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Finding a Maximum-Weight Convex Set in a
Chordal Graph
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Abstract

We consider a natural combinatorial optimization problem on chordal
graphs, the class of graphs with no induced cycle of length four or more.
A subset of vertices of a chordal graph is (monophonically) convex if it
contains the vertices of all chordless paths between any two vertices of the
set. The problem is to find a maximum-weight convex subset of a given
vertex-weighted chordal graph. It generalizes previously studied special
cases in trees and split graphs. It also happens to be closely related to the
closure problem in partially ordered sets and directed graphs. We give
the first polynomial-time algorithm for the problem.
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1 Introduction

In many practical optimization problems, feasible solutions consist of one or
more sets that are required to satisfy some kind of convexity constraint. They
can take the form of geometrically convex sets, such as in spatial planning
problems [40], electoral district design [28], or underground mine design [35].
Alternatively, convexity can be defined in a combinatorial fashion.

In the closure problem [37], we are given a directed graph with (positive or
negative) vertex weights, and we are asked to find a maximum-weight vertex
subset with no outgoing edges. In the case where the directed graph is acyclic,
this amounts to find a maximum-weight downset of a partial order. Here, con-
vexity is interpreted as the property of being downward closed. Again, many
practical applications are related to the closure problem. For instance, mili-
tary targeting [33], transportation network design [38] and job scheduling [39].
Recently, a parametric version of the closure problem has been studied by Epp-
stein [13].

In their seminal paper, Farber and Jamison [16] developed the foundations of
a combinatorial abstraction of convexity in graphs. In particular, they defined
convex sets in graphs as subsets of vertices which contain the vertices of all
chordless paths between any two vertices of the subset. This particular way
of defining convexity in a graph is referred to as monophonic convexity. The
collection of monophonic convex sets of a graph has specific nice properties
and forms a “convex geometry” exactly if the graph is chordal. We consider
the problem of finding a maximum-weight convex subset of a vertex-weighted
chordal graph. We give a polynomial-time algorithm to solve the problem. Until
now, only the special cases of trees [1, 29] and split graphs [5] were known to
be polynomial-time solvable.

Our algorithm for chordal graphs makes use of an algorithm due to Pi-
card [37] for the similar problem on ordered sets. Its design relies on a better
understanding of the structure of a chordal graph from the point of view of its
convex geometry. The results can be seen as a generalization of two algorithmic
results for trees and split graphs, to all chordal graphs.

1.1 Previous works

The notion of a convex geometry appears in various contexts in mathematics
and computer science. Dilworth [9] first examined structures very close to con-
vex geometries in terms of lattice theory. The convex geometries were formally
introduced by Jamison [25, 26] and Edelman and Jamison [11] in respectively
1981, 1982 and 1985. Later, Korte, Lovász and Schrader [30] considered an-
timatroids, which is the dual concept to the one of a convex geometry, as a
subclass of greedoids. Today, the concept of a convex geometry (or antima-
troid) appears in many fields of mathematics such as formal language theory
(Boyd and Faigle [4]), choice theory (Koshevoy [31]), game theory (Algaba [2])
and mathematical psychology (Falmagne and Doignon [15]) among others.
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When weights are assigned to the points of the convex geometry, the nat-
ural question of finding a convex set with maximum-weight arises. Particular
subproblems are the closure problem [37], the maximum-weight subtree prob-
lem [1, 29], the maximum-weight path-closed set [21], or in a more geometrical
setting, some variants of the minimum k-gons problem [14]. A more recent ex-
ample is the problem of finding a maximum-weight convex set in a split graph [5].
For all of these problems, polynomial-time algorithms were published. We also
mention that, without focusing on algorithms, Korte and Lovász [29] give linear
characterizations of the convex set polytope for certain classes of antimatroids.

Searching for a general efficient algorithm to obtain a maximum-weight con-
vex set in convex geometries seems hopeless because the problem is NP -hard
even for special cases, see Eppstein [12] and Cardinal, Doignon and Merckx [5].
However, searching for a polynomial-time algorithm for certain classes of convex
geometries could reveal bridges between mathematical areas and lead to better
understanding of the underlying mathematical objects.

