps a pointer referencing its
parent in the tree. In fact, within the same I/O cost, one can even compute a
“blocked version” of this encoding such that, for any node v, the path from v to
the root vsrc of the BFS tree (i.e., the reverse of the shortest path from vsrc to
v) is stored in O(1 + `/B) blocks, where ` is the number of edges of the path
(see Theorem 1 of [17]).

5.2 Disproving Edge-Contraction Sparsity

This subsection serves as a proof of Theorem 3. Recall that a graph G = (V,E)
is sparse if |E| ≤ c|V |, for some constant c > 0. Given any integer m ≥ 2, we
will design a grid graph that can be edge-contracted into a clique of m vertices.
The clique is not sparse when m > 2c+ 1. Thus, regardless of the choice of c,
there is always a grid graph that is not sparse under edge contraction.

Before proceeding, let us point out a basic geometric fact that will be useful
in our design. Let p1 = (x1, y1) and p2 = (x2, y2) be two distinct points in
R2 such that x1, y1, x2, y2 are all even integers. Let `1 be the line with slope 1
passing p1, and `2 be the line with slope −1 passing p2. Then, the intersection
of `1 and `2 must be a point whose coordinates on both dimensions are integers.

Given integers i, j satisfying i ∈ [0,m− 1] and j ∈ [0,m− 2], let F (i, j) be
the point (1000m · i, 100j) in R2. Call these m(m− 1) points cornerstones.

For each pair (i, j) with i ∈ [0,m − 1], j ∈ [0,m − 2] and i ≤ j — there
are m(m− 1)/2 such pairs — define a wedge path between cornerstones F (i, j)
and F (j + 1, i) as follows. Shoot a ray with slope 1 emanating upward from
F (i, j), and a ray with slope −1 emanating upward from F (j + 1, i). Let p be
the intersection of the two rays; p must have integer coordinates. The wedge
path consists of two segments: the first one connects F (i, j) and p, while the
second connects p and F (j + 1, i).

The above definition yields m(m− 1)/2 wedge paths. Two such paths may
intersect each other; and the intersection point has integer coordinates — a
property that is not desired. Next, we will contort some paths a little to ensure
the following property: any two resulting paths are either disjoint or intersect
only at a point with fractional coordinates on both dimensions.

Let Pintr be the set of intersection points among the wedge paths. For each
point p = (x, y) in Pintr , place a square [x − 1, x+ 1] × [y − 1, y + 1] centered
at p. The constants 1000 and 100 in the definition of F (i, j) ensure that: (i)
the squares are disjoint from each other, and (ii) all of them are above the line
y = 100(m− 2), i.e., higher than all cornerstones.

Focus now on one such square, as shown in Figure 5a, where the two lines
illustrate the intersecting wedge paths. We contort one of the two paths as shown
in Figure 5b, so that the two paths now intersect at the point (x− 1/2, y − 1/2).
Apply the same contortion in all squares.

For each i ∈ [0,m−1], we add a vertical path from cornerstone F (i, 0) through
F (i,m−2). These m paths and the m(m−1)/2 wedge paths (possibly contorted)
give rise to the edges in our grid graph G — notice that every path uses only
segments each connecting two points whose coordinates are integers differing by
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Figure 5: Contortion within a square

i = 0 1 2 3
j = 0
1
2

Figure 6: The designed grid graph for m = 4 (the black points are the cor-
nerstones; the other vertices are dotted along the curves, but are omitted for
clarity)

at most 1 on each dimension. To complete the graph with vertices, we simply
place a vertex at every point p of R2 such that (i) p has integer coordinates
on both dimensions, and (ii) p is on one of those m+m(m− 1)/2 paths. See
Figure 6 for such the final G with m = 4.

It remains to explain how to perform edge contractions to convert G into a
clique of m vertices. First, contract every vertical path into a “super vertex”.
Between each pair of super vertices, there remains a sequence of edges corre-
sponding to one unique wedge path. The m(m − 1)/2 edge sequences do not
share any vertices except, of course, the super vertices. Contracting each wedge
path down to the last edge gives the promised clique.

6 Conclusions

This paper has proved that any d-dimensional grid graph G = (V,E) admits a
vertex separator that (i) resembles the well-known multi-way vertex separator of a
planar graph, and (ii) can be obtained solely by dividing the space recursively with
perpendicular planes, and collecting the vertices on those planes. Furthermore,
we have shown that such separators can be computed in O(sort(|V |)) I/Os, even
if the memory can accommodate only two blocks.
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A major application of the above findings is that they lead to an algorithm
that performs DBSCAN clustering in d-dimensional space with near-linear I/Os,
when the distance metric is the L∞ norm. Our techniques also lead to improved
results on three fundamental problems: CC, SSSP, and BFS. Specifically, the CC
problem has been settled in O(sort(|V |)) I/Os for any d-dimensional grid graph
G = (V,E). Our improvement on SSSP and BFS, however, is less significant,
and concerns only small values of M .

We close the paper with some open questions. First, is it possible utilize
our separator-computation algorithm to improve the I/O complexity of the DFS
algorithm in [16]? Second, does BFS on a 2D grid graph require Ω(|V |/

√
M)

I/Os in the worst case, thus making the result of Corollary 2 optimal? Finally,
the practicality of our algorithms also deserves further investigation. We expect
that these algorithms, as presented, are useful only when the dimensionality is a
small constant. Since in this paper we focused on proving theoretical bounds, we
have not discussed any heuristics that may reduce the running cost on “real-world
data”. The development of such heuristics is a meaningful topic for follow-up
engineering research.
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