
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 23, no. 1, pp. 29�70 (2019)
DOI: 10.7155/jgaa.00483

The Time Complexity of Permutation Routing

via Matching, Token Swapping and a Variant

Jun Kawahara 1 Toshiki Saitoh 2 Ryo Yoshinaka 3

1Graduate School of Science and Technology,
Nara Institute of Science and Technology, Japan

2Faculty of Computer Science and Systems Engineering,
Kyushu Institute of Technology, Japan

3Graduate School of Information Sciences, Tohoku University, Japan

Abstract

The problems of Permutation Routing via Matching and Token Swap-
ping are recon�guration problems on graphs. This paper is concerned
with the complexity of those problems and a colored variant. For a given
graph where each vertex has a unique token on it, those problems require
to �nd a shortest way to modify a token placement into another by swap-
ping tokens on adjacent vertices. While all pairs of tokens on a matching
can be exchanged at once in Permutation Routing via Matching, Token
Swapping allows only one pair of tokens can be swapped. In the colored
version, vertices and tokens are colored and the goal is to relocate tokens
so that each vertex has a token of the same color. We investigate the time
complexity of several restricted cases of those problems and show when
those problems become tractable and remain intractable.

Submitted:
September 2017

Reviewed:
May 2018

Revised:
June 2018

Accepted:
August 2018

Final:
August 2018

Published:
January 2019

Article type:
Regular paper

Communicated by:
M.S. Rahman, H.-C. Yen and S.-H. Poon

Research supported by JSPS KAKENHI Grant Number 16K16006, CREST Grant Numbers

JPMJCR1401 and JPMJCR1402, and NAIST Bigdata project

E-mail addresses: jkawahara@is.naist.jp (Jun Kawahara) toshikis@ces.kyutech.ac.jp (Toshiki

Saitoh) ryoshinaka@tohoku.ac.jp (Ryo Yoshinaka)

http://dx.doi.org/10.7155/jgaa.00483
mailto:jkawahara@is.naist.jp
mailto:toshikis@ces.kyutech.ac.jp
mailto:ryoshinaka@tohoku.ac.jp

30 J. Kawahara et al. The Time Complexity of Permutation Routing

1 Introduction

Alon et al. [1] have proposed a problem called Permutation Routing via Matching
as a simple variant of routing problems.1 Suppose that we have a simple graph
where each vertex is assigned a token. Each token is labeled with its unique
goal vertex, which may be di�erent from where the token is currently placed.
We want to relocate every misplaced token to its goal vertex. What we can do
in one step is to pick a matching and swap the two tokens on the ends of each
edge in the matching. The problem is to decide how many steps are needed
to realize the goal token placement. The bottom half of Figure 1 illustrates
a problem instance and a solution. The graph has 4 vertices 1, 2, 3, 4 and 4
edges {1, 2}, {1, 3}, {2, 4}, {3, 4}. Each token i is initially put on the vertex
5− i. By swapping the tokens on the edges in the matchings {{1, 2}, {3, 4}} and
{{1, 3}, {2, 4}} in this order, we achieve the goal. The original paper of Alon et
al. [1] and following papers are mostly interested in the maximum number of
steps, denoted rt(G), needed to realize the goal con�guration from any initial
con�guration for an input graph G. For example, Alon et al. [1] have shown
rt(Kn) = 2 for complete graphs Kn, Zhang [21] has shown rt(T) = 3n/2+(log n)
for trees T of n vertices, and Li et al. [13] have shown rt(Km,n) ∈ b3m/2nc+O(1)
for bipartite graphs Km,n with m ≥ n and rt(Cn) = n − 1 for n ≥ 3 for cycles
Cn. This paper is concerned with the problem where an initial con�guration
also constitutes an input and discusses its computational complexity. We will
show the following results, which were independently obtained by Banerjee and
Richards [2].

• Permutation Routing via Matching is NP-complete even to decide whether
an instance admits a 3-step solution (Theorem 3).

• To decide whether a 2-step solution exists can be answered in polynomial-
time (Theorem 5).

In addition, we present a polynomial-time algorithm that approximately solves
Permutation Routing via Matching on paths whose output is at most one larger
than that of the exact answer (Theorem 7).

Token Swapping, introduced by Yamanaka et al. [19], can be seen as permu-
tation routing via �edges�. In this setting we can swap only two tokens on an
edge at each step. Figure 1 shows that we require 4 steps in Token Swapping to
realize the goal con�guration, while 2 steps are enough in Routing via Matching.
Yamanaka et al. have presented several positive results on this problem in ad-
dition to classical results which can be seen as special cases [9]. Namely, graph
classes for which Token Swapping can be solved in polynomial-time are paths,
cycles, complete graphs and complete bipartite graphs. They showed that To-
ken Swapping for general graphs belongs to NP. The NP-hardness is recently
shown in preliminary versions [11, 12] of this paper and by Miltzow et al. [14]
and Bonnet et al. [3] independently. On the other hand, some polynomial-time

1In the preliminary version [12] of this paper, this old problem was called Parallel Token
Swapping due to the ignorance of the authors.

JGAA, 23(1) 29�70 (2019) 31

1 2

3 4

4 3

2 1

{3, 4} 1 2

3 4

4 3

1 2

{1, 3} 1 2

3 4

1 3

4 2

{2, 4} 1 2

3 4

1 2

4 3

{3, 4} 1 2

3 4

1 2

3 4

1 2

3 4

3 4

1 2

{{1, 2}, {3, 4}} {{1, 3}, {2, 4}}

Figure 1: Vertices and tokens are shown by circles and squares, respectively.
Optimal solutions for Token Swapping and Permutation Routing via Matching
are shown by small and big arrows, respectively.

approximation algorithms are known for di�erent classes of graphs including
the general case [8, 14, 19]. Our NP-hardness result is tight with respect to the
degree bound, as the problem can be solved in polynomial-time if input graphs
have vertex degree at most 2.

• Token Swapping is NP-complete even when graphs are restricted to bipar-
tite graphs where every vertex has degree at most 3 (Theorem 1).

Moreover, we present two polynomial-time solvable subcases of Token Swapping.
One is of lollipop graphs, which are combinations of a complete graph and a
path. The other is the class of graphs which are combinations of a star and a
path.

A variant of Token Swapping is c-Colored Token Swapping. Tokens and
vertices in this setting are colored by one of c admissible colors. We decide
how many swaps are required to relocate the tokens so that each vertex has
a token of the same color. Since di�erent tokens and vertices may have the
same color, there can be many possible destinations for each token. Yamanaka
et al. [20] have shown that 3-Colored Token Swapping is NP-complete while
2-Colored Token Swapping is solvable in polynomial time. This problem and
a further generalization are also studied in [3]. In this paper we consider the
colored version of Routing via Matching and show that it is also NP-complete.

• 2-Coloring Routing via Matching is NP-complete even to decide whether
an instance admits a 3-step solution (Theorem 9).

• 3-Coloring Routing via Matching is NP-complete even to decide whether
an instance admits a 2-step solution (Theorem 11).

The former result contrasts the fact that the 2-Colored Token Swapping is solv-
able in polynomial-time [20]. The latter contrasts that to decide whether a
2-step solution exists for Permutation Routing is in P (Theorem 5). In addi-
tion, we present another contrastive result.

• It is decidable in polynomial-time whether a 2-step solution exists in 2-
Coloring Routing via Matching (Theorem 12).

32 J. Kawahara et al. The Time Complexity of Permutation Routing

One may consider permutation routing on graphs as a special case of theMin-
imum Generator Sequence Problem [6]. The problem is to determine whether
one can obtain a permutation f on a �nite set X by multiplying at most k per-
mutations from a �nite permutation set Π, where all of X, f , k and Π are input.
The problem is known to be PSPACE-complete if k is speci�ed in binary nota-
tion [9], while it becomes NP-complete if k is given in unary representation [6].
In our settings, permutation sets Π are restricted to the ones that have a graph
representation. However, this does not necessarily mean that the NP-hardness
of Permutation Routing via Matching implies the hardness of the Minimum
Generator Sequence Problem, since the description size of all the admissible
parallel swaps on a graph is exponential in the graph size.

2 Time Complexity of Token Swapping

We denote by G = (V,E) an undirected simple graph whose vertex set is V
and edge set is E. More precisely, elements of E are subsets of V consisting of
exactly two distinct elements. A con�guration f (on G) is a permutation on V ,
i.e., bijection from V to V . By [u]f we denote the orbit { f i(u) | i ∈ N } of u ∈ V
under f . We call each element of V a token when we emphasize the fact that
it is in the range of f . We say that a token v is on a vertex u in f if v = f(u).
A swap on G is a synonym for an edge of G, which behaves as a transposition.
For a con�guration f and a swap e ∈ E, the con�guration obtained by applying
e to f , which we denote by fe, is de�ned by

fe(u) =

{
f(v) if e = {u, v},
f(u) otherwise.

For a sequence ~e = 〈e1, . . . , em〉 of swaps, the length m is denoted by |~e|. For
i ≤ m, by ~e|≤i we denote the pre�x 〈e1, . . . , ei〉. The con�guration f~e obtained
by applying ~e to f is (. . . ((fe1)e2) . . .)em. We say that the token f(u) on u is
moved to v by ~e if f~e(v) = f(u). We count the total moves of each token u ∈ V
in the application as

move(f,~e, u) = |{ i ∈ {1, . . . ,m} | (f~e|≤i−1)−1(u) 6= (f~e|≤i)
−1(u) }| .

Clearly move(f,~e, u) ≥ dist(f−1(u), (f~e)−1(u)), where dist(u1, u2) denotes the
length of a shortest path between u1 and u2 on G, and

∑
u∈V move(f,~e, u) =

2|~e|.
We denote the set of solutions for a con�guration f by

TS(G, f) = {~e | ~e is a swap sequence on G such that f~e is the identity } .

A solution ~e0 ∈ TS(G, f) is said to be optimal if |~e0| = min{ |~e| | ~e ∈ TS(G, f) }.
The length of an optimal solution is denoted by ts(G, f).

Problem 1 (Token Swapping)

Instance: A connected graph G, a con�guration f on G and a natural number k.

Question: ts(G, f) ≤ k?

JGAA, 23(1) 29�70 (2019) 33

2.1 Token Swapping Is NP-complete

This subsection proves the NP-hardness of Token Swapping by a reduction from
the 3DM, which is known to be NP-complete [10].

Problem 2 (Three dimensional matching problem, 3DM)

Instance: Three disjoint sets A1, A2, A3 such that |A1| = |A2| = |A3| and a
set T ⊆ A1 ×A2 ×A3.

Question: Is there M ⊆ T such that |M | = |A1| and every element of A1 ∪
A2 ∪A3 occurs just once in M?

An instance of the 3DM is denoted by (A, T) where A = A1 ∪ A2 ∪ A3

assuming that the partition is understood. Let Ak = {ak,1, . . . , ak,n} for k ∈
{1, 2, 3} and T = {t1, . . . , tm}. For notational convenience we write a ∈ t if
a ∈ A occurs in t ∈ T by identifying t with the set of the elements of t. We
construct an instance (GT , f) of Token Swapping as follows. The vertex set of
GT is VA ∪ VT with

VA = {uk,i, u′k,i | k ∈ {1, 2, 3} and i ∈ {1, . . . , n}} ,
VT = { vj,k, v′j,k | j ∈ {1, . . . ,m} and k ∈ {1, 2, 3}} .

The edge set ET is given by

ET = { {uk,i, v′j,k}, {u′k,i, vj,k} | ak,i ∈ Ak occurs in tj ∈ T }
∪ { {vj,k, v′j,l} ⊆ VT | j ∈ {1, . . . ,m} and k, l ∈ {1, 2, 3} with k 6= l } .

We call the subgraph induced by {vj,1, v′j,2, vj,3, v′j,1, vj,2, v′j,3} the tj-cycle. The
initial con�guration f is de�ned by

f(uk,i) = u′k,i and f(u′k,i) = uk,i for all ak,i ∈ Ak and k ∈ {1, 2, 3} ,
f(vj,k) = vj,k and f(v′j,k) = v′j,k for all tj ∈ T and k ∈ {1, 2, 3} .

In the initial con�guration f , all and only the tokens in VA are misplaced. Each
token uk,i ∈ VA on the vertex u′k,i must be moved to uk,i via (a part of) tj-cycle
for some tj ∈ T in which ak,i occurs.

Example 1 Let A = A1 ∪A2 ∪A3 and T = {t1, t2, t3} where Ak = {ak,1, ak,2}
for k ∈ {1, 2, 3}, t1 = {a1,1, a2,1, a3,1}, t2 = {a1,1, a2,1, a3,2} and t3 = {a1,2, a2,2,
a3,2}. Figure 2 shows the graph and initial con�guration reduced from the 3DM
instance (A, T). This instance (A, T) has a solution M = {t1, t3}. The proof
of Lemma 1 will give how to �nd an optimal solution for the reduced Token
Swapping instance corresponding to M . A part of the solution is illustrated in
Figure 3.

To design a short solution for (GT , f), it is desirable to have swaps at which
both of the swapped tokens get closer to the destination. If (A, T) admits a

34 J. Kawahara et al. The Time Complexity of Permutation Routing

v′1,1

v1,2

v′1,3

v1,1

v′1,2

v1,3

v′2,1

v2,2

v′2,3

v2,1
v2,2′

v2,3

v′3,1

v3,2

v′3,3

v3,1

v′3,2

v3,3

u1,1 u1,2 u′
2,1 u′

2,2 u3,1 u3,2

u′
1,1 u′

1,2u2,1 u2,2u′
3,1 u′

3,2

u′
1,1 u′

1,2 u2,1 u2,2 u′
3,1 u′

3,2

u3,1 u3,2 u′
2,1 u′

2,2 u1,1 u1,2

Figure 2: The graph and initial con�guration of Token Swapping reduced from
the 3DM instance in Example 1. Vertices and tokens are denoted by circles and
squares, respectively. The tokens which are already on the goal vertices in the
initial con�guration are omitted.

solution, then one can �nd an optimal solution for (GT , f) of length 21n, where
9n of the swaps satisfy this property as we will see in Lemma 1. On the other
hand, such an �e�cient� solution is possible only when (A, T) admits a solution
as shown in Lemma 2.

Lemma 1 If (A, T) has a solution then ts(GT , f) ≤ 21n with n = |A1|.

Proof: We show in the next paragraph that for each tj ∈ T , there is a sequence
σj of 21 swaps such that gσj is identical to g except (gσj)(uk,i) = g(u′k,i) and
(gσj)(u

′
k,i) = g(uk,i) if ak,i occurs in tj for any con�guration g. If M ⊆ T is

a solution, by collecting σj for all tj ∈ M , we obtain a swap sequence σM of
length 21n such that fσM is the identity.

Let tj = {a1,i1 , a2,i2 , a3,i3}. We �rst move each of the tokens uk,ik on the
vertex u′k,ik to the vertex vj,k and the tokens u′k,ik on uk,ik to v′j,k. We then
move the tokens uk,ik on vj,k to the opposite vertex v′j,k of the tj-cycle for
each k ∈ {1, 2, 3} while moving u′k,ik on v′j,k to vj,k in the opposite direction
simultaneously. At last we make swaps on the same 6 edges we used in the
�rst phase. The above procedure consists of 21 swaps and gives the desired
con�guration. �

Lemma 2 If ts(GT , f) ≤ 21n with n = |A1| then (A, T) has a solution.

