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Abstract

We consider a puzzle consisting of colored tokens on an n-vertex graph,

where each token has a distinct starting vertex and a set of allowable

target vertices for it to reach, and the only allowed transformation is

to �sequentially� move the chosen token along a path of the graph by

swapping it with other tokens on the path.
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1 Introduction

In this paper, we consider the following puzzle on graphs. Let G = (V,E) be
an undirected unweighted graph with vertex set V and edge set E. Suppose
that each vertex in G has a color in C = {1, 2, . . . , |C|}, |C| ≤ |V |, and has a
token of a color in C. Then, we wish to transform the current token-placement
into the one such that a token of color i is placed on a vertex of color i for all
vertices by a �sequential� token swapping. For a walk W = 〈w1, w2, . . . , wk〉1 of
G, a sequential swapping is to swap the two tokens on wi and wi+1 in the order
of i = 1, 2, . . . , k − 1. Intuitively, the token on w1 is moved to wk along W and
for each i = 2, 3, . . . , k, the token on wi is shifted to wi−1. Figure 1 shows an
example of a sequential swapping. If there exists a color i such that the number
of vertices of color i is not equal to the number of tokens of color i in a current
token-placement, then we cannot transform the token-placement into the target
one. Thus, without loss of generality, we assume that the number of vertices of
color i for each i = 1, 2, . . . , |C| is equal to the number of tokens of the same
color.

Our problem is regarded as a variation of the Fifteen Puzzle or 15 Puzzle [1].
If we assume that (1) vertices and tokens are labeled, (2) the moving token is
designated, and (3) an input graph is a grid graph, our problem is same as the
Fifteen Puzzle on N×N board. The vertex having the designated moving token
corresponds to a �blank vertex�, which has no token (pebble), in Fifteen Puzzle.
Swapping the moving token with an adjacent token in Sequential Token

Swapping problem corresponds to moving a token adjacent to the blank vertex
into the blank vertex in the Fifteen Puzzle. As for generalizations of the Fifteen
Puzzle, there are the following important results. Ratner and Warmuth [10]
considered the Fifteen Puzzle on a N ×N board. They demonstrated that the
problem of �nding the shortest solution of the Fifteen Puzzle on N ×N board
is NP-complete. Goldreich [6] generalized the problem to a game on graphs. He
demonstrated that the problem of �nding the shortest solution of the Fifteen
Puzzle on graphs is NP-complete. Kornhauser et al. [8] and Wilson [12] also
considered the problem of the Fifteen Puzzle on graphs. The problem setting in
[8] includes a special case of Sequential Token Swapping problem. Suppose
that the number of colors is equal to the number of vertices of an input graph
and the moving token is designated in Sequential Token Swapping problem.
This case of Sequential Token Swapping problem is included in the problem
setting in [8] (the detail is explained in Section 2.2). See Demaine and Hearn's
survey [4] on the Fifteen Puzzle and its related puzzles for further details.

Recently, Yamanaka et al. [13, 14] considered the same problem with the
di�erent swapping rule which is to swap any two tokens on adjacent vertices.
Yamanaka et al. [13] dealt with the case where the number of colors is equal
to the number of vertices, and showed a polynomial-time 2-approximation al-
gorithm for trees and a polynomial-time exact algorithm for complete bipartite
graphs. However, the complexity of the problem was not proved in the paper.2

1In this paper, we denote a walk of a graph by a sequence of vertices.
2Quite recently, hardness results were shown [2, 7, 9].
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Figure 1: An example of Sequential Token Swapping. (a) An input
graph and its initial token-placement. (b) The target token-placement. (c)�
(j) A swapping sequence between (a) and (b). Token colors on vertices are
written inside circles. We sequentially swap the token on v4 along the walk
〈v4, v1, v2, v4, v3, v1, v2, v5〉. For each solid line, the two tokens on its endpoints
are swapped.

On the other hands, Yamanaka et al. [14] considered the more general case in
which the number of colors is equal to or smaller than the number of vertices.
They demonstrated that the problem is NP-complete when the number of colors
is 3 or more, and otherwise the problem is polynomially solvable.

In this paper, we consider the sequential token swapping problem which
asks to �nd the shortest walk W such that the sequential swapping along W
gives the target token-placement. We �rst demonstrate an inapproximability of
our problem even if the number of colors is 2. This result shows a di�erence
on complexity between the problem in [14] and our problem in the sense that,
when the number of colors is 2, the former is polynomially solvable, however
the latter is computationally hard. Then, we present some positive results for
restricted graph classes: trees, complete graphs, and cycles.
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(a)

1 2 3 4
v1 v2 v4v3

Initial token-placement

(b)

2 1 4 3

Target token-placement

Figure 2: An example of Sequential Token Swapping. There is no swap-
ping sequence between the two token-placements (a) and (b).

2 Preliminaries

2.1 Notations

In this paper, we assume without loss of generality that graphs are simple and
connected. Let G = (V,E) be an undirected unweighted graph with vertex set
V and edge set E. We sometimes denote by V (G) and E(G) the vertex set and
the edge set of G, respectively. We always denote |V | by n. For a vertex v in G,
let NG(v) be the set of all neighbors of v, that is, NG(v) = {w ∈ V (G) | (v, w) ∈
E(G)}. Each vertex of a graph G has a color in C = {1, 2, . . . , |C|}. We denote
by c(v) ∈ C the color of a vertex v ∈ V . A token is placed on each vertex in G.
Each token also has a color in C. For a vertex v, we denote by f(v) the color
of the token placed on v. Then, we call the surjective function f : V → C a
token-placement of G. Note that, since c is also a function from V to C, it can
be regarded as a token-placement of G. Let f and f ′ be two token-placements
of G. For a walk W = 〈w1, w2, . . . , wh〉 of G, a sequence S = 〈f1, f2, . . . , fh〉 of
token-placements is a swapping sequence of W between f and f ′ if the following
three conditions (1)�(3) hold:
(1) f1 = f and fh = f ′;
(2) fk is a token-placement of G for each k = 1, 2, . . . , h; and
(3) fk is obtained from fk−1 by swapping the two tokens on wk−1 and wk for

each k = 2, 3, . . . , h.

Intuitively, a swapping sequence of W represents to move the token on w1 to
wh along W . We call the token on w1 in f the moving token of S.

Let S be a sequence. Then, the length of S, denoted by len(S), is de�ned to
be the number of elements in S minus one. The length of a swapping sequence
S, len(S), indicates the number of token-swaps in S. For two token-placements
f and c of G, we denote by OPTSTS(G, f, c) the minimum length of a swapping
sequence between f and c. Given two token-placements f and c of a graph
G and a nonnegative integer `, the Sequential Token Swapping problem
is to determine whether or not OPTSTS(G, f, c) ≤ ` holds. We call f and
c the initial and target token-placements of G, respectively. We de�ne that
OPTSTS(G, f, c) =∞ if there is no swapping sequence between f and c. Figure 2
is an example for which there is no swapping sequence.
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2.2 Polynomial-length upper bound

We prove that, if there exists a swapping sequence between two token-
placements, then the length of the sequence is polynomial.

