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Abstract

Schietgat, Ramon and Bruynooghe [18] proposed a polynomial-time
algorithm for computing a maximum common subgraph under the block-
and-bridge preserving subgraph isomorphism (BBP-MCS) for outerplanar
graphs. We show that the article contains the following errors:

(i) The running time of the presented approach is claimed to be O(n2.5)
for two graphs of order n. We show that the algorithm of the au-
thors allows no better bound than O(n4) when using state-of-the-art
general purpose methods to solve the matching instances arising as
subproblems. This is even true for the special case, where both input
graphs are trees.

(ii) The article suggests that the dissimilarity measure derived from
BBP-MCS is a metric. We show that the triangle inequality is not
always satisfied and, hence, it is not a metric. Therefore, the dissim-
ilarity measure should not be used in combination with techniques
that rely on or exploit the triangle inequality in any way.

Where possible, we give hints on techniques that are suitable to improve
the algorithm.
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1 Introduction

Graph comparison is getting increasingly important with the growth of data
analysis tasks on graphs and networks. An important application occurs in
molecular chemistry for the tasks of virtual screening of molecular data bases,
substructure search of molecules, and the discovery of structure-activity rela-
tionships within rational drug design. Thereby, finding the largest substructure
that two molecules have in common is a fundamental task [12]. Since molecules
can naturally be represented by graphs, the problem is phrased as maximum
common subgraph problem, which is as follows. Given two graphs, find a graph
with a largest possible number of edges that is isomorphic to subgraphs of both
input graphs. This classical graph theoretical problem generalizes the subgraph
isomorphism problem and is well-known to be NP-hard in general graphs [7].
Even deciding whether a forest G is isomorphic to a subgraph of a tree is an
NP-complete problem [7]. However, if G is a tree the subgraph isomorphism
problem can be solved in polynomial time [16, 17, 4, 21, 19]. The generalisation
of this approach to the maximum common subgraph problem is attributed to
J. Edmonds [16]. However, the vast amount of molecular graphs of interest
are not trees, but outerplanar graphs, i.e., they admit a drawing on the plane
without edge crossings such that all vertices are incident to the outer face of the
drawing. Even deciding whether a tree is isomorphic to a subgraph of an out-
erplanar graph is NP-complete [20]. On the other hand, subgraph isomorphism
can be solved in polynomial time when both graphs are biconnected and outer-
planar [13]. More general, subgraph isomorphism can be solved in polynomial
time in k-connected partial k-tree [15, 8].

Based on these theoretical findings, Horváth, Ramon and Wrobel [10] pro-
posed to consider so-called block-and-bridge-preserving (BBP) subgraph isomor-
phism for mining frequent subgraphs in databases of outerplanar molecular
graphs. The BBP subgraph isomorphism allows to consider blocks, i.e., the
biconnected components, and the trees formed by the bridges separately and
thereby can be solved in polynomial-time. Moreover, the approach yields chem-
ical meaningful results, since it requires that the ring systems of molecules are
preserved.

The maximum common subgraph problem in outerplanar graphs of bounded
degree can be solved in polynomial time [1]. Although molecular graph have
bounded degree and are often outerplanar, the algorithm has a high running
time and is probably not suitable for practical use. Schietgat, Ramon and
Bruynooghe [18] proposed to determine a maximum common subgraph under
the BBP subgraph isomorphism and developed an algorithm with a claimed
running time ofO(n2.5) for two outerplanar graphs of order n. While the authors
presented promising experimental results on graphs representing molecules, we
show that their theoretical analysis of their approach is flawed. Moreover, we
show that the proposed approach to derive a distance from the size (or weight)
of the maximum common subgraph does not yield a proper metric.
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2 Preliminaries

We briefly summarize the necessary terminology and notation. A graph G =
(V,E) consists of a finite set V (G) = V of vertices and a finite set E(G) = E
of edges, where each edge connects two distinct vertices. A path of length n is a
sequence of vertices (v0, . . . , vn) such that {vi, vi+1} ∈ E for 0 ≤ i < n. A cycle
is a path of length at least 3 with no repeated vertices except v0 = vn. A graph
is connected if there is a path between any two vertices. A graph is biconnected
if for any two vertices there is a cycle containing them. A tree is a connected
graph containing no cycles. A graph G with an explicit root vertex r ∈ V (G)
is called rooted graph, denoted by Gr. A graph G′ = (V ′, E′) is a subgraph of a
graph G = (V,E), written G′ ⊆ G, if V ′ ⊆ V and E′ ⊆ E. A block is a maximal
subgraph that is biconnected. An edge is a bridge if it is not contained in any
block. A matching in a graph G is a subset of edges M ⊆ E(G) such that no
two edges in M share a common vertex, i.e., e ∩ e′ = ∅ for all distinct edges
e, e′ ∈ M . Given a bipartite graph G with edge weights w : E(G) → R, the
weighted maximal matching problem asks for a matching M ⊆ E in G such that
the weight w(M) =