Chordal graphs and their representations have generated an extensive lit-
erature. See for instance Blair and Peyton [3], McKee and McMorris [32] or
Golumbic [20] for theoretical and practical applications in various fields such as
computational biology, phylogenetic, database, sparse matrix computation and
statistics. But, despite a significant number of results about chordal graphs,
there was to our knowledge, no polynomial-time algorithm to find a maximum-
weight convex set.

1.2 Structure of the paper

In the next section, we give basic definitions and notation regarding convex
geometries, graphs and posets, and formally define the optimization problem
we consider. We also give the definition of the clique-separator graph of a
chordal graph, which will be instrumental in what follows. In Section 3, we
give a procedure solving the problem in a special family of instances. For this
family, the problem is reduced to the closure problem in a partially ordered
set. In Section 4 we generalize the algorithm to handle arbitrary chordal graphs
and argue that it runs in polynomial time. In Section 5, we compute the time
complexity of our algorithm and in Section 6 we give a detailed example of the
execution on a small graph.

2 Preliminaries

We review here some basic notation and results for graphs and convex geome-
tries, we also formally define the problems we investigate.

2.1 Notation for graphs

A (simple) graph G is a pair (V,E) where V is the (finite) set of vertices and
E the set of edges, for a background on graph theory we recommend the book
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by Diestel [8]. A path is a sequence of distinct vertices (v1, . . . , vn) such that
{vi, vi+1} ∈ E for all i in {1, . . . , n − 1}. The path is chordless (or induced)
if no two vertices are connected by an edge that is not in the path. From a
path p = (v1, . . . , vn) we can extract a chordless path by taking a shortest path
between v1 and vn in the subgraph induced by the vertices in p. The graph is
connected if for any u, v in V there is a path (u, . . . , v). A connected component
of G is a maximal connected subgraph of G. Each vertex belongs to exactly one
connected component, as does each edge. A cycle is a path (v1, . . . , vn) such
that {vn, v1} is an edge. A cycle is chordless (or induced) if no two vertices of
the cycle are connected by an edge that does not itself belong to the cycle. A
graph is chordal if every chordless cycle in the graph has at most three vertices.
For V ′ ⊆ V we denote by N(V ′) the set of vertices w in V \ V ′ such that
{w, v} ∈ E for some v in V ′. We write N(v) for N({v}).

A clique K of G is a set of pairwise adjacent vertices, we say that K is a
maximal clique if there is no clique K ′ of G such that K ⊂ K ′. We denote
by KG the set of all maximal cliques in G. A separator S of G is a set of
vertices such that there exist two vertices u, v in V \ S connected by a path in
the graph but not in G − S. We say that S is a minimal separator if there is
no separator S′ of G such that S′ ⊂ S. For u, v in V , a subset S of V \ {u, v}
is a uv-separator if u and v are connected in G but not in G− S. The set S is
a minimal vertex separator of G if S is a uv-separator for some u, v in V and
S does not strictly contain any uv-separator. Note that any minimal separator
is also a minimal vertex separator, but the converse does not hold in general.
We denote by SG the set of all minimal vertex separators in G. Note that in
chordal graphs, every minimal vertex separator is a clique. We observe that
for any chordal graph G = (V,E) we have |KG| 6 |V | and |SG| 6 |V | − 1, the
proofs of those inequalities can be found in Fulkerson and Gross [18], and Ho
and Lee [22] respectively.

2.2 Convex geometries on posets and chordal graphs

A set system (V, C), where V is a finite set of elements and C ⊆ 2V , is a convex
geometry when

∅ ∈ C,
∀C1, C2 ∈ C : C1 ∩ C2 ∈ C,
∀C ∈ C \ {V }, ∃ c ∈ V \ C : C ∪ {c} ∈ C.

The convex sets of the convex geometry (V, C) are the members of C. The
feasible sets are the complements in V of the convex sets. An antimatroid (or
learning space [15]) is a pair (V,F) such that (V,F{) is a convex geometry where
F{ = {V \ F : F ∈ F}. All results on antimatroids have their counterpart for
convex geometries.