Proof: We �rst show that 21n is a lower bound on ts(GT , f). Let σ be a
solution in TS(G, f). For each token uk,i ∈ VA, we have

move(f, σ, uk,i) ≥ dist(uk,i, f
−1(uk,i)) = dist(uk,i, u

′
k,i) = 5 .

JGAA, 23(1) 29�70 (2019) 35

initial con�guration (part)

v′1,1

v1,2

v′1,3

v1,1

v′1,2

v1,3

u′
1,1

u2,1
u′
3,1

u1,1
u′
2,1

u3,1

6

u′
1,1

u2,1

u′
3,1

u1,1

u′
2,1

u3,1

v′1,1
v1,2 v′1,3

v1,1v′1,2
v1,3

3
u3,1

u′
3,1

u2,1

u′
2,1

u1,1

u′
1,1

v′1,1
v1,2 v′1,3

v1,1v′1,2
v1,3

3
u′
3,1

u3,1

u′
2,1

u2,1

u′
1,1

u1,1

v′1,1
v1,2 v′1,3

v1,1v′1,2
v1,3

3
u1,1

u′
2,1

u3,1

u′
1,1

u2,1

u′
3,1

v′1,1
v1,2 v′1,3

v1,1v′1,2
v1,3

6

goal con�guration (part)

v′1,1

v1,2

v′1,3

v1,1

v′1,2

v1,3

u1,1
u′
2,1 u3,1

u′
1,1u2,1

u′
3,1

Figure 3: The 3DM instance (A, T) of Example 1 has a solution M = {t1, t3}.
The optimal solution given in the proof of Lemma 1 that exchanges uk,1 and
u′k,1 for all k ∈ {1, 2, 3} via the t1-cycle is illustrated here, where we suppress
vertex names. By swapping the tokens on the bold edges in each con�guration,
we obtain the succeeding one pointed by an arrow. The number by each arrow
shows the number of swaps. The swap sequence consists of 21 swaps in total.
By doing the same on t3-cycle with respect to u1,2, u2,2, u3,2, u′1,2, u

′
2,2, u

′
3,2, we

obtain the goal con�guration.

36 J. Kawahara et al. The Time Complexity of Permutation Routing

The adjacent vertices of the vertex u′k,i are vj,k such that ak,i ∈ tj . Among those,
let τ(uk,i) ∈ VT be the vertex to which uk,i goes for its �rst step, i.e., the �rst
occurrence of u′k,i in σ is as {u′k,i, τ(uk,i)}. This means that move(f, σ, τ(uk,i)) ≥
2, since the token τ(uk,i) must once leave from and later come back to the vertex
τ(uk,i). The symmetric discussion holds for all tokens u′k,i. Therefore, noting
that τ is an injection, we obtain

|σ| = 1

2

∑
x∈VA∪VT

move(f, σ, x) ≥ 1

2

∑
x∈VA

(
move(f, σ, x) + move(f, σ, τ(x))

)
≥ 21n .

This has shown that if fσ is the identity and |σ| ≤ 21n, then

(1) move(f, σ, x) = 5 for all x ∈ VA,

(2) move(f, σ, y) 6= 0 for y ∈ VT if and only if y = τ(x) for some x ∈ VA.

Let Mσ = { y ∈ VT | move(f, σ, y) 6= 0 } = { τ(x) ∈ VT | x ∈ VA }. We are
now going to prove that if vj,1 ∈Mσ then {vj,2, vj,3, v′j,1, v′j,2, v′j,3} ⊆Mσ, which

implies that M̃σ = { tj ∈ T | vj,1 ∈Mσ } is a solution for (A, T).
Suppose vj,1 ∈ Mσ and let tj ∩ A1 = {a1,i}. This means that τ(u1,i) = vj,1

and u1,i goes from u′1,i to u1,i through (u′1,i, vj,1, v
′
j,2, vj,3, v

′
j,1, u1,i) or (u′1,i, vj,1,

v′j,3, vj,2, v
′
j,1, u1,i) by (2) and (1). In either case, v′j,1 ∈ Mσ. Suppose that u1,i

takes the former (u′1,i, vj,1, v
′
j,2, vj,3, v

′
j,1, u1,i). Then v′j,2, vj,3 ∈ Mσ. Just like

vj,1 ∈Mσ implies v′j,1 ∈Mσ, we now see vj,2, v′j,3 ∈Mσ. �

It is known that the 3DM is still NP-complete if each a ∈ A occurs at most
three times in T [7]. Assuming that T satis�es this constraint, it is easy to see
that GT is a bipartite graph with maximum vertex degree 3.

Theorem 1 Token Swapping is NP-complete even on bipartite graphs with
maximum vertex degree 3.

The NP-hardness of Token Swapping was independently proven by Miltzow et
al. [14] and by Bonnet et al. [3]. The graphs obtained by the reduction of
Miltzow et al. have a degree bound but it is not as small as our constraint.
Our bound 3 is tight, as Token Swapping on graphs with degree at most 2, i.e.,
paths and cycles, is solvable in polynomial-time. Bonnet et al. [3] have given no
degree constraint but their graphs have tree-width 2 and diameter 6. Therefore,
their and our results are incomparable.

2.2 PTIME Subcases of Token Swapping

In this subsection, we present two graph classes on which Token Swapping can
be solved in polynomial time. One is that of lollipop graphs, which are obtained
by connecting a path and a complete graph with a bridge. That is, a lollipop
graph is Lm,n = (V,E) where V = {−m, . . . ,−1, 0, 1, . . . , n } and

E = { {i, j} ⊆ V | i < j ≤ 0 or j = i+ 1 > 0 } .

JGAA, 23(1) 29�70 (2019) 37

The other class consists of graphs obtained by connecting a path and a star. A
star-path graph is Qm,n = (V,E) such that V = {−m, . . . ,−1, 0, 1, . . . , n } and

E = { {i, 0} ⊆ V | i < 0 } ∪ { {i, i+ 1} ⊆ V | i ≥ 0 } .

Algorithms 1 and 2 give optimal solutions for Token Swapping on lollipop and
star-path graphs in polynomial time, respectively. Proofs of the correctness are
found in Appendices A and B.

Algorithm 1 Algorithm for Token Swapping on Lollipop Graphs
Input: A lollipop graph Lm,n and a con�guration f on Lm,n
for k = n, . . . , 1, 0,−1, . . . ,−m do
Move the token k to the vertex k directly;

end for

Algorithm 2 Algorithm for Token Swapping on Star-Path Graphs
Input: A star-path graph Qm,n and a con�guration f on Qm,n
for k = n, . . . , 1, 0,−1, . . . ,−m do
while the token on the vertex 0 has a label less than 0 do
Move the token on the vertex 0 to its goal vertex;

end while
Move the token k to the vertex k;

end for

3 Permutation Routing via Matching

Permutation Routing via Matching can be seen as the parallel version of To-
ken Swapping. De�nitions and notation for Token Swapping are straightfor-
wardly generalized as follows. A parallel swap S on G is a synonym for an
involution which is a subset of E, or for a matching of G, i.e., S ⊆ E such
that {u, v1}, {u, v2} ∈ S implies v1 = v2. For a con�guration f and a paral-
lel swap S ⊆ E, the con�guration obtained by applying S to f is de�ned by
fS(u) = f(v) if {u, v} ∈ S and fS(u) = f(u) if u /∈

⋃
S. This de�nition is

straightforwardly generalized for sequences ~S = 〈S1, . . . , Sm〉 of parallel swaps
by f ~S = (. . . ((fS1)S2) . . .)Sm. Let

RT(G, f) = { ~S | ~S is a parallel swap sequence s.t. f ~S is the identity }

rt(G, f) = min{ |~S| | ~S ∈ RT(G, f) } .

Problem 3 (Permutation Routing via Matching)

Instance: A connected graph G, a con�guration f on G and a natural number k.

38 J. Kawahara et al. The Time Complexity of Permutation Routing

Question: rt(G, f) ≤ k?

It is trivial that rt(G, f) ≤ ts(G, f) ≤ rt(G, f)|V |/2, since any parallel swap
S consists of at most |V |/2 (single) swaps. Since ts(G, f) ≤ |V |(|V | − 1)/2
holds [19], Permutation Routing via Matching belongs to NP.

3.1 Routing Permutations via Matching Is NP-complete

We show that Routing Permutations via Matching is NP-hard by a reduction
from a restricted kind of the satis�ability problem, which we call PPN-Separable
3SAT (Sep-SAT for short). For a set X of (Boolean) variables, ¬X denotes the
set of their negative literals. A 3-clause is a subset of X ∪¬X whose cardinality
is at most 3. An instance of Sep-SAT is a �nite collection F of 3-clauses, which
can be partitioned into three subsets F1, F2, F3 ⊆ F such that for each variable
x ∈ X, the positive literal x occurs just once in each of F1, F2 and never in F3,
and the negative literal ¬x occurs just once in F3 and never in F1 nor F2. Note
that one can �nd a partition {F1, F2, F3} of a Sep-SAT instance F in linear
time.

Theorem 2 Sep-SAT is NP-complete.

Proof: See Appendix C. �

We give a reduction from Sep-SAT to Permutation Routing via Matching. For
a given instance F = {C1, . . . , Cn} over a variable set X = {x1, . . . , xm} of
Sep-SAT, we de�ne a graph GF = (VF , EF) in the following manner. Let F be
partitioned into F1, F2, F3 where each of F1 and F2 has just one occurrence of
each variable as a positive literal and F3 has just one occurrence of each negative
literal. De�ne

VF = {ui, u′i, ui,1, ui,2, ui,3, ui,4 | 1 ≤ i ≤ m }
∪ { vj , v′j | 1 ≤ j ≤ n } ∪ { vj,i | xi ∈ Cj or ¬xi ∈ Cj } .

The edge set EF is the least set that makes GF contain the following paths of
length 3:

(ui, ui,1, ui,2, u
′
i) and (ui, ui,3, ui,4, u

′
i) for each i ∈ {1, . . . ,m},

(vj , vj,i, ui,k, v
′
j) if xi ∈ Cj ∈ Fk or ¬xi ∈ Cj ∈ Fk .

The fact that GF is bipartite can be seen by partitioning VF into

{ui, ui,2, ui,4 | 1 ≤ i ≤ m } ∪ { vj | Cj ∈ F2 } ∪ { v′j , vj,i | Cj ∈ F1 ∪ F3 }

and the rest. Vertices vj and v′j have degree at most 3 for j ∈ {1, . . . , n}, while
ui,k has degree 4 for i ∈ {1, . . . ,m} and k ∈ {1, 2, 3}. The initial con�guration
f is de�ned to be the identity except

f(ui) = u′i, f(u′i) = ui, f(vj) = v′j , f(v′j) = vj ,

for each i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.

JGAA, 23(1) 29�70 (2019) 39

u1

u1,1 u1,2

u1,3 u1,4

u′
1 u2

u2,1 u2,2

u2,3 u2,4

u′
2 u3

u3,1 u3,2

u3,3 u3,4

u′
3

v1v1,1 v1,2

v′1

v2 v2,3

v′2

v3v3,1

v′3

v4v4,2 v4,3

v′4

v5v5,1

v5,2

v5,3

v′5

u′
1 u1

u′
2 u2

u′
3 u3

v′1

v1

v′4

v4

v′2

v2

v′3

v3

v′5
v5

Figure 4: The instance of Permutation Routing via Matching obtained from
the Sep-SAT instance F of Example 2. By moving misplaced tokens along the
bold edges, the goal con�guration is realized in 3 steps. The reduction graph
described in the proof for Theorem 4 has essentially the same shape.

Example 2 For X = {x1, x2, x3}, let F consist of C1 = {x1, x2}, C2 = {x3},
C3 = {x1}, C4 = {x2, x3} and C5 = {¬x1,¬x2,¬x3}. Then F is partitioned
into F1 = {C1, C2}, F2 = {C3, C4} and F3 = {C5}, where each variable occurs
just once in each Fk with k ∈ {1, 2, 3}. Moreover, F1 and F2 have only positive
literals and F3 has only negative literals. Therefore, F is a Sep-SAT instance.
Figure 4 shows the reduction from F . The formula F is satis�ed by assigning 1
to x1, x3 and 0 to x2. Corresponding to this assignment, by moving misplaced
tokens along the bold edges in Figure 4, the goal con�guration is realized in 3
steps.

Since dist(w, f(w)) = 3 if w 6= f(w), obviously rt(GF , f) ≥ 3. We will show
that F is satis�able if and only if this lower bound is achieved. Here we describe
an intuition behind the reduction by giving the following observation between
a 3-step solution for (GF , f) and a solution for F :

• tokens ui and u′i pass vertices ui,1 and ui,2 i� xi should be assigned 0,
while they pass over ui,3 and ui,4 i� xi should be assigned 1,

• if tokens vj and v′j pass a vertex ui,k for some k ∈ {1, 2} then Cj ∈ Fk is
satis�ed thanks to xi, while if they pass over ui,3 then Cj ∈ F3 is satis�ed
thanks to ¬xi.

Of course it is contradictory that a clause Cj ∈ F1 is satis�ed by xi ∈ Cj which
is assigned 0. This impossibility corresponds to the fact that there are no i, j

40 J. Kawahara et al. The Time Complexity of Permutation Routing

such that both ui and vj with Cj ∈ F1 go to their respective goals via ui,1 in a
3-step solution.

Lemma 3 The formula F is satis�able if and only if rt(GF , f) = 3.

Proof: Suppose that there is φ : X → {0, 1} satisfying F . Then each clause
must have a literal to which φ assigns 1. Let ψ : F → X be such that ψ(Cj) ∈ Cj
and φ(ψ(Cj)) = 1 if Cj ∈ F1∪F2, and ¬ψ(Cj) ∈ Cj and φ(ψ(Cj)) = 0 if Cj ∈ F3.
De�ne

S1 = { {ui, ui,1}, {u′i, ui,2} | φ(xi) = 0 } ∪ { {ui, ui,3}, {u′i, ui,4} | φ(xi) = 1 }
∪ { {vj , vj,i}, {v′j , ui,k} | ψ(Cj) = xi and Cj ∈ Fk } ,

S2 = { {ui,1, ui,2} | φ(xi) = 0 } ∪ { {ui,3, ui,4} | φ(xi) = 1 }
∪ { {vj,i, ui,k} | ψ(Cj) = xi and Cj ∈ Fk } .

It is not hard to see that 〈S1, S2, S1〉 is a solution for (GF , f).
Conversely, suppose that (GF , f) admits a solution 〈S1, S2, S3〉. Since the

token on ui is moved to u′i by the three steps, the path that u′i takes should be
either (ui, ui,1, ui,2, u

′
i) or (ui, ui,3, ui,4, u

′
i). In other words, S2 contains at least

one of {ui,1, ui,2} and {ui,3, ui,4}. We prove that F is satis�ed by the assignment
φ : X → {0, 1} de�ned as

φ(xi) =

{
0 if {ui,1, ui,2} ∈ S2 ,

1 otherwise.