∑
e∈M w(e) is maximal.1

An isomorphism between two graphs G and H is a bijection ϕ : V (G) →
V (H) such that {u, v} ∈ E(G)⇔ {ϕ(u), ϕ(v)} ∈ E(H) for all u, v ∈ V (G). We
say that the edge {u, v} is mapped to the edge {ϕ(u), ϕ(v)} by ϕ. A subgraph
isomorphism from a graph G to a graph H is an isomorphism between G and a
subgraph H ′ ⊆ H. A graph G is said to be subgraph isomorphic to a graph H,
written G � H, if a subgraph isomorphism from G to H exists. A subgraph
isomorphism from G to H is block and bridge preserving (BBP) if (i) each bridge
in G is mapped to a bridge in H, and (ii) any two edges in different blocks in
G are mapped to different blocks in H. We write G v H if a BBP subgraph
isomorphism from G to H exists. A (BBP) common subgraph of two graphs G
and H is a connected graph I such that I � G and I � H (I v G and I v H).
A (BBP) common subgraph I is maximum w.r.t. a weight function w if there is
no (BBP) common subgraph I ′ with w(I ′) > w(I). The two different concepts,
maximum common subgraph (MCS) and BBP-MCS, are illustrated in Figure 1.
The above definitions can be naturally extended to graphs with vertex and edge
labels, where an isomorphism must preserve labels and the weight function may
depend on the labels.

3 Complexity Analysis

The BBP-MCS algorithm for outerplanar graphs proposed in [18] decomposes
the two input graphs into subgraphs with distinct root vertices referred to as
parts (see Section 3.2 for a formal definition). An MCS problem for all compat-

1Note that in [18] matchings are defined as specific relations between sets, cf. Definiton 15.
The running time to compute a matching then depends on the number of pairs with strictly
positive weight. This can be expressed in a natural way by the number of edges in bipartite
graphs.
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(a) MCS I with w(I) = 17
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(b) BBP-MCS I with w(I) = 10

Figure 1: Two graphs G, H and their MCS (a) and BBP-MCS (b), where
w(I) = |V (I)| + |E(I)|. Dashed edges and blank vertices are not part of the
common subgraph. Note that in Figure (b) the vertex at the bottom left cannot
be included since e is part of a block in G and e′ is a bridge in H. The two
vertices u and v of G cannot be added, since the triangle containing u′ and v′

constitutes a distinct block of H.

ible pairs of parts is then solved using a dynamic programming strategy. Here,
a series of weighted maximal matching instances arises as subproblems. It has
been claimed [18, Theorem 2] that for two outerplanar graphs G and H the
proposed BBP-MCS algorithm runs in time

O
(
|V (G)| · |V (H)| · (|V (G)|+ |V (H)|) 1

2

)
,

which is O(n2.5) for |V (G)| = |V (H)| = n. We show that this bound cannot be
obtained by the presented techniques.

3.1 Solving Weighted Maximal Matching Problems

The algorithm makes use of a subroutine for solving the weighted maximal
matching problem in bipartite graphs, where weights are real values. The match-
ing instances arising in the course of the algorithm may be complete bipartite
graphs with a quadratic number of edges, see the counterexample discussed in
Section 3.2. Hence, the running times given in the following refer to bipartite
graphs with n vertices and Θ(n2) edges in order to improve readability. The au-
thors propose to use the algorithm by Hopcroft and Karp [9] to solve an instance
of the problem in time O(n2.5). Since this algorithm computes a matching of
maximal cardinality, but is not designed to take weights into account, it cannot
be applied to the instances that occur.

