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Abstract

Circle graphs have applications to RNA bioinformatics, computational
chemistry, and VLSI design. Additionally, many problems that are in-
tractable on general graphs are efficient for circle graphs. This has driven
research into algorithms for circle graphs. One well known graph problem
is to find a maximum induced matching. This is NP-Hard, even for bipar-
tite graphs. No algorithm for this problem that works directly on circle
graphs has been proposed. However, since circle graphs are included in
interval filament graphs, algorithms for this class can be applied to circle
graphs. Unfortunately, this entails a large computational cost of O(|V |6)
time. We propose an algorithm that operates directly on circle graphs,
and requires only O(|V |3) time.
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1 Introduction

Circle graphs are intersection graphs resulting from a set of chords. A more rig-
orous definition is given in Section 2.1. Circle graphs are notable for two reasons.
First, many problems that are typically hard on general graphs are tractable
for circle graphs [1, 8, 10, 11, 13, 15, 17]. Second, circle graphs have practical
applications. For instance, they are used to model problems in VLSI design.
These problems include channel and switch-box routing [16]. In addition, circle
graphs correspond to ribonucleic acid (RNA) secondary structures. As such,
algorithms for circle graphs have been prominent in bioinformatics, sometimes
without the authors’ realizing that they use circle graphs. For example, Nussi-
nov et al. [14] solved the maximum weight independent set problem on a circle
graph as a method for predicting a likely RNA secondary structure. Another
example comes from RNA structure visualization where Auber et al. [2] needed
to approximate maximum induced bipartite subgraphs for circle graphs. One
can also see that the conflict graphs used by Auber et al. are circle graphs.
Similarly, Bonsma & Breuer [3] used circle graphs to model the counting of
benzenoid hydrocarbons and fullerenes.

The Maximum Induced Matching (MIM) problem is to find a maximum
matching in a simple undirected graph G, such that the vertices of no two edges
in the matching share an edge in G. Put another way, we are to find a matching
in G such that the induced subgraph is also a matching. The MIM problem is
NP-Hard for both general graphs, and for bipartite graphs, but can be solved in
polynomial time for chordal graphs [4], and some intersection graphs [5]. This
problem has never been directly solved for circle graphs to our knowledge. The
best algorithms for finding a MIM in circle graphs are for super classes of circle
graphs, and follow from the findings of Cameron [5].

We describe a new algorithm for finding a MIM in circle graphs. This algo-
rithm works directly on circle graphs, and requires only O(|V |3) time. This is
faster than existing algorithms which operate on super classes of circle graphs
and require O(|V |6) time.

1.1 Existing Algorithms

Existing algorithms capable of finding a MIM in circle graphs are implied by
the work of Cameron [5]. Cameron points out three interesting properties about
some intersection graph classes that make this possible. These can be found in
Properties 1 to 3. To understand these, some definitions must be given. An
independent set is a set of vertices in a graph such that no two vertices in the
set share an edge. The line-graph L(G) of a graph G is constructed by making
a vertex corresponding to each edge in G where two vertices in L(G) share an
edge iff the corresponding edges in G share a vertex. Finally, the square G2

of a graph G is constructed by adding non-existing edges between any pair of
vertices in G that are connected by a path of length two.

Property 1. Given any graph G, [L(G)]2 is in the same class as G.
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Property 2. Given any graph G, a MIM in G is a maximum independent set
in [L(G)]2.

Property 3. There exists a polynomial time algorithm for the maximum inde-
pendent set problem.

If Properties 1 to 3 hold for a graph class, then there is a polynomial time
algorithm for the MIM problem on that graph class. Interestingly, Cameron
found that only Property 1 is not true for circle graphs since [L(G)]2 for a circle
graph G may not be a circle graph [5]. In contrast, all three properties hold for
interval-filament graphs. Interval-filament graphs are intersection graphs of a
set of curves (filaments) with their endpoints describing intervals on a line such
that the filaments of two disjoint intervals cannot intersect. Interval-filament
graphs include circle graphs [9]. This implies a polynomial time solution for
the MIM problem on circle graphs, as all circle graphs are also interval-filament
graphs. More recently, a polynomial time maximum weight independent set
algorithm was found for outerstring graphs by Keil et al. [12]. Since outerstring
graphs include interval filament graphs, and thus circle graphs, this also implies
a polynomial time algorithm for the MIM problem on circle graphs.