For each Cj ∈ F1, the token on vj must be moved to v′j via ui,1 for some i
such that xi ∈ Cj . That is, {vj,i, ui,1} ∈ S2. Since S2 is a parallel swap,
{ui,1, ui,2} /∈ S2 in this case, which means φ(xi) = 1. Hence Cj is satis�ed by
φ. Almost the same arguments show that clauses in F2 and F3 are also satis�ed
by φ. �

Theorem 3 For any �xed k ≥ 3, to decide whether rt(G, f) ≤ k is NP-complete
even when G is restricted to be a bipartite graph with maximum vertex degree 4.

Proof: Lemma 3 proves the theorem for k = 3. For k = 3 + h with h > 0,
by adding an extra path of length h to each of the vertices ui, u′i, vj , v

′
j for

i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, and putting the corresponding tokens on the
end of those paths in the initial con�guration, we obtain an instance with the
desired property. That is, we add the following paths:

(ui,−h, . . . , ui,−1, ui), (u
′
i, u
′
i,−1, . . . , u

′
i,−h) for each i ∈ {1, . . . ,m},

(vj,−h, . . . , vj,−1, vj), (v
′
j , v
′
j,−1, . . . , v

′
j,−h) for each j ∈ {1, . . . , n}.

For those vertices on the new paths, we let

f(ui,−h) = u′i, f(ui,−l) = ui,−l−1 for 1 ≤ l < h and f(ui) = ui,−1,

f(u′i,−h) = ui, f(u′i,−l) = u′i,−l−1 for 1 ≤ l < h and f(u′i) = u′i,−1,

f(vj,−h) = v′j , f(vj,−l) = vj,−l−1 for 1 ≤ l < h and f(vj) = vj,−1,

f(v′j,−h) = vj , f(v′j,−l) = v′j,−l−1 for 1 ≤ l < h and f(v′j) = v′j,−1. �

JGAA, 23(1) 29�70 (2019) 41

Banerjee and Richards [2] have shown Theorem 3 using a di�erent reduction.
One can modify our reduction so that every vertex has degree at most 3 by

dividing vertices ui,k into two vertices of degree at most 3. Let

VF = {ui, u′i, ui,1, u′i,1, ui,2, u′i,2, ui,3, u′i,3, ui,4, u′i,4 | 1 ≤ i ≤ m }
∪ { vj , v′j | 1 ≤ j ≤ n } ∪ { vj,i, v′j,i | xi ∈ Cj or ¬xi ∈ Cj } .

The new graph G′F contains the following paths of length 5:

(ui, u
′
i,1, ui,1, u

′
i,2, ui,2, u

′
i) and (ui, u

′
i,3, ui,3, u

′
i,4, ui,4, u

′
i) for each i ∈ {1, . . . ,m},

(vj , v
′
j,i, ui,k, u

′
i,k, vj,i, v

′
j) if xi ∈ Cj ∈ Fk or ¬xi ∈ Cj ∈ Fk .

The initial con�guration f is de�ned in the same manner as the previous con-
struction. It is identity except f(ui) = u′i, f(u′i) = ui, f(vj) = v′j , and
f(v′j) = vj for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. The formula F is satis�-
able if and only if rt(G′F , f) = 5.

Theorem 4 For any �xed k ≥ 5, to decide whether rt(G, f) ≤ k is NP-complete
even when G is restricted to be a bipartite graph with maximum vertex degree 3.

3.2 PTIME Subcases

In this subsection we discuss tractable subcases of Permutation Routing via
Matching. In contrast to Theorem 3, it is decidable in polynomial time whether
an instance of Permutation Routing via Matching admits a 2-step solution.
In addition, we present an approximation algorithm for �nding a solution for
Permutation Routing via Matching on paths whose length can be at most one
larger than that of an optimal solution.

3.2.1 2-Step Permutation Routing via Matching

It is well-known that any permutation can be expressed as a product of 2 in-
volutions, which means that any problem instance of Permutation Routing via
Matching on a complete graph has a 2-step solution. Graphs we treat are not
necessarily complete but the arguments by Petersen and Tenner [16, Lemma 2.3]
on involution factorization lead to the following observation, which is useful to
decide whether rt(G, f) ≤ 2 for general graphs G.

Proposition 1 〈S, T 〉 ∈ RT(G, f) if and only if the set of orbits under f is
partitioned as {{[u1]f , [v1]f}, . . . , {[uk]f , [vk]f}} (possibly [uj]f = [vj]f for some
j ∈ {1, . . . , k}) so that for every j ∈ {1, . . . , k},

{f i(uj), f−i(vj)} ∈ Š and {f i+1(uj), f
−i(vj)} ∈ Ť for all i ∈ Z,

where Š = S ∪ { {v} | v ∈ V −
⋃
S } for a parallel swap S.

42 J. Kawahara et al. The Time Complexity of Permutation Routing

Theorem 5 It is decidable in polynomial time if rt(G, f) ≤ 2 for any G and f .2

Proof: Suppose G and f are given. One can compute in polynomial time all
the orbits [·]f . Let us denote the subgraph of G induced by a vertex set U ⊆ V
by GU and the sub-con�guration of f restricted to [u]f ∪ [v]f by fu,v. The set

Γf = { {[u]f , [v]f} | rt(G[u]f∪[v]f , fu,v) ≤ 2 }

can be computed in polynomial time by Proposition 1. It is clear that rt(G, f) ≤
2 if and only if there is a subset Γ ⊆ Γf in which every orbit occurs exactly
once. This problem is a very minor variant of the problem of �nding a perfect
matching on a graph, which can be solved in polynomial time [5]. �

One can calculate the number of 2-step solutions in RT(Kn, f) for any con�g-
uration f on the complete graph Kn using Petersen and Tenner's formula [16].
However, it is hard for general graphs.

Theorem 6 It is a #P-complete problem to calculate the number of 2-step so-
lutions in RT(G, f) for bipartite graphs G.

Proof: We show the theorem by a reduction from the problem of calculating
the number of perfect matchings in a bipartite graph H, which is known to be
#P-complete [17]. For a graph H = (V,E), let the vertex set of G be V ′ = {ui |
u ∈ V and i ∈ {1, 2} } and the edge set E′ = { {ui, vj} | {u, v} ∈ E and i, j ∈
{1, 2} }. The initial con�guration is de�ned by f(u1) = u2 and f(u2) = u1 for
all u ∈ V . If 〈S, T 〉 ∈ RT(G, f), then for each u ∈ V there is v ∈ V such
that {u, v} ∈ E and either {u1, v1}, {u2, v2} ∈ S and {u1, v2}, {u2, v1} ∈ T or
{u1, v2}, {u2, v1} ∈ S and {u1, v1}, {u2, v2} ∈ T . Then it is easy to see that
RT(G, f) has 2m 2-step solutions if H has m perfect matchings. Note that if H
is bipartite, then so is G. �

3.2.2 Approximation Algorithm for the Permutation Routing via
Matching on Paths

We present an approximation algorithm for the Permutation Routing via Match-
ing on paths which outputs a parallel swap sequence whose length is no more
than rt(Pn, f) + 1, where Pn = ({ 1, . . . , n}, { {i, i + 1} | 1 ≤ i < n }) and f
is a con�guration on Pn. We say that a swap {i, i + 1} is reasonable w.r.t. f

if f(i) > f(i + 1), and moreover, a parallel swap sequence ~S = 〈S1, . . . , Sm〉
is reasonable w.r.t. f if every e ∈ Sj is reasonable w.r.t. f〈S1, . . . , Sj−1〉 for all
j ∈ {1, . . . ,m}. The parallel swap sequence 〈S1, . . . , Sm〉 output by Algorithm 3
is reasonable and satis�es the condition which we call the odd-even condition:
for each odd number j, all swaps in Sj are of the form {2i − 1, 2i} for some
i ≥ 1, and for each even number j, all swaps in Sj are of the form {2i, 2i + 1}
for some i ≥ 1. Our algorithm computes a reasonable odd-even parallel swap
sequence in a greedy manner.

Lemma 4 Suppose that g = fS for a reasonable parallel swap S w.r.t. f . For
any 〈S1, . . . , Sm〉 ∈ RT(Pn, f), there is 〈S′1, . . . , S′m〉 ∈ RT(Pn, g) such that S′j ⊆
Sj for all j ∈ {1, . . . ,m}.

JGAA, 23(1) 29�70 (2019) 43

Algorithm 3 Approximation algorithm for Permutation Routing via Matching
on paths
Input: A con�guration f0 on Pn
Output: A solution ~S ∈ RT(Pn, f0)
Let j = 0;
while fj is not identity do
Let j = j + 1, Sj = { {i, i + 1} | fj−1(i) > fj−1(i + 1) and i+ j is even }
and fj = fj−1Sj ;

end while
return 〈S1, . . . , Sj〉;

Proof: It is enough to show the lemma for the case where |S| = 1. Suppose that
S = {{i, i+1}} with f(i) > f(i+1). By 〈S1, . . . , Sm〉 ∈ RT(Pn, f), at some step
we must exchange the positions of the tokens f(i) and f(i+ 1) in 〈S1, . . . , Sm〉.
Let k be the least number such that {f−1k (f(i)), f−1k (f(i + 1))} ∈ Sk where
fk = f〈S1, . . . , Sk〉. De�ne S′k = Sk−{{f−1k (f(i)), f−1k (f(i+ 1))}} and S′j = Sj
for all the other j ∈ {1, . . . ,m} − {k}. Then for any j ∈ {1, . . . ,m}, fj and
gj = g〈S′1, . . . , S′j〉 are identical except when j < k the positions of tokens f(i)
and f(i+ 1) are switched. �

Let us denote the output of Algorithm 3 by AP(Pn, f0). Clearly AP(Pn, f0) ∈
RT(Pn, f0).

Corollary 1 For any odd-even solution ~S ∈ RT(Pn, f0), we have |AP(Pn, f0)| ≤
|~S|.
Proof: It is obvious that AP(Pn, f0) ∈ RT(Pn, f0) and it is odd-even. Suppose
that ~S = 〈S1, . . . , Sm〉 6= AP(Pn, f0). Without loss of generality we may assume
that ~S is reasonable. Let ~T = 〈T1, . . . , Tk〉 = AP(Pn, f0). If m ≥ k, we have
done. Supposem < k. Since the proper pre�x 〈T1, . . . , Tm〉 of ~T is not a solution,
there must exist j ≤ m such that S1 = T1, . . . , Sj−1 = Tj−1 and Sj 6= Tj . Since
~S is reasonable and Algorithm 3 is greedy, Sj (Tj holds. Applying Lemma 4
to fj = f0〈S1, . . . , Sj〉 and S = Tj − Sj , we obtain S′j+1 ⊆ Sj+1, . . . , S

′
m ⊆ Sm

such that 〈S1, . . . , Sj−1, Tj , S
′
j+1, . . . , S

′
m〉 ∈ RT(Pn, f0). By de�nition the new

solution ~S ′ = 〈T1, . . . , Tj−1, Tj , S′j+1, . . . , S
′
m〉 is odd-even. Hence one can apply

the same argument to ~S ′ and �nally get 〈T1, . . . , Tm〉 ∈ RT(Pn, f0). �

Theorem 7 |AP(Pn, f0)| ≤ rt(Pn, f0) + 1.

Proof: By Corollary 1, it is enough to show that every swap sequence ~S =
〈S1, . . . , Sm〉 admits an equivalent odd-even sequence ~S ′ such that |~S ′| ≤ |~S|+1.
Without loss of generality we assume that Sj ∩ Sj+1 = ∅ for any j (in fact, any
reasonable parallel swap sequence meets this condition). For a parallel swap
sequence ~S = 〈S1, . . . , Sm〉, de�ne ×(~S) = 〈S′1, . . . , S′m+1〉 by delaying swaps
which do not meet the odd-even condition, that is,

S′j = { {i, i+ 1} ∈ Sj ∪ Sj−1 | i+ j is even }

44 J. Kawahara et al. The Time Complexity of Permutation Routing

for j = 1, . . . ,m + 1 assuming that S0 = Sm+1 = ∅. By the parity restriction,
each S′j is a parallel swap. It is easy to show by induction on j that

f〈S′1, . . . , S′j〉(i) =

{
f〈S1, . . . , Sj−1〉(i) if {i, i+ 1} ∈ Sj and i+ j is odd,

f〈S1, . . . , Sj〉(i) otherwise,

for each j ∈ {1, . . . ,m+ 1}, which implies that f ~S = f×(~S). Therefore, for an
optimal reasonable solution ~S0, we have |~S0|+ 1 = |×(~S0)| ≥ |AP(Pn, f0)|. �

Example 3 Let us consider the initial con�guration f0 : 〈3, 2, 5, 1, 7, 6, 4〉 on P7,
where we express a con�guration f as a sequence 〈f(1), . . . , f(7)〉. According to
the output by Algorithm 3, the con�guration changes as follows:

f0 : 〈3, 2, 5, 1, 7, 6, 4〉 ,
f1 : 〈2, 3, 1, 5, 6, 7, 4〉 ,
f2 : 〈2, 1, 3, 5, 6, 4, 7〉 ,
f3 : 〈1, 2, 3, 5, 4, 6, 7〉 ,
f4 : 〈1, 2, 3, 4, 5, 6, 7〉 ,

than which an optimal swapping sequence is shorter by one:

f0 : 〈3, 2, 5, 1, 7, 6, 4〉 ,
f ′1 : 〈2, 3, 1, 5, 7, 4, 6〉 ,
f ′2 : 〈2, 1, 3, 5, 4, 7, 6〉 ,
f ′3 : 〈1, 2, 3, 4, 5, 6, 7〉 .

4 Coloring Routing via Matching

Colored Token Swapping is a generalization of Token Swapping, where each
token is colored and di�erent tokens may have the same color. By swapping
tokens on adjacent vertices, the goal coloring con�guration should be realized.
More formally, a coloring is a map f from V to N. The de�nition of a swap
application to a con�guration can be applied to colorings with no change. We say
that two colorings f and g are consistent if |f−1(i)| = |g−1(i)| for all i ∈ N. Since
the problem is a generalization of Token Swapping, obviously it is NP-hard.
Yamanaka et al. [20] have investigated subcases of Colored Token Swapping
called c-Colored Token Swapping where the codomain of colorings is restricted
to {1, . . . , c}. Along this line, we discuss the colored version of Permutation
Routing via Matching in this section.

Problem 4 (c-Coloring Routing via Matching)

Instance: A graph G, two consistent c-colorings f and g, and a number k ∈ N.

JGAA, 23(1) 29�70 (2019) 45

Question: Is there ~S with |~S| ≤ k such that f ~S = g?

De�ne rt(G, f, g) = min{ |~S| | f ~S = g } for two consistent colorings f and
g. Since rt(G, f, g) can be bounded by rt(G, h) for some con�guration h, the
c-Coloring Routing via Matching belongs to NP.

4.1 Hardness of the c-Coloring Routing via Matching

Yamanaka et al. [20] have shown that the 3-Colored Token Swapping is NP-hard
by a reduction from the 3DM. It is not hard to see that their reduction works
to prove the NP-hardness of the 3-Coloring Routing via Matching. We then
obtain the following theorem as a corollary to their discussion.

Theorem 8 To decide whether rt(G, f, g) ≤ 3 is NP-hard even if G is re-
stricted to be a planar bipartite graph with maximum vertex degree 3 and f and
g are 3-colorings.