To prove it, let us give some notations. A token-placement f is colorful
if f consists of tokens each having a di�erent color, that is the color set is
C = {1, 2, . . . , n}. We �rst de�ne a restricted version of Sequential Token
Swapping problem. Let f and c be colorful initial and target token-placements
of a graph G. Suppose that we are given the vertex v having the moving token.
Then, we denote by OPTCMSTS(G, f, c, v) the minimum length of a swapping
sequence between f and c when the token on v is used as the moving token.

On the other hands, the problem setting in [8] by Kornhauser et al. can be
regarded as a generalization of this restricted version of Sequential Token
Swapping problem. In their problem setting, we are given a graph in which
either each vertex has a labeled token or has no token. Then, a token can be
moved to an adjacent blank vertex. Note that an input graph has one or more
blank vertices. If the number of blank vertices is equal to 1, their problem is
equivalent to (the restricted version of) our problem, since the blank vertex can
be regarded as the vertex having the designated moving token. We have the
following lemma from Theorem 2 in [8].3

Lemma 1 ([8]) Let G be a graph, and let f, c be colorful initial and target
token-placements. Suppose that the token on a vertex v of G is designated as
the moving token. Then, if there exists a swapping sequence between the two
token-placements, OPTCMSTS(G, f, c, v) is bounded from above by O(n3).

Next, we de�ne another restricted version of Sequential Token Swap-

ping problem. Let f and c be colorful initial and target token-placements of
a graph G. Then, we denote by OPTCSTS(G, f, c) the minimum length of a
swapping sequence between f and c.4 We have the following lemma.

Lemma 2 Let G be a graph, and let f, c be colorful initial and target token-
placements. Then, if there exists a swapping sequence between the two token-
placements, OPTCSTS(G, f, c) is bounded from above by O(n3).

Proof: Let S be a shortest swapping sequence between f and c. Let v be the
vertex having the moving token for S. Then, S is also a swapping sequence
for OPTCMSTS(G, f, c, v). Thus, from Lemma 1, OPTCSTS(G, f, c) is bounded
from above by O(n3). �

Now, we are ready to prove the following theorem.

Theorem 1 Let G be a graph, and let f, c be initial and target token-
placements. Then, if there exists a swapping sequence between the two
token-placements, OPTSTS(G, f, c) is bounded from above by O(n3).

3Actually, Theorem 2 in [8] is more general. The theorem includes the claim in our lemma.
4The moving token is not designated in this problem setting.
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Proof: Let S be a shortest swapping sequence between f and c. Let u be
a vertex, and let u′ be the vertex such that, after the sequential swapping
using S, f(u) is on u′. We reassign a unique color to f(u) and c(u′). We do
the same reassignment for each vertex. Then, we have the two colorful token-
placements, denoted by f ′ and c′, from f and c, respectively. The swapping
sequence S is also a swapping sequence for OPTCSTS(G, f ′, c′). Thus, from
Lemma 2, OPTSTS(G, f, c) is bounded from above by O(n3). �

3 Inapproximability

In this section, we demonstrate the inapproximability of Sequential Token
Swapping problem. To show the hardness result, we give a gap-preserving
reduction from the following problem:

Problem: Maximum Vertex-Disjoint Path Cover on Undirected Bi-

partite Graphs

Instance: An undirected bipartite graph G = (V,E) with vertex bipartition
(X,Y ) such that |X| = |Y |.
Question: Find a set of vertex-disjoint paths that cover all the vertices in G
such that the paths contain the maximum number of edges.

If an input graph G is Hamiltonian, then a Hamiltonian path in the graph is
an optimal solution and the number of edges in the path is n − 1, where n is
the number of vertices in G. We can show that, for some constant ε, (1− ε,1)-
gap Maximum Vertex-Disjoint Path Cover on Undirected Bipartite

Graphs problem is NP-hard (This is proved by a reduction from Maximum

Vertex-Disjoint Path Cover on Directed Graphs problem [3, 5, 11].
The de�nition of the problem and the proof are described in Appendix A).
Thus, we give a gap-preserving reduction from the problem to Sequential

Token Swapping problem with only 2 colors. Let OPTU-MVDPC(G) denote the
optimal value, which is the number of edges in paths in an optimal path cover,
of Maximum Vertex-Disjoint Path Cover on Undirected Bipartite

Graphs problem for an input graph G.

Theorem 2 Let G = (V,E) be an undirected bipartite graph with vertex bipar-
tition (X,Y ) such that |X| = |Y |. Then, there is a gap preserving reduction
from Maximum Vertex-Disjoint Path Cover on Undirected Bipartite

Graphs problem to Sequential Token Swapping problem that transforms
G to a graph H = (VH , EH) and its two token-placements f, c with 2 colors such
that
(1) if OPTU-MVDPC(G) = n− 1, then OPTSTS(H, f, c) = n− 1 and
(2) if OPTU-MVDPC(G) < (1−ε)(n−1), then OPTSTS(H, f, c) > (1+ε)(n−

1),
where n = |V |.

Proof: Let G be an instance of Maximum Vertex-Disjoint Path Cover

on Undirected Bipartite Graphs problem. Now we construct an instance
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Figure 3: A connection gadget.
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Figure 4: An example of reduction. (a) A bipartite graph G = (V,E) with
vertex bipartition (X,Y ) such that |X| = |Y |. (b) The reduction graph H
and its initial token-placement f . Connection gadgets are represented as dotted
lines. (c) The target token-placement.

of Sequential Token Swapping problem, that is a graph, an initial token-
placement, and a target one. We �rst construct a copy G′ = (V ′, E′) of G,
and denote its bipartition by (X ′, Y ′). We set f(u) = 1 and c(u) = 2 for every
vertex u ∈ X ′, and set f(v) = 2 and c(v) = 1 for every vertex v ∈ Y ′. We then
insert �connection gadgets� for non-adjacent vertex pairs between X ′ and Y ′,
as follows. Let A = {(u, v) | u ∈ X ′, v ∈ Y ′, and (u, v) /∈ E′}. The connection
gadget for (u, v) ∈ A consists of two paths of length 2 connecting u ∈ X ′ and
v ∈ Y ′ (see Figure 3). For the two intermediate vertices w and z in the paths, we
set f(w) = 1 and c(w) = 1, and f(z) = 2 and c(z) = 2. We denote the obtained
graph and its initial and target token-placements by H, f , and c, respectively.
Figure 4 shows an example of the reduction graph. In the �gure, connection
gadgets are represented as dotted lines for convenience. The reduction graph,
its initial token-placement, and its target token-placement can be constructed
in polynomial time.