Since the squared line-graph of some circle graph G = (V,E) is a graph
[L(G)]2 = (V ′, E′) in which |V ′| ∈ O(|V |2), the complexity analysis of finding
a maximum independent set in [L(G)]2 is subtle. Both the algorithm of Gavril,
which finds the maximum weight independent set on an interval-filament graph
[9], and the algorithm of Keil et al., which finds a maximum weight independent
set in an outerstring graph [12], have time complexity O(|V |3). This implies that
the best known complexity for finding a MIM for a circle graph is O(|V |6). The
algorithm we shall present, which works directly on circle graphs, and not on
the squared line-graph, requires only O(|V |3) time.

2 An Algorithm For Finding a Maximum In-
duced Matching in Circle Graphs

2.1 Circle Graph Models & Definitions

In this section, we explain fundamental terminology and concepts for circle
graphs. Later, we shall build on these to describe our algorithms for the MIM
problem. This section is an extension from our previous work on circle graphs
[18].

A circle graph is described by a set of chords on a circle as in Figure 1. Each
chord represents a vertex, and two intersecting chords share an edge in the circle
graph. We shall make some simplifications to our model of circle without loss
of generality. In particular, we first assume an interval-arc model of a circle
graph.

The interval-arc model of a circle graph is a convenient representation in
which the circle is cut at an arbitrary point. After doing this, we are left with a
collection of arcs on a line segment as can be seen in Figure 1. The arcs represent
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Figure 1: Three different representations of the same circle graph. The left panel
shows the circle graph as a set of chords on a circle. The middle panel shows
a corresponding graph representation. The right panel depicts an interval-arc
model in which the circle has been cut at point P .

the chords on the original circle. Observe that the intersections between chords
are preserved after cutting the circle.

Let us say that an interval-arc model contains N arcs (|V | = N), and that we
assign each a unique number from 1 to N . Call these numbers vertex numbers, as
they each correspond to a vertex in the circle graph. We can uniquely represent
a circle graph as a permutation of these vertex numbers {1, 1, 2, 2, . . . , N,N}.
We will call this representation the permutation model. The left and right end-
points of an arc now correspond to the indexes of the first and last occurrence
of that arc’s number in the permutation model. The permutation can be con-
structed by enumerating the left-to-right order of endpoints in the interval-arc
representation. In other words, the permutation model is an interval-arc model
in which the extra space between endpoints is removed.

Given a vertex number x, we shall say L(x) is the index of the first occurrence
of x in the permutation model, and R(x) is the index of the last occurrence.
Also, we say that two different vertex numbers x and y intersect (and thus share
an edge in the graph) iff L(x) < L(y) < R(x) < R(y) or L(y) < L(x) < R(y) <
L(x).

In the permutation model, an induced matching is a set M of pairs of vertex
numbers with the following properties:

Property 4. For every (x, y) ∈M , x intersects y.

Property 5. Neither x nor y intersect any other vertex number in M .

A MIM is such a set that has the maximum possible cardinality.

2.2 Maximum Induced Matching Algorithm

We now describe a dynamic programming algorithm for finding a MIM in a
circle graph. Call the permutation model of a circle graph p. Let us denote the
vertex number at index i in p as pi. We define F (l, r) to be the cardinality of
a MIM for the subrange of p from index l to r inclusive. Of course, F (1, |p|)
(assuming p is 1-indexed) is the cardinality of a MIM for our complete circle
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graph. If l and r are not a valid range (l > r), then F (l, r) = 0. Otherwise, we
can define the solution as follows:

F (l, r) = max


F (l + 1, r)

max{Ir(pl, pi) ∀ i : l < i < R(pl) and R(pi) > R(pl)}
if L(pl) = l

Ir(pl, pi) = F (L(pl) + 1, L(pi)− 1) + F (L(pi) + 1, R(pl)− 1)+

F (R(pl) + 1, R(pi)− 1) + F (R(pi) + 1, r) + 1

(1)

Let us unpack the logic behind Equation 1. First, observe that any MIM
in a subrange must have a first vertex number. By first, we mean the vertex
number in the MIM whose left endpoint is leftmost. The recurrence for F (l, r)
exploits this property. There are two cases to maximize over. The first considers
F (l+ 1, r), which covers the cases where the first vertex number in a MIM does
not have its left endpoint at l. Conversely, in the second case, we cover all cases
where the first vertex number in the MIM does have its leftmost endpoint at l,
which is only possible if l is the index of a left endpoint (L(pl) = l). Clearly,
a MIM must either have its first vertex number at l, or not, so these cases are
sufficient to define a solution.