Yamanaka et al. have shown that 2-Colored Token Swapping is solvable in poly-
nomial time on the other hand. In contrast, we prove that the 2-Coloring
Routing via Matching is still NP-hard.

Theorem 9 For any �xed k ≥ 3, to decide whether rt(G, f, g) ≤ k is NP-hard
for a bipartite graph G with maximum vertex degree 4 and 2-colorings f and g.

Proof: We prove the theorem by a reduction from Sep-SAT. We use the same
graph used in the proof of Lemma 3 to show the theorem for k = 3. For k > 3,
the technique used in Theorem 3 can be used. The initial and goal colorings f
and g are de�ned to be f(w) = 1 and g(w) = 1 for all w but f(ui) = g(u′i) = 2 for
each xi ∈ X, f(vj) = g(v′j) = 2 for each Cj ∈ F1 ∪F3 and f(v′j) = g(vj) = 2 for
each Cj ∈ F2. Figure 5 illustrates the gadget related to a variable x1 that occurs
positively in C1 ∈ F1, C2 ∈ F2 and negatively in C3 ∈ F3, where each vertex w
with f(w) = 2 has a black box on it and one with g(w) = 2 is represented with
a bold rim.

If F is satis�able, then exactly the same parallel swap sequence in the proof
of Lemma 3 witnesses rt(GF , f, g) ≤ 3. It is enough to show that if g = f ~S

with |~S| ≤ 3, then the token colored 2 on ui is moved to u′i for each xi ∈ X,
the one on vj is moved to v′j for Cj ∈ F1 ∪ F3, and the one on v′j is moved to
vj for Cj ∈ F2. The token on vj must go to a vertex w such that g(w) = 2
and dist(vj , w) ≤ 3. For Cj ∈ F1 ∪ F3, the only vertex that meets the condition
is v′j . On the other hand, for each Cj ∈ F2, the vertex vj requires a token
colored 2 moved from somewhere w, i.e., f(w) = 2 and dist(vj , w) ≤ 3. The
only possibility is the vertex v′j . Therefore, the token on ui for i ∈ {1, . . . ,m}
can be moved to neither v′j nor vj for any j ∈ {1, . . . , n}. The unique possible
destination of ui is u′i. �

We can also show the following using the ideas for proving Theorems 4 and 9.

46 J. Kawahara et al. The Time Complexity of Permutation Routing

u1

u1,1 u1,2

u1,3 u1,4

u′
1

v1
v′1

v1,1

v2

v2,1

v′2

v3

v3,1

v′3

ui

ui,1 ui,2

ui,3 ui,4

u′
i

1

1

2 3 4

1 2 3

4

v1

v′1

1

2

3

4

v2

v′2

1

2

3

4

v3

v′3

Figure 5: Gadgets used to show Theorems 9 (left) and 10 (right). We must
convey all black boxes (tokens of color 2) to marked vertices (vertices of color
2) via matching.

Theorem 10 For any �xed k ≥ 4, to decide whether rt(G, f, g) ≤ k is NP-hard
even if G is a bipartite graph with maximum vertex degree 3 and f and g are
2-colorings.

Proof: The theorem is shown based on the reduction from Sep-SAT used for
Theorems 3, 4 and 9 again. The gadget we use for this theorem is shown on
the right in Figure 5 for k = 4, where we suppose xi ∈ C1 ∈ F1, xi ∈ C2 ∈ F2,
and ¬xi ∈ C3 ∈ F3. Each vertex w with a black box satis�es f(w) = 2 and one
represented with a bold rim satis�es g(w) = 2. Otherwise f(w) = g(w) = 1.
Just like we did to show Theorem 4, this gadget is obtained from the one used
in the proof of Theorem 9 by splitting every vertex of degree 4 into three so
that those vertices have degree at most 3. This lengthens the paths from vj
to v′j , which also makes the distance between ui and u′i even bigger: namely
dist(ui, u

′
i) = 7. We give the color 2 to vertices ui,2 and ui,4 in the middle of

the two paths between ui and u′i so that the token of color 2 on ui in the initial
con�guration can reach either of the destinations in 4 steps. Symmetrically, we
put tokens of color 2 on ui,1 and ui,3 in the initial con�guration, one of which
should go to the vertex u′i. The non-uniqueness of the destinations of tokens in
Coloring Routing via Matching enables us to lower the number of steps required
to realize the goal con�guration by one comparing to Theorem 4 for Permutation
Routing via Matching.

Suppose that F is satis�ed by some φ. If φ(xi) = 0, then the vertex on ui,
ui,1 and ui,3 will go to ui,2, u′i and ui,4, respectively. Otherwise, they will go to
ui,4, ui,2 and u′i. Then each vj can be moved to v′j within 4 steps using an edge
on a ui-u′i path if either xi ∈ Cj ∈ F1 ∪ F2 and φ(xi) = 1 or ¬xi ∈ Cj ∈ F3

JGAA, 23(1) 29�70 (2019) 47

and φ(xi) = 0. Figure 5 illustrates the case where φ(xi) = 1, xi ∈ C1 ∈ F1,
xi ∈ C2 ∈ F2 and ¬xi ∈ C3 ∈ F3. Numbers labeling edges show when they are
used in a 4-step solution 〈S1, . . . , S4〉.

On the other hand, suppose that rt(G, f, g) ≤ 4. Considering the destination
of the token on the vertex vj for Cj ∈ F1 ∪ F3, the unique vertex w such that
f(vj) = g(w) and dist(vj , w) ≤ 4 is w = v′j . Similarly, considering the vertex vj
for Cj ∈ F2, the unique vertex w such that g(v′j) = f(w) and dist(v′j , w) ≤ 4 is
w = vj . Therefore, all the tokens on vj are moved to the vertex v′j . This means
that the only possible destinations of the token on ui are ui,2 and ui,4. If ui is
moved to ui,2, then the only possible destination of the token on ui,1 is u′i, and
thus the token on ui,3 must go to ui,4. In this case, vj for xi ∈ Cj ∈ F1 ∪ F2

cannot go to v′j via the edge on the ui-u′i path. In other words, there must be
h such that xh ∈ Cj , uh is moved to uh,4, and vj is moved to v′j via the edge
on the uh-u′h path. The exactly symmetric argument holds when ui is moved
to ui,4. It is now clear that F is satis�ed by φ such that φ(xi) = 0 if and only
if the token on ui goes to ui,2.

The theorem for k > 4 can be shown by inserting extra paths into appropriate
places like we did in the proof of Theorem 3. �

The next theorem contrasts the result of Theorem 5, which shows that it
is polynomial-time decidable whether a 2-step solution exists in Permutation
Routing.

Theorem 11 It is NP-hard to decide whether rt(G, f, g) ≤ 2 for a graph G of
vertex degree at most 4 and 3-colorings f and g.

Proof: The proof of this theorem again uses a variant of the reduction used in
the proof of Lemma 3 and Theorem 9. To make a 2-step solution possible, we
contract edges {vj , vj,i} for xi ∈ Cj ∈ F1 ∪ F2 and ¬xi ∈ Cj ∈ F3 in the graph
de�ned in Section 3.1.3 That is, we de�ne GF = (VF , EF) so that

VF = {ui, u′i, ui,1, ui,2, ui,3, ui,4 | 1 ≤ i ≤ m } ∪ { vj , v′j | 1 ≤ j ≤ n }

and EF contains the following paths

(ui, ui,1, ui,2, u
′
i) and (ui, ui,3, ui,4, u

′
i) for each i ∈ {1, . . . ,m},

(vj , ui,k, v
′
j) if xi ∈ Cj ∈ Fk or ¬xi ∈ Cj ∈ Fk .

The initial and goal 3-colorings f and g are respectively given as

ui u′i ui,1 ui,2 ui,3 ui,4 vj v′j vk v′k
f 2 1 1 2 1 2 3 1 3 2
g 1 2 1 2 1 2 1 3 2 3

for i ∈ {1, . . . ,m}, Cj ∈ F1 ∪F3 and Ck ∈ F2. Figure 6 illustrates the reduction
where the values of f and g are shown in rectangles and circles, respectively.

3Actually one can show Lemma 3 using this simpli�ed graph, too.

48 J. Kawahara et al. The Time Complexity of Permutation Routing

1

1 2

1 2

2

1

3

2

3

1

3

2

1 2

1 2

1

3

1

3

2

3

1

Figure 6: Gadget used to show Theorem 11

Suppose that F is satis�ed by an assignment φ. There is a function ψ : F →
X such that ψ(Cj) ∈ Cj and φ(ψ(Cj)) = 1 if Cj ∈ F1 ∪ F2, and ¬ψ(Cj) ∈ Cj
and φ(ψ(Cj)) = 0 if Cj ∈ F3. De�ne

S1 = { {ui, ui,1}, {u′i, ui,2} | φ(xi) = 0 } ∪ { {ui, ui,3}, {u′i, ui,4} | φ(xi) = 1 }
∪ { {vj , ui,k} | ψ(Cj) = xi and Cj ∈ Fk } ,

S2 = { {ui,1, ui,2} | φ(xi) = 0 } ∪ { {ui,3, ui,4} | φ(xi) = 1 }
∪ { {v′j , ui,k} | ψ(Cj) = xi and Cj ∈ Fk } .

It is easy to see that g = f〈S1, S2〉.
We now suppose the converse, 〈S1, S2〉 ∈ RT(GF , f, g). For each ui, the only

vertices w such that dist(ui, w) ≤ 2 and f(ui) = g(w) = 2 are ui,2 and ui,4. The
only ui-ui,k-path of length at most 2 is (ui, ui,k−1, ui,k) for k ∈ {2, 4}. Thus,
either {ui, ui,1} ∈ S1 and {ui,1, ui,2} ∈ S2 or {ui, ui,3} ∈ S1 and {ui,3, ui,4} ∈ S2.
We will show that φ de�ned by

φ(xi) =

{
0 if {ui, ui,1} ∈ S1,

1 if {ui, ui,3} ∈ S1

satis�es F . Each vj with j ∈ {1, . . . , n} has only one vertex w such that
dist(vj , w) ≤ 2 and f(vj) = g(w) = 3, which is w = v′j . The paths of length
at most 2 between vj and v′j are of the form (vj , ui,k, v

′
j) for some i and k such

that xi ∈ Cj ∈ Fk or ¬xi ∈ Cj ∈ Fk. For those i and k, {vj , ui,k} ∈ S1

and {v′j , ui,k} ∈ S2 holds. Suppose Cj ∈ F1. In this case, {ui, ui,1} /∈ S1,
which implies φ(xi) = 1. By xi ∈ Cj , Cj is satis�ed. Suppose Cj ∈ F2. Then
{ui,1, ui,2} /∈ S2, which implies {ui, ui,1} /∈ S1 and φ(xi) = 1. By xi ∈ Cj ,
Cj is satis�ed. Suppose Cj ∈ F3. In this case, {ui, ui,3} /∈ S1, which implies
φ(xi) = 0. By ¬xi ∈ Cj , Cj is satis�ed. �

JGAA, 23(1) 29�70 (2019) 49

4.2 2-Step 2-Coloring Routing via Matching Is Easy

In the previous subsection we have shown that c-Coloring Routing via Matching
is hard even to decide whether a k-step solution exists if c ≥ 3 and k ≥ 2 or
c ≥ 2 and k ≥ 3. We will show that it is easy if c, k ≤ 2. Suppose that 〈S1, S2〉
is a 2-step solution for (G, f, g) where f and g are consistent 2-colorings on
G = (V,E). We say that a swap {u, v} is vacuous for f if f(u) = f(v).

Lemma 5 If (G, f, g) admits a 2-step solution, there is 〈S1, S2〉 ∈ RT(G, f, g)
such that

• S1 ∩ S2 = ∅,

• no swaps in S1 and in S2 are vacuous for f and for fS1, respectively,

• S1 ∪ S2 gives a path matching in G.

Proof: The �rst two items are trivial. Assuming 〈S1, S2〉 satis�es the �rst
two, we show the last. If {u, v}, {v, w} ∈ S1 ∪ S2 with v 6= w, then either
{u, v} ∈ S1 and {v, w} ∈ S2 or {u, v} ∈ S2 and {v, w} ∈ S1. This implies that
G′ = (V, S1 ∪ S2) has degree bound 2. Moreover, if G′ has a cycle, then the size
must be even. We show that if G′ contains a cycle (u1, v1, u2, . . . , un, vn, u1),
then f(ui) = g(ui) and f(vi) = g(vi) for all i. That is, those edges in the cycle
can be removed from S1 and S2. Hereafter, by uj we mean ui such that 1 ≤ i ≤ n
for i ≡ j (mod n). Without loss of generality, assume {ui, vi} ∈ S1 for all i and
{vi, ui+1} ∈ S2 for all i. Since {ui, vi} ∈ S1 is not vacuous for f , f(ui) 6= f(vi)
for all i. Since {vi, ui+1} ∈ S2 is not vacuous for fS1, fS1(vi) 6= fS1(ui+1),
i.e., f(ui) 6= f(vi+1) for all i. Hence, f(vi) = f(vi+1) for all i. Moreover,
g(vi) = f〈S1, S2〉(vi) = f(vi+1) for all i. That is, f(vi) = g(vi) for all i.
Similarly we have f(ui) = g(ui) for all i. Those tokens need not be moved at
all. �

Hereafter we consider only 2-step solutions that satisfy the condition of Lemma 5.

Lemma 6 Let (u1, . . . , un) be a (maximal) path in G′ = (V, S1 ∪ S2) for a 2-
step solution 〈S1, S2〉 ∈ RT(G, f, g) satisfying the condition of Lemma 5. If
n = 2, then f(u1) = g(u2) 6= f(u2) = g(u1). If n ≥ 3,

• for all i ∈ {2, . . . , n− 2}, f(ui) = g(ui) 6= f(ui+1) = g(ui+1),

• if {u1, u2} ∈ S1 then f(u1) 6= f(u2) and g(u1) = g(u2),

• if {u1, u2} ∈ S2 then f(u1) = f(u2) and g(u1) 6= g(u2),

• f(u1) = g(un) 6= g(u1) = f(un).

Proof: For n = 2, the lemma holds trivially. We assume n ≥ 3. For read-
ability, we rename each vertex ui by i. Suppose {1, 2} ∈ S1, which implies
{2i+ 1, 2i+ 2} ∈ S1 for 0 ≤ i ≤ b(n− 2)/2c and {2i+ 2, 2i+ 3} ∈ S2 for
0 ≤ i ≤ b(n− 3)/2c. Since {2i + 1, 2i + 2} ∈ S1 is not vacuous for f ,
f(2i+ 1) 6= f(2i+ 2) for 0 ≤ i ≤ b(n− 2)/2c. Since {2i + 2, 2i + 3} ∈ S2

50 J. Kawahara et al. The Time Complexity of Permutation Routing

is not vacuous for fS1, fS1(2i+ 2) 6= fS1(2i+ 3), i.e., f(2i+ 1) 6= f(2i+ 4)
for 0 ≤ i ≤ b(n− 4)/2c. That is,

f(1) 6= f(2) 6= · · · 6= f(n− 1) .