We recall that a partially ordered set (or poset) P is a pair (V,6) formed of
a finite set V and a binary relation 6 over V which is reflexive, antisymmetric,
and transitive. For a poset (V,6) an ideal I is a subset of V such that for all
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elements a in I and b in V , if b 6 a, then b is also in I. The ideals are also
known as downsets. We call idl(P ) the set of ideals in P . For u, v in V , we say
that v covers u in P with u 6= v, if u 6 v and there is no x in V \ {u, v} such
that u 6 x 6 v.

One particular class of convex geometries described by Farber and Jami-
son [16] comes from the ideals of a poset. More precisely, let (V,6) be a poset,
then (V, idl(V,≤)) is a convex geometry called a downset alignment. Thus the
convex sets in (V, idl(V,≤)) are the ideals in (V,6). The downset alignments
are the only convex geometries closed under union.

For a graph G = (V,E), a set C of vertices is a monophonically convex
set (m-convex set, or convex set) if C contains every vertex on every chordless
path between vertices in C. We denote with CG the set of m-convex sets of G.
It happens that (V, CG), is a convex geometry if and only if G is chordal, see
Farber and Jamison [16]. The latter paper refers to another characterization of
convex geometries than the one we mentioned; for a proof of the equivalence,
see Edelman and Jamison [11]. For recent general results on the monophonic
convexity, we refer the reader to Changat and Mathew [7], for the computation
of some parameters of the convexity to Kannan and Changat [27] and for related
algorithmic results to Dourado et al. [10]. For more details about m-convex sets
and convex sets based on shortest paths, see Farber and Jamison [17].

Many classical problems in combinatorial optimization have the following
form. For a set system (V, C) and for a function w : V → R, find a set C of C
maximizing the value of

w(C) =
∑
c∈C

w(c).

For instance, the problem is known to be efficiently solvable for the system of
independent sets of a matroid, thanks to the the greedy algorithm (see Oxley
[34]). Since convex geometries capture a combinatorial abstraction of convexity
in the same way as matroids capture linear dependence, the question of finding
a convex set of maximum-weight arises naturally.

The problem of finding efficiently a maximum-weight convex set in a poset
was solved by Picard [37]. The described algorithm calls as a subroutine a
maximum flow algorithm (for instance Goldberg and Tarjan [19]) and runs in

O(mn log(n2

m )) time, where n and m are respectively the number of elements
and the number of cover relations in the poset.

2.3 The clique-separator graph for chordal graphs

Ibarra [24] introduces the clique-separator graph for chordal graphs. For a
chordal graph G, he defines a mixed graph where the nodes are the maxi-
mal cliques and minimal vertex separators of G. Moreover, the (directed) arcs
capture the inclusion-covering relation between the maximal cliques, while the
(undirected) edges represent (minimal) inclusion from minimal vertex separa-
tors to maximal cliques of G. More precisely, the clique-separator graph G of
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a chordal graph G has a set of clique nodes, one for each maximal clique of G
and a set of separator nodes one for each minimal vertex separator of G. The
clique-separator graph has also a set A of edges and arcs defined a follow. Each
arc (S, S′) is from a separator node S to a separator node S′ such that S ⊂ S′

and there is no separator node S′′ such that S ⊂ S′′ ⊂ S′. Each edge {K,S} is
between a clique node K and a separator node S such that S ⊂ K and there
is no separator node S′ such that S ⊂ S′ ⊂ K. Later in this work, we will
denote by ArG the set of arcs in a clique-separator graph G. Figure 1 gives
an example of a clique-separator graph of a chordal graph. Two of the mains
results obtained by Ibarra are the following theorems.

Theorem 1 (Ibarra [24]) For a chordal graph G = (V,E), constructing the
clique-separator graph of G can be done in O(|V |3) time.

G

K1

K2

K3

K4 K5

K7

K8 K9

K10 K11 K12

K6

G

K2 S1

K1

S2

K3

S4

K4 S5 S6 K6K5

S3 K7

S7

S8K8 K9

K11S9 S10K10 K12

Figure 1: A clique-separator graph G of a chordal graph G.