Now we show that, an optimal solution of the reduced instance of Sequen-
tial Token Swapping can be obtained from an optimal solution of an instance
of Maximum Vertex-Disjoint Path Cover on Undirected Bipartite

Graphs, as follows. Let P be a maximum vertex-disjoint path cover of G and
let cost(P) =

∑
P∈P len(P ), where len(P ) is the number of edges in the path

P ∈ P. We construct a swapping sequence between f and c from P. Let P1 and
P2 be two paths in P such that P1 contains an endpoint v1 in X ′ and P2 contains
an endpoint v2 in Y ′. Then, we connect v1 ∈ X ′ and v2 ∈ Y ′ with a path of
the connection gadget between v1 and v2. Note that v1 and v2 are not adjacent
from optimality of P. When a token is sequentially swapped from v1 ∈ X ′ to
v2 ∈ Y ′, we choose the path with the intermediate vertex of color 2. Otherwise,
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we choose the path with the intermediate vertex of color 1. Since |X| = |Y |, by
repeating the above process, we can �nd a path spanning all vertices in X ′∪Y ′.
Note that, since |X| = |Y | holds again, the number of paths whose endpoints
are both in X ′ are equal to the number of paths whose endpoints are both in
Y ′. Then, by swapping the token on an endpoint to the other endpoint along
the obtained path, we have the target token-placement.

Let S be the swapping sequence obtained from P by the above process.
Now, we show that S is optimal. We assume for a contradiction that S ′ is
a better solution than S. Let W be the walk corresponding to S, and let m
be the the number of edges in W in connection gadgets. Similarly, let W ′ be
the walk corresponding to S ′, and let m′ be the number of edges in W ′ in
connection gadgets. Then, W ′ is a path spanning vertices in X ′ ∪ Y ′. More
precisely, a vertex in X ′ ∪ Y ′ appears once in W ′ and an intermediate vertex
in a connection gadget appears at most once in W ′. Note that every vertex v
in H does not appear twice or more, since to visit v twice or more produces
redundant token-swaps. Hence, we can construct a path cover from W ′, as
follows. First, we split W ′ into subsequences by regarding intermediate vertices
as boundaries and removing the intermediate vertices. Then we obtain the set
of subsequences. Since W ′ spans the vertices in X ′∪Y ′ and visits each vertex at
most once, the set is a path cover of G. Let P ′ denote the path cover obtained
from W ′.

Now, to derive a contradiction, we �rst focus on the two path covers P and
P ′, and then we derive an inequality between |P| and |P ′|, more speci�cally the
number of paths in P is smaller than or equal to the number of paths in P ′.
Since each of P and P ′ visits every vertex in X ′ ∪ Y ′ exactly once, we have
cost(P) = (n − 1) − |P| + 1 and cost(P ′) = (n − 1) − |P ′| + 1. Then, we also
have cost(P) ≥ cost(P ′), since P is an optimal path cover. Thus, we obtain
|P| ≤ |P ′|.

Next we focus on the two walks W and W ′ and we also derive an inequality
between |P| and |P ′|. Since S ′ is a shorter swapping sequence than S, len(W ) >
len(W ′) holds. Each of W and W ′ visits every vertex in X ′ ∪ Y ′ exactly once.
Therefore, the number of edges in connection gadgets in W is greater than the
number of edges in connection gadgets in W ′, that is m > m′. Since W and
W ′ include exactly two edges in each connection gadget in W and W ′, we have
|P| = m

2 +1 and |P ′| = m′

2 +1, respectively. Therefore, |P| > |P ′| holds, which
contradicts to |P| ≤ |P ′|. Therefore, S is an optimal swapping sequence of H,
f , and c.

Now, we demonstrate the correctness of claims (1) and (2).
If OPTU-MVDPC(G) = n− 1, then G has a Hamiltonian path P . Note that

an endpoint of P is in X and the other is in Y since |X| = |Y |. By sequentially
swapping the token on an endpoint of P in H to the other endpoint, we obtain
the target token-placement. Hence, OPTSTS(H, f, c) ≤ n − 1. Since we must
visit every vertex v in H such that f(v) 6= c(v), the number of such vertices
minus one is a lower bound for OPTSTS(H, f, c). Therefore OPTSTS(H, f, c) =
n− 1.

Let S be an optimal swapping sequence obtained from an optimal path cover
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P of G by the transformation above. The length of S is equal to the sum of the
number of edges in P and the number of edges in the connection gadgets which
used in S. (Recall that at most two edges in each connection gadget are used
in S.) Therefore we have the following equation:

len(S) = cost(P) + 2(|P| − 1)

= (n− 1) + (|P| − 1) (1)

If OPTU-MVDPC(G) < (1− ε)(n− 1), then |P| is bounded from below:

|P| = (n− 1)− cost(P) + 1

> (n− 1)− (1− ε)(n− 1) + 1

= ε(n− 1) + 1. (2)

From Equality (1) and Inequality (2), we have OPTSTS(H, f, c) > (1+ε)(n−1).
�

From Theorem 2, even if the number of colors is 2, there is no polynomial-
time (1 + ε)-approximation algorithm, unless P = NP .

4 Polynomial-time algorithms

In the previous section, we showed the inapproximability of Sequential To-
ken Swapping problem even if the number of colors is 2. On the other hand,
if graph classes are restricted, the problem can be solved in polynomial time for
any number of colors. In this section, we consider the problem of computing
the minimum numbers of token-swaps for trees, complete graphs, and cycles.

4.1 Trees

Let G = (V,E) be a tree, and let f and c be initial and target token-placements
of G. We show below that Sequential Token Swapping problem on trees
can be solved in linear time.

Let v be a leaf of G with f(v) = c(v). We can observe that the token on v
is never swapped in any shortest swapping sequence. Now, we can reduce the
instance, as follows. We repeatedly remove a leaf v with f(v) = c(v) one by one,
until the tree has no such leaf. Let G′ be the obtained tree, and let f ′ and c′ be
the initial and target token-placements on the vertices of G′. See Figure 5 for
an example. It is easy to see that a shortest swapping sequence of the instance
(G′, f ′, c′) is also a shortest swapping of the instance (G, f, c).

Now, let us consider to solve the reduced instance. First, we have the fol-
lowing observation.

Lemma 3 Let G′ be a reduced tree, and let f ′ and c′ be initial and target token-
placements. Then, any shortest swapping sequence on G′ forms a simple path
of G′.
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Figure 5: An example of the reduction. (a) An initial token-placement. (b) A
target token-placement. (c) The reduced initial token-placement from (a). (d)
The reduced target token-placement from (b).