By g(2i+ 2) = f〈S1, S2〉(2i+ 2) = fS1(2i+ 3) = f(2i+ 4) for 0 ≤ i ≤
b(n− 4)/2c, g(2i+ 2) = f(2i+ 2) for 0 ≤ i ≤ b(n− 4)/2c. By g(2i+ 3) =
f〈S1, S2〉(2i+ 3) = fS1(2i+ 2) = f(2i+ 1) for 0 ≤ i ≤ b(n− 3)/2c, g(2i+ 3) =
f(2i+ 1) for 0 ≤ i ≤ b(n− 3)/2c. On the other hand, g(1) = f〈S1, S2〉(1) =
fS1(1) = f(2) 6= f(1). Therefore,

f(1) 6= g(1) = f(2) = g(2) 6= f(3) = g(3) 6= · · · 6= f(n− 1) = g(n− 1) .

We have shown the �rst and second items of the lemma. Recall that 〈S1, S2〉 ∈
RT(G, f, g) implies 〈S2, S1〉 ∈ RT(G, g, f) and moreover, 〈S2, S1〉 satis�es the
condition of Lemma 5. This symmetry proves the third. The fourth is a corollary
to those three. The second and third items imply f(1) 6= g(1), by f(2) = g(2).
By the symmetry, f(n) 6= g(n). Since f and g restricted to the path {1, . . . , n}
are consistent, it must hold f(1) = g(n) and f(n) = g(1). �

Lemma 7 Let Pn = ({1, . . . , n}, { {i, i+ 1} | 1 ≤ i < n }). If

• for all i ∈ {2, . . . , n− 2}, f(i) = g(i) 6= f(i+ 1) = g(i+ 1),

• f(1) = g(n) 6= g(1) = f(n),

then (Pn, f, g) admits a 2-step solution.

Proof: Let S1 = { {2i+ 1, 2i+ 2} | 0 ≤ i ≤ b(n− 2)/2c } and S2 be the rest. If
f(1) 6= f(2), 〈S1, S2〉 is a solution. If f(1) = f(2), 〈S2, S1〉 is a solution. �

We will reduce the concerned problem to the Vertex-Disjoint Path Problem,
which can be solved in polynomial-time [18].

Problem 5 (Vertex-Disjoint Path Problem)

Instance: A directed graph G = (V,E), two distinguished vertices s, t ∈ V
and k ∈ N.

Question: Are there k s-t-paths in G which are vertex-disjoint except s and
t?

For a given instance (G, f, g) with G = (V,E) of 2-Coloring Routing via
Matching, we give an instance (H, s, t, k) of the Vertex-Disjoint Path Problem
as follows. Let us partition V into

Vs = {u | f(u) = 1 and g(u) = 2 } ,
Vt = {u | f(u) = 2 and g(u) = 1 } ,
V1 = {u | f(u) = g(u) = 1 } ,
V2 = {u | f(u) = g(u) = 2 }

JGAA, 23(1) 29�70 (2019) 51

and de�ne H = (V ′, F) by V ′ = V ∪ {s, t} and

F = { (u, v) ∈ (Vs × Vt) ∪ (Vs × (V1 ∪ V2)) ∪ ((V1 ∪ V2)× Vt)
∪ (V1 × V2) ∪ (V2 × V1) | {u, v} ∈ E } ∪ ({s} × Vs) ∪ (Vt × {t}) .

Lemma 8 (G, f, g) admits a 2-step solution if and only if (H, s, t) admits |Vs|
disjoint paths.

Proof: Suppose 〈S1, S2〉 ∈ RT(G, f, g), which satis�es the condition of Lemma 5.
The graph G′ = (V, S1 ∪S2) consists of exactly |Vs| disjoint paths by Lemma 6.
Clearly (H, s, t) has corresponding |Vs| disjoint s-t-paths.

Suppose (H, s, t) admits |Vs| disjoint s-t-paths. For each path (s, u1, . . . , un, t),
(u1, . . . , un) satis�es the condition of Lemma 7. Since those paths are disjoint,
(G, f, g) admits a 2-step solution. �

Theorem 12 It is decidable in polynomial time if rt(G, f, g) ≤ 2 for consistent
2-colorings f and g on a graph G.

Acknowledgement

The authors are deeply grateful to Dana Richards for making us aware of existing
studies on Permutation Routing via Matching including their manuscripts. We
also would like to thank the anonymous reviewers of the preliminary conference
version [12] and of this journal version.

52 J. Kawahara et al. The Time Complexity of Permutation Routing

References

[1] N. Alon, F. R. K. Chung, and R. L. Graham. Routing permutations on
graphs via matchings. SIAM Journal on Discrete Mathematics, 7(3):513�
530, 1994. doi:10.1137/S0895480192236628.

[2] I. Banerjee and D. Richards. New results on routing via matchings on
graphs. In R. Klasing and M. Zeitoun, editors, Fundamentals of Com-
putation Theory, pages 69�81. Springer Berlin Heidelberg, 2017. doi:

10.1007/978-3-662-55751-8_7.

[3] É. Bonnet, T. Miltzow, and P. Rz¡»ewski. Complexity of token swap-
ping and its variants. Algorithmica, 80(9):2656�2682, 2018. doi:10.1007/
s00453-017-0387-0.

[4] S. A. Cook. The complexity of theorem-proving procedures. In M. A.
Harrison, R. B. Banerji, and J. D. Ullman, editors, Proc. of the 3rd Annual
ACM Symposium on Theory of Computing, pages 151�158. ACM, 1971.
doi:10.1145/800157.805047.

[5] J. Edmonds. Paths, trees, and �owers. Canadian Journal of Mathematics,
17:449�467, 1965. doi:10.4153/CJM-1965-045-4.

[6] S. Even and O. Goldreich. The minimum-length generator sequence
problem is NP-hard. Journal of Algorithms, 2(3):311�313, 1981. doi:

10.1016/0196-6774(81)90029-8.

[7] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[8] L. S. Heath and J. P. C. Vergara. Sorting by short swaps. Journal of Compu-
tational Biology, 10(5):775�789, 2003. doi:10.1089/106652703322539097.

[9] M. Jerrum. The complexity of �nding minimum-length generator se-
quences. Theoretical Computer Science, 36:265�289, 1985. doi:10.1016/

0304-3975(85)90047-7.

[10] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller
and J. W. Thatcher, editors, Proc. of a symposium on the Complexity of
Computer Computations, The IBM Research Symposia Series, pages 85�
103. Plenum Press, New York, 1972. URL: http://www.cs.berkeley.
edu/~luca/cs172/karp.pdf.

[11] J. Kawahara, T. Saitoh, and R. Yoshinaka. A note on the complexity of
the token swapping problem (in Japanese). IPSJ SIG Technical Report,
2015-AL-156(3):1�7, January 2016.

[12] J. Kawahara, T. Saitoh, and R. Yoshinaka. The time complexity of the to-
ken swapping problem and its parallel variants. In S. Poon, M. S. Rahman,

http://dx.doi.org/10.1137/S0895480192236628
http://dx.doi.org/10.1007/978-3-662-55751-8_7
http://dx.doi.org/10.1007/978-3-662-55751-8_7
http://dx.doi.org/10.1007/s00453-017-0387-0
http://dx.doi.org/10.1007/s00453-017-0387-0
http://dx.doi.org/10.1145/800157.805047
http://dx.doi.org/10.4153/CJM-1965-045-4
http://dx.doi.org/10.1016/0196-6774(81)90029-8
http://dx.doi.org/10.1016/0196-6774(81)90029-8
http://dx.doi.org/10.1089/106652703322539097
http://dx.doi.org/10.1016/0304-3975(85)90047-7
http://dx.doi.org/10.1016/0304-3975(85)90047-7
http://www.cs.berkeley.edu/~luca/cs172/karp.pdf
http://www.cs.berkeley.edu/~luca/cs172/karp.pdf

JGAA, 23(1) 29�70 (2019) 53

and H. Yen, editors, 11th International Conference and Workshops on Algo-
rithms and Computation, volume 10167 of Lecture Notes in Computer Sci-
ence, pages 448�459. Springer, 2017. doi:10.1007/978-3-319-53925-6_
35.

[13] W. Li, L. Lu, and Y. Yang. Routing numbers of cycles, complete bi-
partite graphs, and hypercubes. SIAM Journal on Discrete Mathematics,
24(4):1482�1494, 2010. doi:10.1137/090776317.

[14] T. Miltzow, L. Narins, Y. Okamoto, G. Rote, A. Thomas, and T. Uno. Ap-
proximation and hardness of token swapping. In P. Sankowski and C. D.
Zaroliagis, editors, 24th Annual European Symposium on Algorithms, vol-
ume 57 of LIPIcs, pages 66:1�66:15. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2016. doi:10.4230/LIPIcs.ESA.2016.66.

[15] I. Pak. Reduced decompositions of permutations in terms of star transposi-
tions, generalized catalan numbers and k-ARY trees. Discrete Mathematics,
204(1-3):329�335, 1999. doi:10.1016/S0012-365X(98)00377-X.

[16] T. K. Petersen and B. E. Tenner. How to write a permutation as a product
of involutions (and why you might care). Integers, 13(#A63), 2013.

[17] L. G. Valiant. The complexity of computing the permanent. Theoret-
ical Computer Science, 8:189�201, 1979. doi:10.1016/0304-3975(79)

90044-6.

[18] Z. Xie, H. Leng, Z. Chen, and J. Zhang. Finding arc and vertex-disjoint
paths in networks. In W. Z. Bo Yang, Y. Dai, L. T. Yang, and J. Ma,
editors, 8th IEEE International Conference on Dependable, Autonomic and
Secure Computing, pages 539�544. IEEE Computer Society, 2009. doi:

10.1109/DASC.2009.75.

[19] K. Yamanaka, E. D. Demaine, T. Ito, J. Kawahara, M. Kiyomi,
Y. Okamoto, T. Saitoh, A. Suzuki, K. Uchizawa, and T. Uno. Swapping
labeled tokens on graphs. Theoretical Computer Science, 586:81�94, 2015.
doi:10.1016/j.tcs.2015.01.052.

[20] K. Yamanaka, T. Horiyama, J. M. Keil, D. G. Kirkpatrick, Y. Otachi,
T. Saitoh, R. Uehara, and Y. Uno. Swapping colored tokens on graphs.
Theoretical Computer Science, 729:1�10, 2018. doi:10.1016/j.tcs.2018.
03.016.

[21] L. Zhang. Optimal bounds for matching routing on trees. SIAM
Journal on Discrete Mathematics, 12(1):64�77, 1999. doi:10.1137/

S0895480197323159.

http://dx.doi.org/10.1007/978-3-319-53925-6_35
http://dx.doi.org/10.1007/978-3-319-53925-6_35
http://dx.doi.org/10.1137/090776317
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.66
http://dx.doi.org/10.1016/S0012-365X(98)00377-X
http://dx.doi.org/10.1016/0304-3975(79)90044-6
http://dx.doi.org/10.1016/0304-3975(79)90044-6
http://dx.doi.org/10.1109/DASC.2009.75
http://dx.doi.org/10.1109/DASC.2009.75
http://dx.doi.org/10.1016/j.tcs.2015.01.052
http://dx.doi.org/10.1016/j.tcs.2018.03.016
http://dx.doi.org/10.1016/j.tcs.2018.03.016
http://dx.doi.org/10.1137/S0895480197323159
http://dx.doi.org/10.1137/S0895480197323159

54 J. Kawahara et al. The Time Complexity of Permutation Routing

A Proof that Token Swapping on Lollipop Graphs

Is in P

This appendix gives a proof that Algorithm 1 computes an optimal swapping
sequence on lollipop graphs. We will give an evaluation function on con�gura-
tions on lollipop graphs Lm,n such that any swap changes the value by one, every
swap by the algorithm reduces the value by one, and the value is 0 if and only
if the con�guration is the identity. Algorithm 1 �rst moves non-negative tokens
to the goal vertices on the path and then moves negative ones in the clique. The
number of swaps needed to move a token j ∈ {0, . . . , n} is evaluated by

π(f, j) =

{
j + 1 if f−1(j) < 0,

min(j + 1, Inv(f, j)) if f−1(j) ≥ 0,

where
Inv(f, j) = |{ i | i < j and f−1(i) > f−1(j) }| .

So it takes

π(f) =

n∑
j=0

π(f, j)

swaps to move the non-negative tokens to the goal vertices in total. We then
move the negative tokens in the clique. For a con�guration f ′ such that f ′(j) = j
for all j ≥ 0, the number of swaps needed is

ν(f ′) = m− |Λf ′ | where Λf ′ = { [i]f ′ | i < 0 } . (See e.g. [9])

We need to evaluate |Λf ′ | for f ′ = f ~S where ~S moves all the non-negative to-
kens to their goals. Let us call an injection f from {−m, . . . , k} to {−m, . . . , n}
for some k ∈ {−1, 0, . . . , n} a pseudo con�guration if the range of f includes
{−m, . . . ,−1}. For notational simplicity, a pseudo con�guration f will often
be identi�ed with the sequence 〈f(−1), . . . , f(−m), f(0), . . . , f(k)〉 or the se-
quence pair (〈f(−1), . . . , f(−m)〉; 〈f(0), . . . , f(k)〉). For a pseudo con�guration
(~i; ~j) where ~i = 〈f(−1), . . . , f(−m)〉 and ~j = 〈f(0), f(1), . . . , f(k)〉, we de�ne ν
recursively on |~j| by

ν(~i;~j) =


m− |Λf | if ~j is empty,

ν(~i; 〈f(1), . . . , f(k)〉) if c < f(0),

ν(~i[f(0)/c]; 〈f(1), . . . , f(k)〉) if c > f(0),

where c = max(~i) and [a/b] replaces b by a. That is,

f [a/b](i) =

{
f(i) if f(i) 6= b,

a if f(i) = b.

Note that if c = max(~i) > f(0), then c ≥ 0 and thus (~i[f(0)/c]; 〈f(1), . . . , f(k)〉)
is a pseudo con�guration. Our evaluation function Φ is given as

Φ(f) = π(f) + ν(f) .

JGAA, 23(1) 29�70 (2019) 55

Note that ν is de�ned on pseudo con�gurations but π and Φ are de�ned on
(proper) con�gurations. It is clear that Φ(f) ≥ 0 for any con�guration and the
equation holds if and only if f is the identity.

Lemma 9 For any ~i,~j, there is a sequence ~i ′ consisting of the m smallest
elements from ~i · ~j, where ~i · ~j denotes the concatenation of ~i and ~j, such that
for any ~k

ν(~i; ~j · ~k) = ν(~i ′; ~k) ,

provided that (~i; ~j · ~k) is a pseudo con�guration.

Proof: The lemma can be shown by induction on |~j| just following the de�nition
of ν. �

Lemma 10 If ~i ·~j1 contains m or more tokens smaller than a ≥ 0, then

ν(~i; ~j1 · a ·~j2) = ν(~i; ~j1 ·~j2) ,

provided that (~i; ~j1 · a ·~j2) is a pseudo con�guration.

Proof: By induction on |~j1|. �

Now we are going to prove that any possible swap on the graph changes the
value of Φ by one. We have three cases depending on where a swap takes place.
First we consider the case where a swap takes inside the clique.

Lemma 11 Let f = (~i;~j) and g = (~i ′;~j) be pseudo con�gurations such that
~i ′ =~i[a/b, b/a] for some distinct tokens a, b. Then

|ν(f)− ν(g)| = 1 .