Theorem 2 (Ibarra [24]) Let G = (V,E) be a chordal graph with clique-
separator graph G and let S be a separator node of G. If G − S has connected
components G1, . . . , Gt, then t > 1 and G−{S′ : S′ ∈ SG, S′ ⊆ S} has connected
components G1, . . . ,Gt such that for every 1 6 i 6 t, the vertex set of Gi is the
same as the vertex set represented by the nodes of Gi − S.

2.4 Our main problem

Here is our main problem, the maximum-weight convex set problem in chordal
graphs.
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Problem 1 Given a chordal graph G and a weight function w : V → R, find a
set C in CG that maximizes the value of w(C).

Our main result follows.

Theorem 3 The maximum-weight convex set problem in chordal graphs can be
solved in polynomial time.

The well-known problem of finding a maximum-weight connected subtree in
a tree can be solved by selecting a vertex as “root”, finding a maximum-weight
subtree that contains the root, and iterating this procedure for all possible roots
(see Wolsey et al. [1]). In order to use a similar approach to solve Problem 1, we
define a notion of root. It will be easier to work with chordal graphs which are
connected. Note that our results straightforwardly extend to the non-connected
case.

In order to simplify some of the later statements and arguments, we want to
have in each maximal clique some vertex which is adjacent to no vertex outside
the clique and which has weight zero. To this aim, we add such a vertex to
any maximal clique (without changing the result of the optimization problems,
see the end of the present subsection). Formally, let G = (V,E) be a vertex-
weighted graph. For each maximal clique K of G, we add a new vertex dK
to the graph and we make dK adjacent to exactly the vertices in K (unless K
already has vertices of weight zero, not adjacent to any vertex outside of K,
then we select one of those that becomes dk). The weight of dK is set to 0,
while the other vertices keep their weight. The resulting vertex-weighted graph
is called the extension G′ of G. Notice that the maximal cliques of G′ are all of
the form K ∪ {dK}, where K is a maximal clique of G; we call dK the dummy
vertex of the maximal clique K ∪{dK}. Given a vertex-weighted chordal graph
G = (V,E), its extension G′ = (V ′, E′) is also a vertex-weighted chordal graph.
Remark that G and G′ essentially have the same clique-separator graph. When
G = G′, we say that the vertex-weighted chordal graph G is extended.

For a set R of vertices of an extended vertex-weighted chordal graph G, we
say that a convex set C of CG is R-rooted if R ⊆ C. If R is a singleton {r} we
write r-rooted instead of {r}-rooted. This modification allows us to define the
following problem.

Problem 2 Given an extended chordal graph G with a weight function w :
V → R and a maximal clique K of G, find a dK-rooted convex set C of G that
maximizes the value of w(C).

We show below that, given any vertex-weighted chordal graph G, solving
Problem 2 for the extension G′ of G for all K in KG gives us a solution to
Problem 1. The first lemma states the obvious link between the convex sets of
G and G′.

Lemma 1 Let G = (V,E) be a chordal graph, C be a convex set of G and C ′

be a convex set of G′ = (V ′, E′), the extension of G. Then C is a convex set of
G′ and C ′ ∩ V is a convex set of G.
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Proof: First, C is a convex set of G′ because any chordless path in G′ between
two vertices of C is a chordless path in G. Second, C ′∩V is convex in G because
any chordless path in G between two vertices of C ′ ∩ V is a chordless path in
G′. �

The next lemma shows a stronger result than what we need for proving the
equivalence between Problem 1 and Problem 2, but it will be useful.

Lemma 2 Let G = (V,E) be a chordal graph with a convex set C in G, and G′

be the extension of G. Let KC be a maximal clique of the graph induced by C.
Then, for every K ′ in KG′ such that KC ⊆ K ′, the set {dK′} ∪ C is convex in
G′.