Proof: Let S = 〈f1, f2, . . . , fh〉 be a shortest swapping sequence between f ′ and
c′ with the moving token t. Let us assume that for a contradiction t visits the
same vertex two or more times. Suppose that t is on a vertex v in both fi and
fj , i < j, and t is not on v in fk, i < k < j. Then, we can observe that fi = fj
holds, since G′ is a tree. Hence, S ′ = 〈f1, f2, . . . , fi, fj+1, fj+2, . . . , fh〉 is also a
swapping sequence on G′ and is shorter than S, which is a contradiction. �

We have the following cases.

Case 1: G′ has exactly two leaves.
In this case, G′ is a path and G′ has two leaves u and v with f ′(u) 6= c′(u)

and f ′(v) 6= c′(v). From Lemma 3, any shortest swapping sequence forms a
simple path. Any simple path that passes the two leaves in G′ has the two
leaves as its endpoints. The unique path between the two leaves is the only
possible shortest swapping sequence. We can check whether or not such path is
a swapping sequence in O(n) time.

Case 2: G′ has three or more leaves.
Since there is no simple path that passes three or more leaves of G′, in this

case, (G, f, c) is no-instance.
Therefore, we have the following theorem.

Theorem 3 For a tree G, an initial token-placement f , and a target token-
placement c, one can compute OPTSTS(G, f, c) in O(n) time.

4.2 Complete graphs

Let G = (V,E), f , and c be a complete graph, an initial token-placement and
a target token-placement, respectively. Let C = {1, 2, . . . , |C|}, |C| ≤ n, be the
set of colors. For a token-placement f , let V ′(f) ⊆ V be the set of vertices v
such that f(v) 6= c(v).

We �rst introduce a multiple digraph D(f) = (VD(f), ED(f)) called the
con�ict graph as follows:
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(a) (b)
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Figure 6: An example of a con�ict graph. (a) An initial token-placement. (b)
A target token-placement. (c) The con�ict graph for (a) and (b).

- VD(f) = {i | i ∈ C and i = f(v) for some v ∈ V ′(f)}.
- ED(f) = {(f(v), c(v)) | v ∈ V ′(f)}

Note that VD(f) corresponds to the set of the colors each of which is a color of a
token placed in some vertex in V ′(f). That is, a color c is not included in VD(f)
if c does not appear as the color of the token on any vertex in V ′(f). Each arc
(f(v), c(v)) ∈ ED(f) corresponds to a vertex v ∈ V ′(f). Since, for each color
in C, the number of vertices in G of the color is equal to the number of tokens
of the same color, each node in con�ict graph D(f) has the same numbers of
incoming edges and outgoing edges. Thus, each connected component of D(f)
has a directed Euler cycle. Therefore, D(f) consists of only strongly connected
components. Let s(f) be the number of strongly connected components inD(f).
Then we claim the following:

Claim 4 For a complete graph, an initial token-placement f , and a target
token-placement c, OPTSTS(G, f, c) = |V ′(f)|+ s(f)− 2.

The claim above immediately implies the following theorem, since we can
calculate the values of |V ′(f)| and s(f) in O(n) time.

Theorem 5 For a complete graph G, an initial token-placement f , and a target
token-placement c one can compute OPTSTS(G, f, c) in O(n) time.

In the rest of this section, we prove the above claim. First we show that
OPTSTS(G, f, c) ≤ |V ′(f)| + s(f) − 2 by constructing a swapping sequence of
length |V ′(f)|+s(f)−2, then we show that OPTSTS(G, f, c) ≥ |V ′(f)|+s(f)−2
by using a potential function.

Upper bound

We present an algorithm that �nds a swapping sequence of length |V ′(f)| +
s(f) − 2. Let Ci, i = 1, 2, . . . , s(f), be a strongly connected component of
D(f). Recall that Ci has a directed Euler cycle. We here denote a directed
Euler cycle as a sequence of directed edges: For each Ci, i = 1, 2, . . . , s(f), let
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〈ei,1, ei,2, . . . , ei,ti〉 denote a directed Euler cycle of Ci, where ti is the number
of edges in Ci. For each ei,j , let vi,j be the corresponding vertex in V ′(f). Let

W = 〈 v1,1, v1,2, . . . , v1,t1 ,

v2,1, v2,2, . . . , v2,t2 , v1,t1 ,

v3,1, v3,2, . . . , v3,t3 , v1,t1 ,

. . . ,

vs(f),1, vs(f),2, . . . , vs(f),ts(f)
, v1,t1〉.

be a walk in V ′(f). Now we show that the length of W is |V ′(f)| + s(f) −
2 and the target token-placement c is obtained by swapping along W . This
immediately implies that we have a swapping sequence between f and c of
length |V ′(f)|+ s(f)− 2.

Since each vertex in V ′(f) \ {v1,t1} appears exactly once and v1,t1 appears
s(f) times, len(W ) = |V ′(f)|+s(f)−2. Let f ′ be the token-placement obtained
by sequentially swapping the token on v1,1 along W , and let vi,j , 1 ≤ j ≤ ti−1,
denote a vertex in V ′(f) \ {v1,t1}. Since vi,j appears exactly once, f ′(vi,j) =
f(vi,j+1) holds. Recall that vi,j and vi,j+1 correspond to ei,j and ei,j+1 in the
directed Euler cycle of Ci, respectively. Thus, f(vi,j+1) = c(vi,j) holds. Next,
let us consider the vertex vi,ti in V ′(f)\{v1,t1}. It can be observed that, while we
traverse from vi,1 to vi,ti , v1,t1 has f(vi,1), since the sequence 〈ei,1, ei,2, . . . , ei,ti〉
is an Euler cycle, f(vi,1) = c(vi,ti) holds. Thus, vi,ti has its expected token after
the token-swaps on vertices of Ci. Finally, we have f ′(v1,t1) = c(v1,t1), since
f(v1,1) = c(v1,t1) holds.

Lower bound

Now we show that the length of any swapping sequence is at least |V ′(f)| +
s(f) − 2. Let S = 〈f1, f2, . . . , fh〉 be an arbitrary swapping sequence between
f and c for a walk W = 〈w1, w2, . . . , wh〉. Note that f1 = f and fh = c. Let
D(fi) be the con�ict graph for each token-placement.

First, we de�ne a potential function p(fi). Let p1(fi) be the number of
vertices in V ′(fi) except the vertex with the moving token x, and let p2(fi) be
the number of strongly connected components in D(fi) that do not include x.
We de�ne the potential function as p(fi) = p1(fi) + p2(fi). Then,

p(fi) ≥ (|V ′(fi)| − 1) + (s(fi)− 1)

and

p(c) = 0.

Note that for any token-placement fi 6= c,

p(fi) ≥ 1.

Now we show that the potential function decreases by at most one for each
token-swap. For each token-swap, we swap the moving token x on wi with
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another token on wi+1. Note that, from the de�nition of con�ict graphs,
D(fi+1) is obtained from D(fi) by removing the two edges (fi(wi), c(wi)) and
(fi(wi+1), c(wi+1)) and inserting the two edges (fi(wi), c(wi+1)) and (fi( wi+1),
c(wi)). We have the following cases.