Proof: We show this by induction on |~j|. If ~j is not empty, the claim follows
the induction hypothesis immediately. If ~j is empty, f and g are con�gurations
on the clique of {−1, . . . ,−m}.
Case 1. Suppose [a]f = [b]f . Let k = |[a]f | and b = f j(a). Then gi(a) = f i(a)
for i < j, gj(a) = a, gi(b) = f j+i(a) for i < k − j and gk−j(b) = b. That is,
[a]f = [a]g ∪ [b]g, [a]g 6= [b]g and |Λg| = |Λf |+ 1. Hence ν(g) = ν(f)− 1.
Case 2. Suppose [a]f 6= [b]f . Let ka = |[a]f | and kb = |[b]f |. Then gi(a) = f i(a)
for i ∈ {0, . . . , ka−1}, gka+i(a) = f i(b) for i ∈ {0, . . . , kb−1} and gka+kb(a) = a.
That is, [a]g = [b]g = [a]f ∪ [b]f and |Λg| = |Λf | − 1. Hence ν(g) = ν(f) + 1. �

Corollary 2 Suppose that g = fe for some swap e ⊆ {−1, . . . ,−m}. Then
|Φ(g)− Φ(f)| = 1.

Proof: Clearly π(f) = π(g) by de�nition. The claim follows Lemma 11. �

The following lemma is concerned with the value of Φ when a swap takes at
the joint of the clique and the path.

Lemma 12 If g = f{h, 0} with h < 0, then |Φ(g)− Φ(f)| = 1.

56 J. Kawahara et al. The Time Complexity of Permutation Routing

Proof: Wemay assume without loss of generality that h = −1 for the symmetry.
Let

f = (a ·~i; b ·~j) ,
g = (b ·~i; a ·~j) .

Without loss of generality we assume a > b.
Case 1. Suppose a, b < 0. Clearly π(f) = π(g) and max(~i) ≥ 0. We have
|ν(f)− ν(g)| = 1 by applying Lemma 11 to the fact

ν(f) = ν(a ·~i[b/c]; ~j) ,
ν(g) = ν(b ·~i[a/c]; ~j) ,

where c = max(~i).
Case 2. Suppose a ≥ 0 > b.
Case 2.1. Suppose a > max(~i). We have

ν(f) = ν(g) = ν(b ·~i; ~j) .

All the m elements of b ·~i are smaller than a, which are among m+a tokens
smaller than a. Therefore, ~j contains exactly a tokens smaller than a, which
means π(g, a) = a. On the other hand, π(f, a) = a + 1 by de�nition. For all
other positive tokens k, π(f, k) = π(g, k) holds.

All in all, Φ(f)− Φ(g) = 1.
Case 2.2. Suppose max(~i) > a. Let c = max(~i). We have

ν(f) = ν(a ·~i[b/c];~j) ,
ν(g) = ν(b ·~i[a/c];~j) ,

and |ν(f)− ν(g)| = 1 by Lemma 11.
It remains to show π(f, k) = π(g, k) for all positive tokens k, which is clear

for k 6= a. By de�nition π(f, a) = a + 1. The fact c > a implies at most
m− 1 tokens in b ·~i are smaller than a, which are among m+ a tokens smaller
than a. Hence ~j contains at least a + 1 tokens smaller than a, which means
π(g, a) = a+ 1.

All in all, |Φ(f)− Φ(g)| = 1.
Case 3. Suppose a > b ≥ 0. This case is almost identical to Case 2 except that
we need to con�rm π(f, b) = π(g, b) in addition. The fact a > b implies at most
m − 1 tokens in a ·~i are smaller than b, and ~j contains at least b + 1 tokens
smaller than b, which means π(f, b) = π(g, b) = b+ 1. �

The last case we consider is when a swap takes on the path.

Lemma 13 If g = f{k, k + 1} for some k ≥ 0, then |Φ(g)− Φ(f)| = 1.

Proof: Let

f = (~i; ~j1 · 〈a, b〉 ·~j2),

g = (~i; ~j1 · 〈b, a〉 ·~j2).

JGAA, 23(1) 29�70 (2019) 57

By Lemma 9, there exists ~i ′ consisting of the m smallest tokens from ~i ·~j1 such
that

ν(f) = ν(~i ′; 〈a, b〉 ·~j2) ,

ν(g) = ν(~i ′; 〈b, a〉 ·~j2) .

Without loss of generality we assume a > b.
Case 1. Suppose a, b < 0. Clearly π(f) = π(g). For the two largest tokens c
and d in ~i ′ with c > d, we have

ν(f) = ν(~i ′[a/c, b/d];~j2) ,

ν(g) = ν(~i ′[b/c, a/d];~j2) .

Lemma 11 implies |Φ(f)− Φ(g)| = 1.
Case 2. Suppose a ≥ 0. We have Inv(f, a) = Inv(g, a) + 1.
Case 2.1. Suppose Inv(f, a) ≤ a. In this case, we have π(g, a) = Inv(g, a) =
Inv(f, a)−1 = π(f, a)−1 and thus π(f) = π(g)+1. The fact that b ·~j2 contains
at most a tokens smaller than a implies that ~i · ~j1 contains at least m tokens
smaller than a. That is, all of ~i ′ are smaller than a. By Lemma 10, we have

ν(f) = ν(g) = ν(~i ′; b ·~j2) .

All in all, Φ(f) = Φ(g) + 1.
Case 2.2. Suppose Inv(f, a) = a + 1. In this case, we have π(f, a) = a + 1,
π(g, a) = Inv(g, a) = a and thus π(f) = π(g) + 1. The fact that b ·~j2 contains
exactly a + 1 tokens smaller than a implies that ~i · ~j1 contains exactly m − 1
tokens smaller than a. That is, all of ~i ′ are smaller than a except one token
c = max(~i ′). Therefore,

ν(f) = ν(~i ′[a/c]; b ·~j2) = ν(~i ′[b/c]; ~j2) ,

ν(g) = ν(~i ′[b/c]; a ·~j2) = ν(~i ′[b/c]; ~j2) .

All in all, Φ(f) = Φ(g) + 1.
Case 2.3. Suppose Inv(f, a) > a+ 1. In this case, we have π(f, a) = π(g, a) =
a+ 1 and π(f) = π(g). The fact that b ·~j2 contains at least a+ 2 tokens smaller
than a implies that ~i · ~j1 contains at most m − 2 tokens smaller than a. That
is, the two largest tokens c and d in ~i ′ are bigger than a. Therefore,

ν(f) = ν(~i ′[a/c, b/d];~j2) ,

ν(g) = ν(~i ′[b/c, a/d];~j2) .

Lemma 11 implies |ν(f)− ν(g)| = 1. All in all, |Φ(f)− Φ(g)| = 1. �

Corollary 3 Φ(f) ≤ ts(Lm,n, f).

Proof: By Corollary 2 and Lemmas 12 and 13. �

58 J. Kawahara et al. The Time Complexity of Permutation Routing

Lemma 14 Suppose that our algorithm changes f to g at a point in the run.
Then Φ(g) = Φ(f)− 1.

Proof: Suppose that the algorithm moves a token a ≥ 0. If f−1(a) < 0 then
Case 2.1 of the proof of Lemma 12 applies and we have Φ(f) = Φ(g) + 1. If
f−1(a) ≥ 0, the fact that f(i) < a for all i < 0 implies that Inv(f, a) ≤ a. Hence
Case 2.1 of the proof of Lemma 13 applies and we have Φ(f) = Φ(g) + 1.

Suppose that the algorithm moves a token a < 0. Then Case 1 of the proof
of Lemma 11 applies. We conclude Φ(f) = Φ(g) + 1. �

Therefore, our algorithm gives a solution of Φ(f) steps, which is optimal by
Corollary 3.

Theorem 13 Token Swapping on lollipop graphs can be solved in polynomial
time.

B Proof that Token Swapping on Star-Path Graphs

Is in P

This appendix gives a proof that Algorithm 2 computes an optimal swapping
sequence on star-path graphs Qm,n in a manner similar to Appendix A. The
number of swaps needed to move non-negative tokens to the goal vertices is eval-
uated by the same function π. On the other hand, the number of swaps needed to
relocate negative tokens is evaluated di�erently from the case of lollipop graphs.
The algorithm involves two types of swaps: the ones in the inner while loop and
the others. Let us call the former Type A and the latter Type B. The negative
tokens which must be moved are in Nf = { f(i) ∈ {−m, . . . ,−1 } | f(i) 6= i }.
Among those, some are on a non-negative vertex and some are on a negative
vertex. Tokens of the former type will be forced to move to 0 by the moves of
non-negative tokens (Type B) and then go to the goal vertex by one step (Type
A). Moves of Type B of those tokens are counted by π. On the other hand,
tokens i of the latter type form equivalence classes [i]f ⊆ Nf , which require
[i]f + 1 swaps to be relocated to the goal vertices. Let

∆f = { [i]f ⊆ Nf | i < 0 }

and
µ(f) = |Nf |+ |∆f | .

This value µ(f) correctly evaluates the number of swaps required to relocate
negative tokens in the star graph [15, 19]. One might think π(f) + µ(f) could
be the right evaluation for ts(Qm,n, f). However, when the vertex 0 is occupied
by a negative token i < 0 and the vertex i is occupied by the positive token j
which is the largest among the tokens on negative vertices, then the move of i to
i (Type A) causes the right move of j to 0, which reduces the number of swaps
required to move j to the goal. That is, actually π overestimates the number of

JGAA, 23(1) 29�70 (2019) 59

swaps for j. We must discount the evaluation from π(f) + µ(f). For a pseudo
con�guration f = (~i; ~j) = (〈i1, . . . , im〉; 〈j1, . . . , jk〉) and c = max(~i), de�ne

δ(~i; ~j) =



0 if c < 0,

δ(~i; 〈j2, . . . , jk〉) if j1 > c ≥ 0,

δ(~i[j1/c]; 〈j2, . . . , jk〉) if c > j1 ≥ 0,

δ(~i[j1/i−j1]; ~j[i−j1/j1])− 1 if j1 < 0 and i−j1 = c,

δ(~i[j1/i−j1]; ~j[i−j1/j1]) otherwise.

Note that if j1 < 0, then c ≥ 0. The discount function δ is well-de�ned, since
the sum of the number of the misplaced tokens in~i and the length of ~j decreases
by one on the right-hand side in the above de�nition when c ≥ 0.

Our evaluation function Ψ is given as

Ψ(f) = π(f) + µ(f) + δ(f) .

It is clear that Ψ(f) = 0 if f is the identity.
For a pseudo con�guration (〈i1, . . . , im〉; a), let us de�ne

γ(〈i1, . . . , im〉; a) =

{
γ(〈i1, . . . , i−a−1, a, i−a+1, . . . , im〉; i−a) if a < 0,

(〈i1, . . . , im〉; a) if a ≥ 0.

The function γ simulates the while loop of Algorithm 2 in the sense that if the
algorithm has (~i; a ·~j) as the value of f at the beginning of the while loop, it
will be (~i ′; a′ ·~j) when exiting the loop for (~i ′; a′) = γ(~i; a).

Lemma 15 Let γ(~i; a) = (~i ′; b). Then

δ(~i; a ·~j) =

{
δ(~i ′; b ·~j)− 1 if b = max(~i),

δ(~i ′; b ·~j) otherwise.

Proof: We show the lemma by induction on the de�nition of γ. If γ(~i; a) =
(~i; a), a does not occur in ~i, so δ(~i; a) = δ(~i; a). Otherwise, suppose a < 0
and γ(~i; a) = γ(~i[a/i−a]; i−a). Remember max(~i) ≥ 0. If i−a = max(~i), then
γ(~i[a/i−a]; i−a) = (~i[a/i−a]; i−a) and

δ(~i; a) = δ(~i[a/i−a]; i−a)− 1 .

If i−a < max(~i), then δ(~i; a) = δ(~i[a/i−a]; i−a) and γ(~i; a) = γ(~i[a/i−a]; i−a).
Since a < 0 ≤ max(~i) and i−a < max(~i), we have max(~i) = max(~i[a/i−a]). By
the induction hypothesis, we obtain the lemma. �

Lemma 16 For any~i,~j, there are an integer α ≤ 0 and a sequence~i ′ consisting
of the m smallest elements from ~i ·~j such that for any ~k

δ(~i; ~j · ~k) = δ(~i ′; ~k) + α

provided that (~i; ~j · ~k) is a pseudo con�guration.

60 J. Kawahara et al. The Time Complexity of Permutation Routing

Proof: This is immediate by the de�nition of δ. If the de�nition derives the
equation δ(~i; ~j) = δ(~i ′; ~j ′)+α = α with max(~i ′) < 0, then δ(~i; ~j ·~k) = δ(~i ′; ~k)+
α holds anyway. �

Lemma 17 If ~i ·~j1 contains m or more tokens smaller than k ≥ 0, then

δ(~i; ~j1 · k ·~j2) = δ(~i; ~j1 ·~j2)

provided that (~i; ~j1 · k ·~j2) is a pseudo con�guration.

Proof: We show the lemma by induction on the de�nition of δ. Let c = max(~i).
If c < 0, then δ(~i; ~j1 · k ·~j2) = δ(~i; ~j1 ·~j2) = 0. Suppose c ≥ 0. If ~j1 is empty,
k > c ≥ 0 by the assumption. The equation holds immediately by de�nition. If
~j1 is not empty, the recursive de�nition of δ gives ~i ′ and ~j ′1 such that

δ(~i; ~j1 · k ·~j2) = δ(~i ′; ~j ′1 · k ·~j2) + α

δ(~i; ~j1 ·~j2) = δ(~i ′; ~j ′1 ·~j2) + α

for some α ∈ {0,−1}. To apply the induction hypothesis, it su�ces to show
that ~i ′ ·~j ′1 contains at least m tokens smaller than k ≥ 0. The only non-trivial
case is that the number of tokens smaller than k in~i ′ ·~j ′1 is smaller than that in
~i ·~j1. In such a case, for the �rst element j0 of ~j1, either j0 > c ≥ 0 and j0 < k
(j0 is absent in ~i ′ ·~j ′1) or c > j0 ≥ 0 and c < k (c is absent in ~i ′ ·~j ′1) holds. In
the former case, k > c implies that all the m tokens in~i ′ =~i are smaller than k.
In the latter case, k > c > j0 implies all the m tokens in ~i ′ =~i[j0/c] are smaller
than k. �

Corollary 4 For any con�guration f = (~i; ~j1 ·k·~j2) with k ≥ 0, if Inv(f, k) ≤ k
then

δ(~i; ~j1 · k ·~j2) = δ(~i; ~j1 ·~j2) .

In particular if ~i contains negative tokens only, δ(f) = 0.

Proof: Recall that there exist just k + m tokens smaller than k. The fact
Inv(f, k) ≤ k means that ~j2 contains at most k tokens smaller than k, so ~i ·~j1
must have at least m such tokens. Lemma 17 applies. �

B.1 Ψ Evaluates Our Algorithm

Lemma 18 Suppose that our algorithm changes f to g at a point in the run.
Then Ψ(g) = Ψ(f)− 1.