Proof: For K ′ in KG′ such that KC ⊆ K ′, suppose that {dK′} ∪ C is not
convex in G′. So there is a chordless path (dK′ , f1, . . . , ft, c) in G′ with c in C
but f1, . . . , ft not in C. Because f1 must be in K ′, we know that for all v in KC

we must have {v, c} ∈ E (otherwise any chordless path in G we can extract from
(v, f1, . . . , ft, c) contradicts the convexity of C). There results a contradiction
with the maximality of KC . �

Lemmas 1 and 2 combined show that any algorithm solving Problem 2 in
polynomial time establishes Theorem 3. Indeed, we run the algorithm solving
Problem 2 on every maximal clique and save a maximum-weight solution C∗

among all the outputs of the executions. Then we remove the dummy vertices
from C∗ and we are done.

In what follows, the chordal graphs we consider are extended: we consider
that every maximal clique K contains a fixed, dummy vertex dK .

3 A special case solvable in polynomial time

In this section, we solve Problem 2 for a family of special instances. We first
define a partial order relation on the vertices of a given chordal graph. Then we
use this relation to reduce instances of Problem 2 in this family to the closure
problem in posets. The latter problem can be solved in polynomial time using
Picard’s algorithm [37].

3.1 The rooted poset

Let K be a maximal clique of a chordal graph G = (V,E). We define the binary
relation 6K on V as the set of pairs (u, v) ∈ V ×V such that there is a chordless
path (v, . . . , dK) that contains u. For the reduction we need to check that the
relation is indeed a partial order.

Theorem 4 For G = (V,E) a chordal graph and K a maximal clique of G, the
pair (V,6K) is a poset.
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It can be shown that the order relation we just defined is a special case of the
C-factor relation defined by Edelman and Jamison [11] (taking the convex set
C equal to {dK}). The poset PK = (V,6K) will be referred to as the K-rooted
poset of G. Figure 3 shows a chordal graph and the Hasse diagram for (V,6K)
with K = {1, 2, d{1,2}}.

Theorem 4 directly follows from the two lemmas below, respectively stating
that the relation is antisymmetric and transitive, and whose proofs are illus-
trated in Figure 2. The reflexivity of the relation is obvious.

Lemma 3 (Antisymmetry) For G = (V,E) a chordal graph and K a maxi-
mal clique of G, the relation 6K is antisymmetric.

Proof: For a and b in V , we show that we cannot have a 6K b, b 6K a
and a 6= b. Suppose a 6K b and b 6K a, so there are two chordless paths
(u1, . . . , uj , . . . , un) and (v1, . . . , vl, . . . , vm) with u1 = vl = a, uj = v1 = b and
un = vm = dK . If we take the path

(uj+1, . . . , un, vm−1, . . . , vl, u2, . . . , uj−1),

we can extract a chordless path p with starting vertex uj+1 and ending vertex
uj−1. The path p has at least three vertices because {uj+1, uj−1} is not in E.
The vertex b is not in p because a 6= b, so we can add it to p. But then, a
contradiction arises, because we obtain a chordless cycle with more than three
vertices due to the fact that b only forms an edge with uj−1 and uj+1 among
the considered vertices. �

Lemma 4 (Transitivity) For G = (V,E) a chordal graph and K a maximal
clique of G, the relation 6K is transitive.

Proof: For a, b and c three different vertices in V , suppose we have a 6K b and
b 6K c. So we have (u1, . . . , uj , . . . , un) and (v1, . . . , vl, . . . , vm), two chordless
paths with u1 = a, uj = v1 = b, vl = c and un = vm = dK . From the path
(u1, . . . , uj , v2, . . . , vm) we extract a chordless path (u1, . . . , ux, vy, . . . , vm). If
y ∈ {1, . . . , l} then c is in the chordless path and we have a 6K c. If y ∈
{l + 1, . . . ,m}, then from the following path:

(uj+1, . . . , un, vm−1, . . . , vy, ux, . . . , uj−1),

we can extract a chordless path p that avoids b, with starting vertex uj+1 and
ending vertex uj−1. A similar argument to the proof of the previous lemma
shows a contradiction. �

3.2 A reduction to the maximum-weight ideal in poset
problem

We now give a sufficient condition on a pair (G,K), where G is a chordal graph
and K a maximal clique of G, for the existence of a one-to-one correspondence
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vm−1

uj−1 uj+1
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u1 b, uj , v1

vm−1

dK
uj−1 uj+1

ux

vy

c

Figure 2: Illustrations of the proofs of antisymmetry and transitivity for the
relation 6K .