Case 1: The colors of fi(wi), c(wi), fi(wi+1), and c(wi+1) are di�erent from
each other.

In this case, p1(fi) = p1(fi+1) holds, since the colors of fi(wi), c(wi),
fi(wi+1), and c(wi+1) are di�erent. Therefore, we focus only on the value of
p2(fi) in the following subcases.

Case 1-1: fi(wi) and c(wi) are in the same strongly connected component in
D(fi).

Let Ca be the strongly connected component of D(fi) including fi(wi) and
c(wi). We have the following subcases.

Case 1-1-1: Ca includes neither fi(wi+1) nor c(wi+1).
We �rst assume that fi(wi+1) and c(wi+1) are included in the same strongly

connected component of D(fi), denoted by Cb. Then, Ca and Cb are combined
as a strongly connected component in D(fi+1). Hence, the number of strongly
connected components decreases by one. Otherwise, fi(wi+1) and c(wi+1) are
included in di�erent components in D(fi). Then, the number of strongly con-
nected components increases by one if Ca is divided into two components. There-
fore, in this case, the value of p2(fi) decreases by at most one.

Case 1-1-2: Ca includes fi(wi+1) or c(wi+1).
The number of strongly connected components does not change, and also

the value of p2(fi) does not change.

Case 1-2: fi(wi) and c(wi) are in di�erent strongly connected components in
D(fi).

Let Ca and Cb be the strongly connected components including fi(wi) and
c(wi), respectively. If Ca includes both fi(wi+1) and c(wi+1), we can con�rm
that the number strongly connected components does not change. Similarly,
for all possible cases, we can observe that the number strongly connected com-
ponents does not change. Hence, in this case, the value of p2(fi) does not
change.

Case 2: Only a pair among fi(wi), c(wi), fi(wi+1), and c(wi+1) has the same
color.

Case 2-1: fi(wi) = c(wi).
The value of p1(fi) increases by one after swapping the two tokens on wi

and wi+1. The number of strongly connected components in D(fi) decreases
by one if the strongly connected component including the node fi(wi) and the
strongly connected component including the edge (fi(wi+1), c(wi+1)) are di�er-
ent. Otherwise the number of strongly connected components does not change.
Therefore, p(fi) decreases by at most one.
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Case 2-2: fi(wi) = fi(wi+1) or c(wi) = c(wi+1).
After swapping the two tokens on wi and wi+1, D(fi) does not change.

Hence, p(fi) does not change.

Case 2-3: fi(wi) = c(wi+1).
Since fi(wi) = c(wi+1) holds, p1(fi) decreases by one. The number of

strongly connected components in D(fi) increases by one if the set of the two
edges (fi(wi), c(wi)) and (fi(wi+1), c(wi+1)) is a cut of D(fi). Otherwise, the
number of strongly connected components does not change. Therefore, p(fi)
decreases by at most one.

Case 2-4: c(wi) = fi(wi+1).
Symmetric to Case 2-3.

Case 2-5: fi(wi+1) = c(wi+1).
Symmetric to Case 2-1.

Case 3: Only a triple among fi(wi), c(wi), fi(wi+1), and c(wi+1) has the same
color.

The values of p1(fi) and p2(fi) do not change, since the con�ict graph does
not change. Hence, p(fi) does not change.

Case 4: fi(wi) = c(wi) = fi(wi+1) = c(wi+1).
Similar to Case 3, the values of p1(fi) and p2(fi) do not change. Hence,

p(fi) does not change.
Therefore, p(fi+1) ≥ p(fi) − 1 holds. Hence, the length of any swapping

sequence f is at least p(f). This completes the proof of Theorem 5.

4.3 Cycles

In this section, we present two algorithms for cycles. The �rst algorithm runs
in O(n4) time, while the second one is faster and runs in O(n2) time. Let
G = (V,E) be a cycle with n vertices, and let f and c be initial and target
token-placements of G. For cycles, the moving token goes clockwise or counter-
clockwise. In the shortest sequential swapping, the moving token does not turn
back, since changing the direction produces redundant token-swaps.

Lemma 4 Let G be a cycle, and let f and c be initial and target token-
placements. In any shortest swapping sequence on G, the moving token always
goes either clockwise or counterclockwise.

Proof: Let S = 〈f1, f2, . . . , fh〉 be a shortest swapping sequence between f
and c with the moving token t. Let us assume that for a contradiction t turns
back before and after fi and fi is the �rst token-placement where t turns back.
Without loss of generality, we assume that t goes clockwise before fi and coun-
terclockwise after fi. Then, we can observe that fi−1 = fi+1 holds. Hence,
S ′ = 〈f1, f2, . . . , fi−1, fi+2, . . . , fh〉 is also a swapping sequence between f and
c on G and is shorter than S, which is a contradiction. �
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Figure 7: An example of a swapping sequence in a cycle. We choose the token 3
as the moving token and rotate it clockwise. (a) An initial token-placement. (b)
The token-placement after 1 rotation of the token 3. (c) The token-placement
after 2 rotations. (d) The token-placement after 2 rotations and 3 token-swaps.

From the lemma above, the moving token always goes either clockwise or coun-
terclockwise. The optimal solution is the shortest sequential swapping among
both directions. Thus, in this section, we suppose that the moving token always
goes clockwise, since the same discussion can be applied to the other direction.

Naïve algorithm

We denote vertices in clockwise order on the cycle by 〈v1, v2, . . . , vn〉. First, we
de�ne the following n× n table T [x][k]:

T [x][k] =

{
1 f(vx) = c(v(x−k) mod n)

0 otherwise.

The value of T [x][k] represents whether or not the token on vx is placed on its
expected vertex after the token goes counterclockwise by k token-swaps. Using
this table, we make sure the token-placement after a sequential swapping is
identical to the target one.

If we move the token on a vertex vx clockwise with a sequential swapping of
length n−1, then all other tokens are shifted once counterclockwise. Similarly, if
we move the token on vx clockwise with a sequential swapping of length i(n−1),
for i = 1, 2, . . . , n−1, then all other tokens are shifted i times counterclockwise.
Thus, a sequential token-swap of length i(n − 1) + j moves each token on vw,
w = x+1, x+2, . . . , x+ j (mod n), i+1 times counterclockwise and each token
on vw, w = x − 1, x − 2, . . . , x + j + 1 (mod n), i times counterclockwise. See
Figure 7. Therefore, we have the following observation.

Observation 6 The token-placement obtained by a sequential swapping of
length i(n− 1) + j with the moving token on vx is identical to the target one if
and only if
(1) T [w][i+ 1] = 1 for each w = x+ 1, x+ 2, . . . , x+ j (mod n)
(2) T [w][i] = 1 for each w = x− 1, x− 2, . . . , x+ j + 1 (mod n)
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(3) T [x][i− j] = 1.