Proof: We have two types of swaps.
Case A. When the algorithm moves the token f(0) < 0 to the vertex f(0)
(Type A). In this case we have |Ng| = |Nf | − 1. Let a = f(0) and b = f(a),
which implies g(0) = b and g(a) = a. Let I = {f(−1), . . . , f(−m)} be the set
of tokens on the negative vertices in f .

JGAA, 23(1) 29�70 (2019) 61

Case A.1. 0 ≤ b = max I. Clearly δ(f) = δ(g)− 1 and µ(f) = µ(g) + 1. Since
π(f, i) = π(g, i) for all i 6= b, it is enough to show π(f, b) = π(g, b) + 1. By
de�nition π(f, b) = b + 1. Recall that there are exactly b + m tokens that are
smaller than b. Since the m tokens on the negative vertices in g are all smaller
than b, there are exactly b tokens smaller than b on non-negative vertices under
g. That is, Inv(g, b) = b and thus π(g, b) = b = π(f, b)− 1.

Case A.2. 0 ≤ b < max I. Clearly δ(f) = δ(g) and µ(f) = µ(g) + 1. To see
π(f, i) = π(g, i) for all i ∈ {0, . . . , n} − {b} is trivial, so it is enough to show
π(f, b) = π(g, b). By de�nition π(f, b) = b+1. Recall that there are exactly b+m
tokens that are smaller than b, of which at most m−1 tokens can be on negative
vertices in g, since at least one negative vertex is occupied by a token bigger
than b. Therefore, there are at least b+ 1 tokens smaller than b on non-negative
vertices in g. That is, Inv(g, b) ≥ b+ 1 and thus π(g, b) = b+ 1 = π(f, b).

Case A.3. b < 0. Clearly π(f, i) = π(g, i) for all i ≥ 0 and δ(f) = δ(g) by
de�nition. One can easily see ∆f = ∆g, for [a]f = [b]f /∈ ∆f , [a]g /∈ ∆g and
[b]g /∈ ∆g. Hence µ(g) = µ(f)− 1.

Case B. When the algorithm moves a token k as a move of Type B.

Case B.1. k ≥ 0 and f−1(k) < 0. Let a = f−1(k) and f(0) = b, that is,
g(a) = b and g(0) = k. By the behavior of the algorithm, we have f(i) ≤ k for
all i ≤ 0. Since b ≥ 0, we have µ(f) = µ(g) and δ(f) = δ(g). It is trivially true
that π(f, i) = π(g, i) for all i ∈ {0, . . . , n} − {k, b}. Thus it is enough to show
that π(g, k) + π(g, b) = π(f, k) + π(f, b)− 1. By de�nition π(f, k) = k + 1 and
π(g, b) = b+ 1. Since all the m tokens on the negative vertices in g are smaller
than k, the other k tokens smaller than k are found on some non-negative
vertices. That is, Inv(g, k) = k and thus π(g, k) = k = π(f, k) − 1. On the
other hand in f , at least one token, namely k, on a negative vertex is bigger
than b. Therefore, at least b+ 1 tokens smaller than b are on some non-negative
vertices in f . That is, Inv(f, b) ≥ b + 1 and thus π(f, b) = b + 1. Therefore,
π(g) = π(f)− 1.

Case B.2. k ≥ 0 and f−1(k) ≥ 0. Clearly µ(g) = µ(f), Inv(g, k) = Inv(f, k)−1
and Inv(g, j) = Inv(f, j) for all j ∈ {0, . . . , n} − {k}. By the behavior of the
algorithm, f(j) = j for all j > k and thus Inv(f, k) ≤ k and π(g, k) = π(f, k)−1.
Hence π(g) = π(f)− 1. Corollary 4 implies δ(g) = δ(f).

Case B.3. k < 0. The case where f−1(k) = 0 can be discussed as in Case A.3.
We assume f−1(k) < 0, in which case we have f(i) = i for all i ≥ 0 by the
behavior of the algorithm. Clearly [k]f ∈ ∆f and ∆g = ∆f − {[k]f}, thus
|∆g| = |∆f | − 1 and µ(g) = µ(f) − 1. On the other hand, π(f, 0) = 0 and
π(g, 0) = 1, while π(f, j) = π(g, j) for all j > 0. We have δ(f) = 0 by Corollary 4
and δ(g) = −1 by Lemma 15. �

Corollary 5 For any con�guration f , Ψ(f) ≥ 0. Moreover, Ψ(f) = 0 if and
only if f is the identity.

62 J. Kawahara et al. The Time Complexity of Permutation Routing

B.2 Ψ Is the Right Evaluation Function

Now we are going to prove that any possible swap on the graph changes the
value of Ψ by one. We have 6 cases depending on the signs of swapped tokens
and the vertices where the swap takes place. Namely we discuss cases where the
tokens are both non-negative (Lemma 21), where one is non-negative and the
other is negative (Lemma 22) and where both are negative (Lemma 23). Each
case has two subcases depending on whether one of the tokens is on a negative
vertex or not. Lemmas 19 and 20 are useful to prove those lemmas.

Lemma 19 Let (~i;~j) and (~i ′;~j) be pseudo con�gurations such that ~i contains
two distinct non-negative numbers a, b ≥ 0 and ~i ′ =~i[a/b, b/a]. Then

|δ(~i; ~j)− δ(~i ′; ~j)| = 1 .

Note that ~j cannot be empty, since ~i ·~j is a pseudo con�guration.

Proof: It is enough to show that for any a, b ≥ 0, ~i,~j and d,

|δ(〈a, b〉 ·~i; d ·~j)− δ(〈b, a〉 ·~i; d ·~j)| = 1 .

We show this claim by induction on the de�nition of δ. If d /∈ {−1,−2}, the
proof is trivial. For the symmetry, we discuss the case where d = −1 only.
Without loss of generality we assume a < b. Let c = max(~i).
Case 1. In the case where b > c, we have

δ(〈a, b〉 ·~i; −1 ·~j) = δ(〈−1, b〉 ·~i; a ·~j) = δ(〈−1, a〉 ·~i; ~j) ,
δ(〈b, a〉 ·~i; −1 ·~j) = δ(〈−1, a〉 ·~i; ~j)− 1 .

The claim holds.
Case 2. In the case where b < c,

δ(〈a, b〉 ·~i; −1 ·~j) = δ(〈−1, b〉 ·~i; a ·~j) = δ(〈−1, b〉 ·~i[a/c]; ~j),
δ(〈b, a〉 ·~i; −1 ·~j) = δ(〈−1, a〉 ·~i; b ·~j) = δ(〈−1, a〉 ·~i[b/c]; ~j) .

The claim follows the induction hypothesis. �

Let f = (~i; ~j) be a pseudo con�guration where ~i contains a negative token
a. The a-resolution of ~i is de�ned by

~i ′ =~i[a/f(a), f(a)/f2(a), . . . , fk−1(a)/fk(a), fk(a)/a]

where k is the least natural number such that either fk+1(a) = a or fk(a) ≥ 0.
That is, we relocate tokens a, f(a), . . . , fk−1(a) on negative vertices to their
respective goals and push fk(a) out to a, which is actually its goal if fk+1(a) = a.
We also call g = (~i ′; ~j) the a-resolution of f . If γ(~i; a) = (~j; b) and a < 0, it is
easy to see that ~j is the a-resolutions of ~i[a/b].

Lemma 20 If g is the a-resolution of f , then δ(f) = δ(g).

JGAA, 23(1) 29�70 (2019) 63

Proof: By induction on the de�nition of δ. �

Lemma 21 Suppose that g is obtained from f by swapping non-negative tokens.
Then |Ψ(g)−Ψ(f)| = 1.

Proof: Suppose that non-negative tokens a and b are swapped. Obviously
µ(g) = µ(f). We have two cases depending on where those tokens are swapped.
Case 1. The swap takes place on two non-negative vertices. That is,

f = (~i; ~j1 · 〈a, b〉 ·~j2),

g = (~i; ~j1 · 〈b, a〉 ·~j2),

for some a, b ≥ 0. Without loss of generality we assume a < b. We have
π(f, i) = π(g, i) for all i ∈ {0, . . . , n} − {b}, while Inv(g, b) = Inv(f, b) + 1. By
Lemma 16, there exists ~i ′ consisting of the m smallest tokens from ~i · ~j1 such
that

δ(f) = δ(~i ′; 〈a, b〉 ·~j2) + α,

δ(g) = δ(~i ′; 〈b, a〉 ·~j2) + α

for some α ≤ 0.
Case 1.1. Inv(f, b) < b and Inv(g, b) < b + 1. In this case, we have π(f, b) =
Inv(f, b), π(g, b) = Inv(g, b) and thus π(g) = π(f) + 1. Corollary 4 applies to
both f and g and we obtain

δ(g) = δ(f) = δ(~i; ~j1 · a ·~j2)

and Ψ(g) = Ψ(f) + 1.
Case 1.2. Inv(f, b) = b and Inv(g, b) = b + 1. In this case, we have π(g) =
π(f) + 1. Since ~j2 contains b tokens smaller than b, on the other hand ~i · ~j1
contains exactly m− 1 tokens smaller than b. Let c be the unique element of ~i ′

which is bigger than b. Then

δ(f) = δ(~i ′[a/c]; b ·~j) + α = δ(~i ′[a/c]; ~j) + α,

δ(g) = δ(~i ′[b/c]; a ·~j) + α = δ(~i ′[a/c]; ~j) + α,

since b is the biggest in ~i ′[b/c]. Hence δ(g) = δ(f) and Ψ(g) = Ψ(f) + 1.
Case 1.3. Inv(f, b) > b and Inv(g, b) > b + 1. In this case, π(f, b) = π(g, b) =
b + 1 and π(g) = π(f). Since ~j2 contains at least b + 1 tokens smaller than b,
~i ·~j1 contains at most m − 2 tokens smaller than b. Hence ~i ′ contains at least
2 tokens bigger than b. Let c1 and c2 be the biggest and second biggest in ~i ′,
respectively. Then

δ(f) = δ(~i ′[a/c1, b/c2]; b ·~j) + α,

δ(g) = δ(~i ′[b/c1, a/c2]; a ·~j) + α.

By Lemma 19, we obtain |δ(g)− δ(f)| = 1 and |Ψ(g)−Ψ(f)| = 1.

64 J. Kawahara et al. The Time Complexity of Permutation Routing

Case 2. The swap takes place between a negative vertex and 0. Without loss of
generality we may assume that the negative position is −1 and f(−1) < g(−1).
That is,

f = (a ·~i; b ·~j),
g = (b ·~i; a ·~j),

where 0 ≤ a < b. By de�nition π(f, a) = a+ 1 and π(g, b) = b+ 1. Since there
are a+m tokens smaller than a, of which at most m− 1 tokens can be in b ·~i,
we have Inv(g, a) ≥ a+ 1. That is, π(g, a) = π(f, a). On the other hand, since
there are b+m tokens smaller than b, of which at most m tokens can be in a ·~i,
we have Inv(f, b) ≥ b.
Case 2.1. Inv(f, b) = b, which means π(f, b) = b = π(g, b)− 1. In this case, all
the elements of ~i must be smaller than b. We have

δ(f) = δ(g) = δ(a ·~i; ~j) .

Therefore, Ψ(g) = Ψ(f) + 1.
Case 2.2. Inv(f, b) > b, which means π(f, b) = b + 1 = π(g, b). In this case,
there must be c > b in ~i. We have

δ(f) = δ(a ·~i; b ·~j) = δ(a ·~i[b/c]; ~j) ,
δ(g) = δ(b ·~i; a ·~j) = δ(b ·~i[a/c]; ~j) .

Lemma 19 implies |δ(g)− δ(f)| = 1. Therefore, Ψ(g) = Ψ(f) + 1. �

Lemma 22 Suppose that g is obtained from f by swapping a non-negative token
and a negative one. Then |Ψ(g)−Ψ(f)| = 1.

Proof: Case 1. The swap takes place on non-negative vertices. Let

f = (~i; ~j1 · 〈a, b〉 ·~j2),

g = (~i; ~j1 · 〈b, a〉 ·~j2),

where a < 0 ≤ b. Obviously, µ(f) = µ(g), Inv(g, b) = Inv(f, b) + 1 and
Inv(g, k) = Inv(f, k) for any other k ≥ 0. By Lemma 16, there exists ~i ′ consist-
ing of the m smallest tokens from ~i ·~j1 such that

δ(f) = δ(~i ′; 〈a, b〉 ·~j2) + α,

δ(g) = δ(~i ′; 〈b, a〉 ·~j2) + α

for some α ≤ 0.
Case 1.1. Inv(f, b) < b and Inv(g, b) < b + 1. In this case, we have π(g) =
π(f) + 1. Corollary 4 applies to both f and g and we obtain δ(g) = δ(f) and
Ψ(g) = Ψ(f) + 1.
Case 1.2. Inv(f, b) = b and Inv(g, b) = b + 1. In this case, we have π(g) =
π(f) + 1. It is enough to show δ(f) = δ(g). Since ~j2 contains b tokens smaller

JGAA, 23(1) 29�70 (2019) 65

than b,~i ·~j1 and~i ′ contain exactly m−1 tokens smaller than b. Let c = max(~i ′),
which is the unique element of ~i ′ bigger than b. Let (~i ′′; d) = γ(~i ′; a).

Suppose c = d. We have γ(~i ′[b/d]; a) = (~i ′′; b), where b is the biggest in
~i ′[b/d]. Thus

δ(f) = δ(~i ′′; b ·~j2)− 1 + α = δ(~i ′′; ~j2)− 1 + α ,

δ(g) = δ(~i ′[b/d]; a ·~j2) + α = δ(~i ′′; ~j2)− 1 + α

by Lemma 15.
If c > d, we have γ(~i ′[b/c]; a) = (~i ′′[b/c]; d) and

δ(f) = δ(~i ′′; 〈d, b〉 ·~j2) + α = δ(~i ′′[d/c]; b ·~j2) + α = δ(~i ′′[d/c]; ~j2) + α ,

δ(g) = δ(~i ′[b/c]; a ·~j2) + α = δ(~i ′′[b/c]; d ·~j2) + α = δ(~i ′′[d/c]; ~j2) + α

by Lemma 15.
Case 1.3. Inv(f, b) > b and Inv(g, b) > b+1. In this case, we have π(g) = π(f).
It is enough to show |δ(g) − δ(f)| = 1. Since ~j2 contains at least b + 1 tokens
smaller than b, ~i · ~j1 contains at most m − 2 tokens smaller than b. Hence ~i ′

contains at least 2 tokens bigger than b. Let c1 and c2 be the biggest and second
biggest in ~i ′, respectively. Let (~i ′′; d) = γ(~i ′; a).

If d = c1, then by Lemma 15,

δ(f) = δ(~i ′′; b ·~j2)− 1 + α ,

δ(g) = δ(~i ′[b/c1]; a ·~j2) + α = δ(~i ′′; b ·~j2) + α .

If d = c2, then by Lemma 15,

δ(f) = δ(~i ′′; 〈c2, b〉 ·~j2) + α = δ(~i ′′[c2/c1]; b ·~j2) + α = δ(~i ′′[b/c1]; ~j2) + α ,

δ(g) = δ(~i ′[b/c1]; a ·~j2) + α = δ(~i ′′[b/c1]; ~j2)− 1 + α .