A property of a MIM in a circle graph needs to be understood before ex-
plaining the correctness of the second case of F (l, r). Consider any intersecting
pair (pl, pi) of vertex numbers in an induced matching. We know that no other
vertex number can intersect either. This means that every other vertex number
in an induced matching must have both its endpoints fully contained between
the endpoints of pl and pi, or completely to their left or right. Correspondingly,
we define Ir(pl, pi) to be the cardinality of a MIM given that pl and pi intersect,
and that we are considering only the subrange from L(pl) to r inclusive. This
needs only to sum up the cardinalities of MIMs for the subranges between the
endpoints of pl and pi, and the remaining part of the subrange on the right. A
visualization of this can be found in Figure 2.

l ril r

= max

l+1 r

F(l, r) F(l+1, r) Ir(pl , pi )

Figure 2: A representation of the two cases used to compute the recurrence in
Equation 1. Unshaded arcs represent vertex numbers that are taken to be in a
MIM. Shaded arcs represent solutions to F (l, r), that is, a MIM for a subrange.

The function Ir(pl, pi) is used in the second case of F (l, r). Recall that we
are assuming that l is the index of the left endpoint of the first vertex in a MIM
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for the subrange [l, r]. If pl is in a MIM, then it must intersect exactly one other
vertex number pi. Also, as pl is first, R(pi) > R(pl). This means that vertex
numbers that occur between l and R(pl), and which have their right endpoints
right of R(pl) are the only possible options for pi. For each of these, the function
I can be used to the find the corresponding MIM. Thus, all possibilities for the
second case of F (l, r) are maximized over.

After solving the recurrence for F (l, r) using dynamic programming, the
table of sub-solutions can be used to reconstruct a MIM. This is achieved by re-
applying the function definition and recursively following the series of optimal
sub-problems leading to the final solution. Alternatively, a table of the optimal
choices can be maintained corresponding to each call to F , and the optimal
solution can be traced by following these choices. Both of these techniques
are classical approaches to recovering solutions to optimization problems after
dynamic programming [6, 7].

2.3 Complexity Analysis

The size of the state space for F is O(|V |2). Observe that the number of indexes
into a permutation model p is exactly 2|V |, since every vertex number occurs
exactly twice. The state in our dynamic programming recurrence comprises
two indexes into p of which there are O(|V |2) possibilities. The final space
complexity of our algorithm is also thus O(|V |2).

For each of the valid states for F , both cases described in Section 2.2 must be
computed. The first takes O(1) time, as it only considers a single option. The
second takes O(|V |) time, as it involves iteration through a range of indexes.
This implies a final time complexity of O(|V |3).

3 Final Remarks

We have presented a faster algorithm to find a MIM in a circle graph. To our
knowledge, this means that the best known time complexity for this problem is
reduced from O(|V |6) to O(|V |3). However, we have not proved a lower bound,
and wonder if a better complexity is possible. An interesting corollary to our
algorithm is that it can be modified to work when endpoints are shared. This
modified variant has time complexity O(k5) where k is the number of unique
endpoints in the circle graph. This can be significant if many endpoints are
shared [3, 18].

We wonder if our algorithm can be extended to more general graph classes.
For example, we conjecture that our algorithm can be adapted to polygon-
circle graphs and interval-filament graphs. Polygon-circle graphs generalize cir-
cle graphs as they are the intersection graphs of a set of polygons inscribed on
a circle. Interval-filament graphs also generalize circle graphs and are defined in
Section 1.1. To our knowledge, no algorithm faster than finding the maximum
independent set in [L(G)]2 is known, which implies an O(|V |6) algorithm for
both.
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