From this observation, we have a naïve algorithm. We denote a candidate of a
solution by a triple (x, i, j) for 1 ≤ x ≤ n, 1 ≤ i ≤ n − 1, and 1 ≤ j ≤ n − 1.
A triple (x, i, j) is feasible if it satis�es the above three conditions. The naïve
algorithm simply investigates whether or not every triple (x, i, j) is feasible, then
returns the triple that minimizes the value of (n− 1)i+ j among all the feasible
triples. This algorithm runs in O(n4) time.

Theorem 7 For a cycle G, an initial token-placement f , and a target token-
placement c one can compute OPTSTS(G, f, c) in O(n4) time.

Improvement

In this subsection, we improve the running time of the naïve algorithm. We
construct three other tables that store auxiliary information to e�ciently check
the conditions in Observation 6.

First we de�ne the table T ′. For a vertex vx, 1 ≤ x ≤ n, and an integer k,
1 ≤ k ≤ n − 1, T ′[x][k] stores the maximum index s such that T [w][k] = 1 for
all w = x+1, x+2, . . . , x+s (mod n). Intuitively, the entry s = T ′[x][k] means
that, after k token-swaps, all consecutive tokens f(w), w = x+1, x+2, . . . , x+s
(mod n), are placed on their expected vertices, f(x+ s+1 mod n) is placed on
an unexpected vertex. Similarly, we de�ne the table T ′′, as follows. For a vertex
vx, 1 ≤ x ≤ n, and an integer k, 1 ≤ k ≤ n − 1, T ′′[x][k] stores the maximum
index s such that T [w][k] = 1 for any w = x− 1, x− 2, . . . , x− s (mod n). The
table T ′′ focuses on the consecutive tokens from vx in the opposite direction of
T ′. We also de�ne the table T ′′′. The table T ′′′[x][k] stores the maximum index
s such that T [x][`] = 0 for any ` = k, k − 1, . . . , k − s+ 1 (mod n). Intuitively,
this entry means how many token-swaps we need to place the moving token,
which is placed on vx in f , on its expected vertex, after the token is swapped k
times counterclockwise.

Our goal is to �nd the feasible triple (x, i, j) that minimizes the value of
(n− 1)i+ j. To �nd such a triple, for every pair of (x, i), we �nd the smallest j
such that the triple (x, i, j) is feasible. Among them, the triple that minimizes
the value of (n− 1)i+ j is a desired solution.

Now we describe the algorithm. Suppose we are given a pair of (x, i), 1 ≤
x ≤ n and 1 ≤ i ≤ n−1. First, we investigate a range of j using the tables. Since
a feasible triple needs to satisfy the �rst and second conditions in Observation 6,
we have two ranges j ≤ T ′[x][i+1] and j ≥ n−T ′′[x][i]−1. Let jmin ≤ j ≤ jmax

be the range of j which satis�es the above two inequalities. Note that, if the
range is empty, it implies that there is no feasible triple for the given pair (x, i)
and thus the algorithm returns false. Then, we investigate whether there is j,
jmin ≤ j ≤ jmax, with the third condition in Observation 6. This can be checked
by jmin + T ′′′[x][i− jmin] ≤ jmax. If the inequality is true, then the algorithm
returns j = jmin + T ′′′[x][i − jmin]. Note that this value is the minimum j for
the given pair (x, i) from the de�nition of T ′′′. Otherwise, the algorithm returns
false. Therefore, we have the following theorem.



JGAA, 23(1) 3�27 (2019) 19

Theorem 8 For a cycle G, an initial token-placement f , and a target token-
placement c, one can compute OPTSTS(G, f, c) in O(n2) time.

Proof: For each pair of (x, i), 1 ≤ x ≤ n and 1 ≤ i ≤ n − 1, the algorithm
returns the minimum index j such that (x, i, j) is feasible. This can be done in
constant time using the three tables. Hence, the total running time is O(n2).

Now, we give algorithms and their running time to construct the four tables
T , T ′, T ′′, and T ′′′. The table T can be constructed in O(n2) time, since each
entry is computed in constant time. From now on, we only describe how to
construct T ′ in O(n2) time from T , since the other two tables are constructed
by the similar way in the same running time.

For each k = 1, 2, . . . , n − 1, we construct T ′[w][k] for w = 1, 2, . . . , n. We
regard T [w][k] for w = 1, 2, . . . , n as a �cyclic� 0-1 binary string, that is the
next element of T [n][k] is T [1][k]. Let L = 〈s1, s2, . . . , sz〉 be the sequence
of all the indices such that 1 ≤ s1 < s2 < · · · < sz ≤ n and T [s`][k] = 0
for each ` = 1, 2, . . . , z. If there is no such index, then T [w][k] = 1 for all
w = 1, 2, . . . , n. In this case, we set T ′[w][k] = ∞ as a special case. If L
has only one index, denote by s1, then T [s1][k] = 0 and T [w][k] = 1 for all
w = 1, 2, . . . , s1 − 1, s1 + 1, . . . , n. In this case, we set T ′[w][k] = s1 − w − 1 for
each w = 1, 2, . . . , s1−1 and T ′[w][k] = n−w+s1−1 for each w = s1, s1+1, . . . , n.
Now, we suppose that L has at least two indices. Let s`(6= sz) be an index in
L. Then, for each w = s`, s` + 1, . . . , s`+1 − 1, T ′[w][k] = s`+1 − w − 1 always
holds. Next let us consider the case of s` = sz. In this case, we determine the
entries of T ′[w][k] for elements from sz to s1. We have the following two cases.

Case 1: s1 > 1.
For w = 1, 2, . . . , s1−1, we set T ′[w][k] = s1−w−1. For w = sz, sz+1, . . . , n,

we need to count the number of the consecutive ones in T from w to s1−1, and
hence we set T ′[w][k] = n− w + T ′[1][k] + 1.

Case 2: s1 = 1.
In this case, T [1][k] = 0 holds. For w = sz, sz + 1, . . . , n, we set T ′[w][k] =

n− w.
Therefore, each entry of T ′ is computed in constant time. Thus, we can

construct T ′ in O(n2) time. �
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A Inapproximability of Maximum Vertex-

Disjoint Path Cover on Undirected

Bipartite Graphs

In this section, we demonstrate inapproximability of Maximum Vertex-

Disjoint Path Cover on Undirected Bipartite Graphs problem in
Section 3. We give a gap-preserving reduction from a maximum vertex-disjoint
path cover problem on directed graphs with a degree bound. A formal de�nition
of the problem is described below.

We use the following notations. For a directed graph D = (VD, ED), we
denote in-degree and out-degree of a vertex v in VD by d−D(v) and d+D(v). Also
we denote the set of predecessors and successors of v by N−D (v) and N+

D (v). Now
we de�ne Maximum Vertex-Disjoint Path Cover on Directed Graphs

problem, as follows.