The best known approaches for the weighted problem allow to solve instances
with n vertices and Θ(n2) edges in time O(n3), e.g., the established Hungarian
method [3]. When we assume weights to be integers within the range of [0..N ],
scaling algorithms would become applicable such as [6], which solves the problem
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(c) Part in BH

Figure 2: (a) A star graph of order n+1, (b) the star graph rooted at the center
vertex, and (c) an elementary part Hc \{v2} obtained from Hv2 , where the gray
vertex with its incident edge is deleted.

in time O(n2.5 logN). This running time is still worse than the time bound for
the algorithm by Hopcroft and Karp by a factor depending logarithmically on
N . Moreover, it is desirable to allow that the weight of a common subgraph
graph is measured by a real number depending on the labels of the vertices and
edges it contains, cf. [18, Definition 2]. This leads to real edge weights in the
matching instances.

In summary, no better bound than O(n3) on the worst-case running time can
be assumed for the subproblem of solving weighted maximal matching instances
with n vertices.

3.2 The Number of Matching Instances

We consider a particularly simple counterexample to illustrate that the running
time required to solve the matching problems cannot be bounded by O(n2.5).
We identify the flaw regarding the analysis which led to this incorrect result [18,
Proof of Theorem 2]. More precisely, we show that for two graphs G and
H of order n the BBP-MCS algorithm performs Θ(n) calls to the subroutine
for weighted maximal matching [18, Algorithm 2, MaxMatch] with instances
of size Θ(n). Since the relationship between the matching instances is not
considered in [18], we assume that each instance is solved separately in cubic
time, cf. Section 3.1. Therefore, no better bound than O(n4) can be given on
the total running time.

Let the two graphs G and H both be star graphs of order n + 1, i.e., trees
with all but one vertex of degree one as depicted in Figure 2(a). Since trees
are outerplanar, G and H are valid input graphs for BBP-MCS. The algorithm
presented in [18] relies on a decomposition of the two input graphs into their
parts.2 Parts(T r) of a rooted tree T r is recursively defined as follows [18,
Definitions 20, 23, 26].

(i) T r ∈ Parts(T r),

2The approach greatly simplifies for trees and we have shortened the required definitions
accordingly. Please note that [18, Algorithm 4 and Algorithm 3, lines 11-18] will not be
required to solve the problem on trees.
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(ii) if P p ∈ Parts(T r) and p is incident to exactly one edge {p, v}, then the
graph (P \ {p})v is in Parts(T r),

(iii) if P p ∈ Parts(T r) and p is incident to the edges {p, v1}, . . . , {p, vk}, k ≥ 2,
then for each edge {p, vi}, 1 ≤ i ≤ k, the connected component of the
graph P p \ {{p, vj} | j 6= i} containing p as root is in Parts(T r).

For the first input graph G an arbitrary root vertex r is selected to define its
parts. Let G be the star graph, r its center vertex and let L(G) denote its
leaves, then

Parts(Gr) = {Gr} ∪ {({r, v}, {{r, v}})r | v ∈ L(G)} ∪ {({v}, ∅)v | v ∈ L(G)}.

The parts of the star graph are the graph itself, the subgraphs consisting of
the individual edges and the subgraphs consisting of the leaves. For the second
input graph H, its parts are defined as Parts∗(H) = ∪s∈V (H)Parts(Hs) [18,
Definition 27]. Therefore,

Parts∗(H) ={Hs | s ∈ V (H)} ∪ {(e, {e})c | e ∈ E(H)} ∪
{({v}, ∅)v | v ∈ L(H)} ∪ {Hc \ {v} | v ∈ L(H)}︸ ︷︷ ︸

BH

,

where c is the unique center vertex of H and BH the subgraphs rooted at c
obtained by deleting a single leaf with its incident edge, cf. Figure 2(c).

In order to solve the problem, a variant of BBP-MCS, which requires to map
the root of one part to the root of the other, is solved for specific pairs of parts
denoted by Pairs(G,H). If the roots of both parts have multiple children, a
matching problem between them must be solved. Such parts are referred to as
compound-root graphs and the parts associated with the children are elementary
parts, respectively [18]. Note that this is the case for Gr and all the parts in BH ;
according to [18, Definition 28] we have {Gr}×BH ⊆ Pairs(G,H). For each pair
(Gr, Q), Q ∈ BH , a weighted maximal matching instance is constructed, where
the vertices correspond to the elementary parts of Gr and Q [18, Algorithm 2,
RMCScompound]. The edge weights are determined by the solutions for pairs
of smaller parts and depend on the possibly real-valued weights of vertex and
edge labels of the common subgraph. The number of elementary parts of Gr

is n, the number of elementary parts of each Q in BH is n − 1. Hence, each
of these matching instances has 2n − 1 vertices and n(n − 1) edges and thus
requires time O(n3). The number of such pairs is |{Gr} × BH | = n. If each
matching instance is solved separately, no better bound than O(n4) on the total
running time of the algorithm can be given and the analysis of [18, Theorem 2]
is too optimistic.