If d < c2, then by Lemma 15,

δ(f) = δ(~i ′′; 〈d, b〉 ·~j2) + α = δ(~i ′′[d/c1][b/c2]; ~j2) + α ,

δ(g) = δ(~i ′[b/c1]; a ·~j2) + α = δ(~i ′′[b/c1]; d ·~j2) + α = δ(~i ′′[b/c1][d/c2]; ~j2) + α .

Lemma 19 implies |δ(g)− δ(f)| = |δ(~i ′′[b/c1][d/c2])− δ(~i ′′[d/c1][b/c2])| = 1.
Case 2. The swap takes place on 0 and a negative vertex. Without loss of
generality we may assume

f = (a ·~i; b ·~j),
g = (b ·~i; a ·~j),

where a < 0 ≤ b. For the case where a = −1, we have already proved that
Ψ(g) = Ψ(f) + 1 in Lemma 18. Hereafter we assume that a 6= −1. Clearly
π(g, i) = π(f, i) for all i ∈ {0, . . . , n} − {b} and π(g, b) = b + 1. π(f, b) = b if
and only if every token in ~i is smaller than b. Let (~i ′; d) = γ(b ·~i; a).

66 J. Kawahara et al. The Time Complexity of Permutation Routing

Case 2.1. Suppose π(f, b) = b, in which case π(g) = π(f) + 1.
If d = b, there is k ≥ 1 such that gi(a) < −1 for i ∈ {0, . . . , k − 1} and

gk(a) = −1. Since f(i) = g(i) for i < −1 and f(−1) = a, we have [a]f ∈ ∆f .
Hence ∆f = ∆g ∪ {[a]f} and thus µ(g) = µ(f)− 1. We have

δ(f) = δ(a ·~i; b ·~j) = δ(a ·~i; ~j) ,
δ(g) = δ(b ·~i; a ·~j) = δ(~i ′; ~j)− 1 .

Since ~i ′ is the a-resolution of a ·~i, by Lemma 20, we have δ(~i ′; ~j) = δ(a ·~i; ~j)
and thus Ψ(g) = Ψ(f)− 1.

If d < b, [a]f /∈ ∆f . In this case, µ(g) = µ(f) and ~i ′ has the form b ·~i ′′.

δ(f) = δ(a ·~i; ~j) ,
δ(g) = δ(b ·~i ′′; d ·~j) = δ(d ·~i ′′; ~j) .

Since d·~i ′′ is the a-resolution of a·~i, by Lemma 20, we have δ(a·~i; ~j) = δ(d·~i ′′; ~j)
and thus Ψ(g) = Ψ(f) + 1.
Case 2.2. Suppose π(f, b) = b+ 1, in which case π(g) = π(f). Since there are
at least b+ 1 tokens in ~j smaller than b, there are at most m− 1 tokens smaller
than b in ~i. Let c = max(~i), which is therefore bigger than b.

If d = c, [a]f /∈ ∆f . In this case, µ(g) = µ(f) and

δ(f) = δ(a ·~i[b/c]; ~j),
δ(g) = δ(b ·~i; a ·~j) = δ(~i ′; ~j)− 1 .

Since ~i ′ is the a-resolution of a · ~i[b/c], we have δ(g) = δ(f) − 1 and thus
Ψ(g) = Ψ(f)− 1.

If d = b, [a]f ∈ ∆f and [b]g /∈ ∆g by the same reason as in Case 2.1. In this
case, µ(g) = µ(f)− 1 and

δ(f) = δ(a ·~i; b ·~j) = δ(a ·~i[b/c]; ~j),
δ(g) = δ(b ·~i; a ·~j) = δ(~i ′; b ·~j) = δ(~i ′[b/c]; ~j) .

Since ~i ′[b/c] is the a-resolution of a · ~i[b/c], we have δ(f) = δ(g) and thus
Ψ(g) = Ψ(f)− 1.

If d /∈ {b, c}, [a]f /∈ ∆f . In this case, µ(g) = µ(f). There is ~i ′′ such that
~i ′ = b ·~i ′′. Let h be obtained from g by exchanging the tokens b and d. Then
|δ(h)− δ(g)| = 1 and

δ(f) = δ(a ·~i; b ·~j) = δ(a ·~i[b/c]; ~j),
δ(g) = δ(b ·~i; a ·~j) = δ(b ·~i ′′; d ·~j) = δ(b ·~i ′′[d/c]; ~j) ,
δ(h) = δ(d · (~i[b/d]); a ·~j) = δ(d ·~i ′′; b ·~j) = δ(d ·~i ′′[b/c]; ~j) .

Since d ·~i ′′[b/c] is the a-resolution of a ·~i[b/c], we have δ(f) = δ(h) and thus
|δ(g)− δ(f)| = 1. |Ψ(g)−Ψ(f)| = 1. �

JGAA, 23(1) 29�70 (2019) 67

Lemma 23 Suppose that g is obtained from f by swapping negative tokens.
Then |Ψ(g)−Ψ(f)| = 1.

Proof: Clearly π(f) = π(g).
Case 1. The swap takes place on non-negative vertices. Clearly µ(f) = µ(g).
It is enough to show |δ(g)− δ(f)| = 1. We may assume by Lemma 16

δ(f) = δ(~i; 〈a, b〉 ·~j) ,
δ(g) = δ(~i; 〈b, a〉 ·~j) ,

where a, b < 0. Let (~ia; a′) = γ(~i; a) and (~ib; b
′) = γ(~i; b). It is easy to see that

there is ~ia,b such that γ(~ia; b) = (~ia,b; b
′) and γ(~ib; a) = (~ia,b; a

′). Without loss
of generality we assume 0 ≤ a′ < b′. Let c1 and c2 be the biggest and the second
biggest in ~i.
Case 1.1. b′ = c1. By Lemma 15,

δ(f) = δ(~ia; 〈a′, b〉 ·~j) = δ(~ia[a′/b′]; b ·~j) = δ(~ia,b; a
′ ·~j)− [a′ = c2] ,

δ(g) = δ(~ib; a ·~j)− 1 = δ(~ia,b; a
′ ·~j)− 1− [a′ = c2] ,

where [a′ = c2] = 1 if a′ = c2 and [a′ = c2] = 0 otherwise. Therefore, |δ(f) −
δ(g)| = 1.
Case 1.2. b′ = c2.

δ(f) = δ(~ia; 〈a′, b〉 ·~j) = δ(~ia[a′/c1]; b ·~j) = δ(~ia,b[a
′/c1]; ~j)− 1 ,

δ(g) = δ(~ib; 〈b′, a〉 ·~j) = δ(~ib[b
′/c1]; a ·~j) = δ(~ia,b[b

′/c1]; a′ ·~j)
= δ(~ia,b[a

′/c1]; ~j) .

Case 1.3. b′ < c2.

δ(f) = δ(~ia,b[a
′/c1][b′/c2]; ~j) ,

δ(g) = δ(~ib; 〈b′, a〉 ·~j) = δ(~ib[b
′/c1]; a ·~j) = δ(~ia,b[b

′/c1]; a′ ·~j)
= δ(~ia,b[b

′/c1][a′/c2]; ~j) .

By Lemma 19, |δ(g)− δ(f)| = 1.
Case 2. The swap takes place between a negative vertex and 0. Without loss
of generality we may assume

f = (a ·~i; b ·~j),
g = (b ·~i; a ·~j),

where a, b < 0. For the case where a = −1 or b = −1, we have already proved
that |Ψ(g) − Ψ(f)| = 1 in Lemma 18. So we assume a, b 6= −1. Let (~ib; b

′) =
γ(a·~i; b). There are negative tokens b0, . . . , bk < 0 in a·~i such that bi = f i(b) < 0
for all i ≤ k and f(bk) = b′ ≥ 0. Similarly for (~ia; a′) = γ(b ·~i; a), there are
negative tokens a0, . . . , al < 0 in b ·~i such that ai = gi(a) < 0 for all i ≤ l and

68 J. Kawahara et al. The Time Complexity of Permutation Routing

g(al) = a′ ≥ 0. Let θa and θb be replacements [a0/a1, . . . , al−1/al, al/a
′] and

[b0/b1, . . . , bk−1/bk, bk/b
′], respectively. Then ~ia = (b ·~i)θa and ~ib = (a ·~i)θb.

Case 2.1. Suppose that the sequence 〈a0, . . . , al〉 contains −1. By g(−1) = b,
we have

〈a0, . . . , al, a′〉 = 〈a0, . . . , al−k−2,−1, b0, . . . , bk, b
′〉 ,

where al−k−1 = −1, al−k = b0 and a′ = b′. Since f l−k−1(a) = gl−k−1(a) = −1
and f(−1) = a, we have [a]f = {a0, . . . , al−k−1} ∈ ∆f . On the other hand,
gk+1(b) = fk+1(b) = b′ ≥ 0 means that [b]f /∈ ∆f and [b]g = [a]g /∈ ∆g.
Therefore, µ(f) = µ(g) + 1. Observing that

~ib = (a ·~i)θb ,
~ia = (b ·~i)[a0/a1, . . . , al−k−1/al−k]θb

= (a ·~i)[b0/a0][a0/a1, . . . , al−k−1/al−k]θb

= (a ·~i)[al−k−1/a0, a0/a1, . . . , al−k−2/al−k−1]θb

= (a ·~i)θb[a0/a1, . . . , al−k−2/al−k−1, al−k−1/a0]

=~ib[a0/a1, . . . , al−k−2/al−k−1, al−k−1/a0] ,

we see that ~ia is the a0-resolution of ~ib. Therefore, by Lemmas 15 and 20,

δ(f) = δ(~ib; b
′ ·~j)− d = δ(~ia; b′ ·~j)− d = δ(g) ,

where d = 1 if b′ = max(~i) and d = 0 otherwise. All in all, we have |Ψ(f) −
Ψ(g)| = 1.

The case where 〈b0, . . . , bk〉 contains −1 can be treated in the same way.
Case 2.2. Suppose that −1 occurs neither in 〈a0, . . . , al〉 nor 〈b0, . . . , bk〉. It
is easy to see that the two sequences 〈b0, . . . , bk, b′〉 and 〈a0, . . . , al, a′〉 have no
common elements. Hence [a0]f /∈ ∆f and [b0]g /∈ ∆g. We obtain µ(f) = µ(g).
Without loss of generality, we may assume a′ < b′. Let h = f [a′/b′, b′/a′] be
obtained from f by exchanging the positions of the tokens a′ and b′. Since
Lemma 19 ensures |δ(f) − δ(h)| = 1, it is enough to show δ(g) = δ(h). By
Lemma 15 and the fact a′ < b′ ≤ max(~i),

δ(g) = δ(~ia; a′ ·~j) = δ((b0 ·~i)θa; a′ ·~j)

The b0-resolution of ~ia is

(b0 ·~i)θa[b0/b1, . . . , bk−1/bk, bk/b
′, b′/b0] = (b′ ·~i)θaθb .

On the other hand,

δ(h) = δ(f [a′/b′, b′/a′]) = δ((a0 ·~i)[a′/b′, b′/a′][b0/b1, . . . , bk−1/bk, bk/a′]; a′ ·~j)
= δ((a0 ·~i)[b0/b1, . . . , bk−1/bk, bk/b′, b′/a′]; a′ ·~j)
= δ((a0 ·~i)θb[b′/a′]; a′ ·~j) .

JGAA, 23(1) 29�70 (2019) 69

The a0-resolution of (a0 ·~i)θb[b′/a′] is given as

(a0 ·~i)θb[b′/a′][a0/a1, . . . , al−1/al, al/b′, b′/a0]

= (a0 ·~i)θb[al/a′][a0/a1, . . . , al−1/al, b′/a0]

= (b′ ·~i)θb[a0/a1, . . . , al−1/al, al/a′]
= (b′ ·~i)θbθa = (b′ ·~i)θaθb ,

since θa and θb are independent. Therefore, δ(g) = δ(h) by Lemma 20. �

Theorem 14 Token Swapping on star-path graphs can be solved in polynomial
time.

Proof: By Lemmas 21, 22, 23 and 18, the number of swaps needed is exactly
Ψ(f). Obviously Ψ is computable in polynomial time. �

C Proof that the PPN-Separable 3SAT Is NP-

hard

We show the NP-hardness of Sep-SAT by a reduction from the (usual) 3SAT [4].
For a given CNF F on X, we may without loss of generality assume that for
each x ∈ X, the positive literal x and the negative one ¬x occur exactly the
same number of times in F . Otherwise, if x occurs k more times than ¬x does,
we add clauses {¬x, yi,¬yi} to F for all i ∈ {1, . . . , k} where yi are new Boolean
variables. Now, for a given CNF F on X = {x1, . . . , xm} such that the positive
and negative literals xi and ¬xi occur exactly the same number of times for
each Boolean variable xi ∈ X, we construct F ′ = F1 ∪ F2 ∪ F3 on X ′ such that

• F is satis�able if and only if F ′ is satis�able,

• each positive literal xi occurs just once in each of F1 and F2,

• each negative literal ¬xi occurs just once in F3.

Let ni be the number of occurrences of the positive literal xi in F (thus of the
negative literal ¬xi) for each xi ∈ X.

1. Let X ′ = {xi,j , x̄i,j | 1 ≤ i ≤ m, 1 ≤ j ≤ ni }.

2. Let F1 be obtained from F by replacing the j-th occurrence of the positive
literal xi with xi,j , and the j-th occurrence of the negative literal ¬xi with
x̄i,j for j ∈ {1, . . . , ni}.

3. Let F2 = { {xi,j , x̄i,j} | 1 ≤ i ≤ m and 1 ≤ j ≤ ni }.

4. Let F3 = { {¬xi,j ,¬x̄i,j+1} | 1 ≤ i ≤ m and 1 ≤ j < ni }∪{ {¬xi,ni
,¬x̄i,1} |

1 ≤ i ≤ m }.

70 J. Kawahara et al. The Time Complexity of Permutation Routing

Clearly F ′ is an instance of Sep-SAT. If a map φ : X → {0, 1} satis�es F , then
φ′ : X ′ → {0, 1} satis�es F ′ where φ′(xi,j) = 1− φ′(x̄i,j) = φ(xi) for each i and
j. Conversely, suppose that F ′ is satis�ed by φ′ : X ′ → {0, 1}. The clauses of
F2 and F3 ensure that φ′(xi,j) = 1 − φ′(x̄i,j) = φ′(xi,1) for all j ∈ {1, . . . , ni}.
Then it is now clear that φ de�ned by φ(xi) = φ′(xi,1) satis�es F .

	Introduction
	Time Complexity of Token Swapping
	Token Swapping Is NP-complete
	PTIME Subcases of Token Swapping

	Permutation Routing via Matching
	Routing Permutations via Matching Is NP-complete
	PTIME Subcases
	2-Step Permutation Routing via Matching
	Approximation Algorithm for the Permutation Routing via Matching on Paths

	Coloring Routing via Matching
	Hardness of the c-Coloring Routing via Matching
	2-Step 2-Coloring Routing via Matching Is Easy

	Proof that Token Swapping on Lollipop Graphs Is in P
	Proof that Token Swapping on Star-Path Graphs Is in P
	 Evaluates Our Algorithm
	 Is the Right Evaluation Function

	Proof that the PPN-Separable 3SAT Is NP-hard