Problem: Maximum Vertex-Disjoint Path Cover on Directed

Graphs [3, 5, 11]
Instance: A directed graph D = (VD, ED) such that any v in VD holds either
(1) d−D(v) = 1 and d+D(v) = 2, (2) d−D(v) = 2 and d+D(v) = 1, or (3) d−D(v) = 2
and d+D(v) = 2.
Question: Find a set of vertex-disjoint (directed) paths that cover all the
vertices in D such that the paths contain the maximum number of edges.

It is known that (1, 1− ε)-gap Maximum Vertex-Disjoint Path Cover

on Directed Graphs problem is NP-hard [3, 5].
We denote the optimal value of Maximum Vertex-Disjoint Path Cover

on Directed Graphs problem for an input graph D by OPTD-MVDPC(D),
and the optimal value of Maximum Vertex-Disjoint Path Cover

on Undirected Bipartite Graphs problem for an input graph G by
OPTU-MVDPC(G).

Theorem 9 There is a gap preserving reduction from Maximum Vertex-

Disjoint Path Cover on Directed Graphs problem to Maximum

Vertex-Disjoint Path Cover on Undirected Bipartite Graphs

problem that transforms a directed graph D = (VD, ED), where |VD| ≥ 2, to a
bipartite graph G = (VG, EG), where VG = X ∪ Y and |X| = |Y |, such that
(1) if OPTD-MVDPC(D) = |VD| − 1, then OPTU-MVDPC(G) = |VG| − 1 and
(2) if OPTD-MVDPC(D) < (1 − ε)(|VD| − 1), then OPTU-MVDPC(G) < (1 −

ε′)(|VG| − 1).

Proof: We �rst explain a reduction from a directed graph D to an undi-
rected bipartite graph G. Let G′ be the copy of D. Each vertex v in G′ is
replaced with four vertices vin, vm-in, vm-out, and vout such that NG(vin) =
N−G′(v) ∪ {vm-in}, NG(vm-in) = {vin, vm-out}, NG(vm-out) = {vm-in, vout}, and
NG(vout) = N+

G′(v) ∪ {vm-out}, respectively. Then, we replace each directed
edge with an undirected edge. We denote the obtained graph by G. Figure 8
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Figure 8: A replacement from a vertex v in D into vin, vm-in, vm-out, and vout
in G. (a) A vertex of d−D(v) = 2 and d+D(v) = 1. (b) A vertex of d−D(v) = 1 and
d+D(v) = 2. (c) A vertex of d−D(v) = 2 and d+D(v) = 2.

illustrates this transformation. We call the three edges between vin and vout
intermediate edges and the path of length three the vertex gadget of v. From the
de�nition of the transformation, we observe that |VG| = 4 |VD| and that G is a
bipartite graph with the bipartition (X,Y ), where X = {vin, vm-out | v ∈ VD}
and Y = {vout, vm-in | v ∈ VD}, and hence |X| = |Y | holds. The graph G is
constructed in polynomial time.

Now we assume that OPTD-MVDPC(D) = |VD| − 1. Then D has a Hamilto-
nian path. For every vertex v on the Hamiltonian path, we replace v with the
path consisting of vin, vm-in, vm-out, and vout in G, then the obtained path is
also Hamiltonian in G. Hence, OPTU-MVDPC(G) = |VG| − 1 holds.

Next we assume that OPTD-MVDPC(D) < (1 − ε)(|VD| − 1). Let PD be
an optimal vertex-disjoint path cover of D. By replacing every vertex v on
each path in PD with the path consisting of vin, vm-in, vm-out, and vout, we
obtain a path cover PG of G. We prove that PG is an optimal path cover
of G by contradiction. We assume that there is a path cover QG of G with
cost(PG) < cost(QG). Recall that, for a path cover P, cost(P) =

∑
P∈P len(P ).

For a path cover of G, an edge e in G is covered if e is included in a path in the
path cover. Otherwise, e is uncovered.

If every intermediate edge is covered in QG, then we have a contradiction,
as follows. First, from the construction of PG, it is observed that cost(PD) =
cost(PG)−3 |VD|. Next, we transformQG into a path cover ofD by transforming
the three intermediate edges in each vertex gadget into a vertex of D. Since
every intermediate edge is covered, we obtain a path cover QD of D from QG.
Note that cost(QD) = cost(QG)− 3 |VD| holds, since there exist 3 |VD| covered
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intermediate edges in QG. Now let us compare the costs of PD and QD.

cost(PD) = cost(PG)− 3 |VD|
< cost(QG)− 3 |VD|
= cost(QD),

which contradicts to the optimality of PD.
Now, we assume that one or more intermediate edges are uncovered in QG.

In this case, we show that QG can be transformed into a path cover with the
same cost such that every intermediate edge is covered. Then, by applying the
same discussion above to the path cover, we obtain a contradiction.

Let v be a vertex in D such that its vertex gadget in G includes at least
one uncovered intermediate edge in QG. Let Qin = 〈p1, p2, . . . , px〉 and Qout =
〈q1, q2, . . . , qy〉 be the two paths in QG including vin and vout, respectively. We
may have Qin = Qout. We �rst focus on the case of d−D(v) = 2 and d+D(v) = 1
in D. We denote the edges incident to vin except the edge (vin, vm-in) by ein
and e′in (see Figure 8(a)).

Case 1: The vertex vin is an endpoint of Qin.
If Qin includes an edge (vin, vm-in), then the length of Qin is at most two,

since the vertex gadget of v includes at least one uncovered edge. We can obtain
a new path by connecting Qin and Qout. The obtained path cover includes one
more edge thanQG, which is a contradiction for the optimality ofQG. Note that
an endpoint of Qin and one of Qout are adjacent with an uncovered intermediate
edge from the optimality of QG.

Now we assume otherwise, that is either ein or e′in is included in Qin. From
the optimality of QG, it can be observed that vm-in is an endpoint of Qout. If
Qin 6= Qout holds, by connecting the two paths Qin and Qout, we have the new
path including (vin, vm-in). Thus we obtain a better path cover than QG. This
contradicts to the optimality of QG. Now we suppose that Qin = Qout. Then
we replace Qin with 〈p2, p3, . . . , px, p1〉, where p1 = vin. See Figure 9(a). Now
we obtain a new path cover with the same cost such that all the intermediate
edges in the vertex gadget of v are covered.

Case 2: The vertex vin is an internal vertex of Qin.