Consequently, there must be an error in its proof: The authors claim that
every vertex g ∈ V (G) and every vertex h ∈ V (H) has at most deg(g) (resp.
deg(h)) elementary parts involved in a maximal matching. While this state-
ment is correct the subsequent analysis does not take into account that there
may be up to deg(h) matching instances of that size for a vertex h ∈ V (H).
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More precisely, the total time spent in RMCScompound for solving matching
instances is claimed to be bounded by

Tcomp =
∑

g∈V (G)

∑
h∈V (H)

TWMM(deg(g) + deg(h)), (1)

where TWMM(k) is the running time for solving a weighted maximal matching
instance with k vertices [18, p. 361]. Actually the procedure considers all pairs of
compound-root graphs, where each pair leads to a matching instance containing
one vertex for each of the associated elementary parts. The counter example
above shows that for a vertex h ∈ V (H) there may be deg(h) compound-root
graphs with root h, each with deg(h)−1 elementary parts. In addition, there is
one compound-root graph with root h and deg(h) elementary parts. Therefore,
a correct upper bound is

T corrected
comp =

∑
g∈V (G)

∑
h∈V (H)

(deg(h) + 1) · TWMM(deg(g) + deg(h)). (2)

In the counter example the degree of the center vertex is not bounded, which
leads to the additional factor of n appearing in T corrected

comp , but not in Tcomp.

3.3 Exploiting the Structure of the Matching Instances

The matching instances emerging for the counter example are closely related,
since the symmetric difference of the elementary parts of Q1 ∈ BH and Q2 ∈ BH
with Q1 6= Q2 contains exactly two elements. It was recently shown that this fact
can be exploited by solving groups of similar matching instances efficiently in one
pass [5]. This technique was used to show that the maximum common subtree
problem can be solved in time O(n2∆) for trees of order n with maximum degree
∆, thus leading to O(n3) worst case time. The same technique can be used to
improve the running time of the BBP-MCS algorithm.

In [5] the proposed maximum common subtree algorithm was compared ex-
perimentally to the BBP-MCS algorithm of [18] using the implementation pro-
vided by the authors. The running times reported for the BBP-MCS algorithm
actually suggest a growth of Ω(n5) on star graphs.

4 Violation of the Triangle Inequality

Bunke and Shearer [2] have shown that

d(G,H) = 1− |Mcs(G,H)|
max { |G|, |H| }

, (3)

where |Mcs(G,H)| is the weight of a maximum common subgraph, is a metric
and, in particular, fulfills the triangle inequality. This was originally shown for a
definition of the maximum common subgraph problem, which requires common
subgraphs to be induced and measures the weight of a graph G by w(G) =
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(a) G (b) H (c) F

Figure 3: Outerplanar graphs for which Eq. (3) does not satisfy the triangle
inequality under BBP-MCS.

|V (G)|. Lins et al. [14] proved that Eq. (3) also is a metric for the general (not
necessarily induced) subgraph relation, where w(G) = |V (G)| + |E(G)|. The
article [18] suggests that the weight of a BBP-MCS combined with Eq. (3) is a
metric, too. We show that this is not the case.

Consider the example shown in Figure 3 and let the weight of a graph G be
defined as w(G) = |V (G)|+|E(G)| following [18, Section 3.2, p. 364]. Employing
BBP-MCS, we obtain |Mcs(G,H)| = 6, |Mcs(H,F )| = 8 and |Mcs(G,F )| = 1
and accordingly:

d G H F
G 0 1/3 7/8
H 1/3 0 1/9
F 7/8 1/9 0

The triangle inequality is violated, since d(G,F ) > d(G,H) + d(H,F ). In
general, the connectivity constraints imposed by BBP-MCS make it difficult to
derive a metric. For a more detailed discussion of this topic we refer the reader
to [11, Section 3.6].
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