Case 2-1: The edge (vin, vm-in) is included in Qin.
Since at least one edge in this vertex gadget is uncovered, either

(vm-in, vm-out) or (vm-out, vout) is uncovered. Note that, if both (vm-in, vm-out)
and (vm-out, vout) are uncovered, then it contradicts to the optimality of
QG. We �rst consider the case where (vm-in, vm-out) is uncovered. Then,
Qout includes (vm-out, vout) and vm-out as an endpoint. If Qin 6= Qout holds,
then we obtain a new path by connecting Qin and Qout. The obtained path
cover includes one more edge than QG, which is a contradiction for the
optimality of QG. Now suppose that Qin = Qout holds. We replace Qin with
〈p3, p4, . . . , px, p1, p2〉, where p1 = vm-in and p2 = vin. We also have the same
discussion when (vm-out, vout) is uncovered. Thus we have a path cover with
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Figure 9: Transformations of paths for Cases 1 and 2. Each dashed line repre-
sents a path in a path cover.

the same cost such that all the intermediate edges in the vertex gadget are
covered.

Case 2-2: The edge (vin, vm-in) is not included in Qin.
In this case, both ein and e′in are included in Qin, and vm-in is an endpoint

of Qout. We �rst consider the case of Qin = Qout. Let p1 = vm-in and pi = vin.
Then we replace Qin with the path 〈pi−1, pi−2, . . . , p1, pi, pi+1, . . . , px〉. See
Figure 9(b). For the case of Qin 6= Qout, the same replacement can be performed
as illustrated in Figure 9(c). Thus we have a path cover with the same cost such
that all the intermediate edges in the vertex gadget are covered.

The case for vertices of d−D(v) = 1 and d+D(v) = 2 is symmetric to the
case above, and hence we omit the details. Now, we next focus on vertices of
d−D(v) = 2 and d+D(v) = 2.

Let v be a vertex of d−D(v) = 2 and d+D(v) = 2 and its vertex gadget includes
at least one uncovered intermediate edge for QG. Similar to the case before,
let ein and e′in be the edges incident to vin except the edge (vin, vm-in), and let
eout and e′out be the edges incident to vout except the edge (vm-out, vout) (see
Figure 8(c)).

Case A: The vertex vin is an endpoint of Qin.
We have the following two subcases according to vout.

Case A-1: The vertex vout is an endpoint of Qout.
First, assume Qin includes either ein or e′in and Qout includes either eout

or e′out. Then, there is a path Q consisting only vm-in and vm-out in QG. If
Qin 6= Qout holds, we can obtain a better path cover than QG by connecting
Qin, Q, and Qout, which is a contradiction. Otherwise, Qin = Qout, we can
obtain a better path cover than QG by connecting Qin and Q, which is also a
contradiction. Second, assume Qin includes either ein or e′in and Qout includes
(vm-out, vout). Then, Qout = 〈vout, vm-out, vm-in〉 holds. By connecting Qin and
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Qout, we have a better path cover than QG, which is a contradiction. Third,
assume Qin includes (vin, vm-in) and Qout includes either eout or e′out. This
case is a symmetry of the above case, and hence we have the same discussion.
Finally, assume Qin includes (vin, vm-in) and Qout includes (vm-out, vout). Then,
the edge (vm-out, vm-out) is uncovered. By connecting Qin and Qout, we have a
better path cover than QG, which is a contradiction.

Case A-2: The vertex vout is an internal vertex of a path in QG.
We �rst assume that Qout includes both eout and e′out. If Qin includes either

ein or e′in, then there is a path consisting of only vm-in and vm-out in QG. By
connecting the path and Qin, we have a better path cover than QG, which is
a contradiction. Otherwise, Qin includes the edge (vin, vm-in), we also have
a better path cover by connecting Qin and the path which has a vertex in
NG(vin) \ {vm-in} as an endpoint.

We next assume that Qout includes the edge (vm-out, vout). Suppose Qin

includes either ein or e′in. Then Qout includes vm-in as its endpoint. If Qin 6=
Qout holds, then we have a better path cover than QG by connecting Qin and
Qout. Otherwise, Qin = Qout, we replace Qin with 〈p2, p3, . . . , px, p1〉, where
p1 = vin. Now we obtain a new path cover with the same cost such that all
the intermediate edges in the vertex gadget of v are covered. Now, suppose Qin

includes the edge (vm-out, vout). By connecting Qin and Qout, we have a better
path cover than QG, which is a contradiction.

Case B: The vertex vin is an internal vertex of Qin.
We have the following two subcases.

Case B-1: The vertex vout is an endpoint of Qout.
This case is a symmetry of Case A-2. We omit the details.

Case B-2: The vertex vout is an internal vertex of Qout.
First, we assume that Qin includes both ein and e′in and Qout also includes

both eout and e′out. Then, there is a path consisting of the two vertices vm-in
and vm-out. Suppose that Qin = Qout holds. Let pi = vin and pj = vout,
i < j. We replace Qin with 〈p1, p2, . . . , pi, vm-in, vm-out, pj , pj−1, . . . , pi+1〉 and
〈pj+1, pj+2, . . . , px〉 (see Figure 10(a)). For the case of Qin 6= Qout, we also
replace with the same manner (see Figure 10(b)). Thus we have a path cover
with the same cost such that all the intermediate edges in the vertex gadget are
covered.

Second, we assume that Qin includes both ein and e′in and Qout includes
(vm-out, vout). Then, it can be observed that vm-in is an endpoint of Qout. Sup-
pose Qin = Qout holds, and let pi = vin and pj = vout, i < j. Then we replace
Qin with 〈p1, p2, . . . , pi, vm-in, vm-out, pj , pj−1, . . . , pi+1〉 (see Figure 10(c)). For
the case of Qin 6= Qout, we can replace with the same manner (see Figure 10(d)).
Thus we have a path cover with the same cost.

Third, we assume that Qin includes the edge (vin, vm-in) and Qout includes
both eout and e′out. This is a symmetry of the above case, and hence we omit
the details.
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Figure 10: Transformations of paths for Case B.

Finally, we assume that Qin includes the edge (vin, vm-in) and Qout includes
the edge (vm-out, vout). Then vm-in is an endpoint of Qin and vm-out is an
endpoint of Qout. From the optimality of QG, Qin = Qout holds. Then we
replace the path as illustrated in Figure 10(e). The obtained path cover by the
replacement is better than QG, which is a contradiction.

From the above case analysis, by transforming paths in QG, we can obtain
a path cover with the same cost as QG such that all the intermediate edges are
included. Therefore, PG is an optimal solution.

We have the following equations and inequations:

cost(PG) = cost(PD) + 3 |VD|
< (1− ε)(|VD| − 1) + 3 |VD|
= 4 |VD| − ε(|VD| − 1)− 1

= |VG| −
1

4
ε(|VG| − 4)− 1

= (|VG| − 1)− 1

4
ε(|VG| − 1) +

3

4
ε

= (1− 1

4
ε)(|VG| − 1) +

3

4
ε

= (1− 1

8
ε)(|VG| − 1)− 1

8
ε(|VG| − 1) +

3

4
ε

< (1− 1

8
ε)(|VG| − 1) (|VD| ≥ 2),

which completes the proof. �
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