between the nonempty ideals of the K-rooted poset and the dK-rooted convex
sets. Given a chordal graph G with clique-separator graph G, for K in KG

and a = (S1, S2) in ArG , we say that a is K-blocking if S1 is a minimal s2dK-
separator for every s2 in S2 \ S1. There is also an interpretation of the K-
blocking property in the clique-separator graph. An arc (S1, S2) is K-blocking
if G − {S′ : S′ ∈ SG, S′ ⊂ S1} has connected components G1, . . . ,Gt such that
S2 is included in Gi and K in Gj for some distinct i and j, and that there is no
S in Gj such that (S, S1) is an arc in G. Figure 4 shows a clique-separator graph
in which (S1, S2) and (S6, S7) are K1-blocking arcs but (S2, S3) and (S5, S4) are
not.

As shown in Theorem 5, the absence of K-blocking arcs is a sufficient con-
dition for the correspondence between ideals of PK and dK-rooted convex sets.
Figure 5 below gives a schematic view of the second part of the proof.

Theorem 5 Let G = (V,E) be a chordal graph with clique-separator graph G,
a maximal clique K in KG such that there is no K-blocking arc in G and PK

be the K-rooted poset of G. Then a subset I of V is a nonempty ideal of PK if
and only if I is a dK-rooted convex set in G.

Proof: First, let C be a convex set containing dK . For c in C \ {dK}, any
vertex u such that u 6K c belongs to some chordless path. By convexity, we
have u ∈ C so C is an ideal of PK .

Now let I be an ideal of PK and suppose, for contradiction, that I is not
convex. Then by definition, there must exist x and y in I and a chordless path
(x, f1, f2, . . . , ft, y) such that f1, f2, . . . , ft do not belong to I. Note that x and
y must be incomparable in PK , as for otherwise f1 or ft would be contained
in I. In particular, they are both different from dK . Moreover we cannot have
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G = (V,E)

1

23
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d{3,4,5}
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d{4,6,7}

d{7,8}

(
V,6{1,2,d{1,2}}

)

d{1,2}

1 2

3 4 d{2,3,4}

d{3,4,5} 5

6 d{4,5,7}

7d{7,8} 8 d{4,6,7}

Figure 3: A chordal graph and its {1, 2, d{1,2}}-rooted poset.

K1 S1

K2 S2

K3 S3 K4 S4 K5

S5 K6 S6 K7

S7K8 K9

Figure 4: A clique-separator graph with exactly two K1-blocking arcs.

both {x, dK} and {y, dK} as edges, since otherwise {x, y} ⊆ K. So without loss
of generality, we assume that {x, dK} 6∈ E.

Let T be a minimal xy-separator included in the neighborhood N(x) of
x. Let S = T ∩ I. We claim that S is either an xdK-separator or a ydK-
separator. Suppose otherwise. Then there must be two chordless paths of
the form (x, u1, u2, . . . , un, dK) and (y, v1, v2, . . . , vn′ , dK) contained in I and
avoiding S. By concatenating them, we obtain a path from x to y in I avoiding
S, which contradicts the fact that T was an xy-separator. This proves the claim.

In fact, S is an xdK-separator because otherwise, we can extract a chordless
path from (y, ft, . . . , f1, x, . . . , dK) that avoids S and contradicts the fact that
S is an ydK-separator. Now consider a minimal xdK-separator S1 ⊆ S and a
minimal vertex separator S2 ⊆ T such that a = (S1, S2) is an arc of G. We
know such an arc exists because T is an xy-separator while S is not. We now
show that a is K-blocking, a contradiction.

By definition, a is K-blocking if and only if S1 is a tdK-separator for any
t ∈ S2 \ S1. Suppose for contradiction that for some such t there exists a
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chordless path from t to dK avoiding S1. We recall that t ∈ T and T ⊆ N(x),
hence {x, t} is in E. But then there is a chordless path from x to dK avoiding
S1, contradicting that S1 is an xdK-separator. Hence a is indeed K-blocking.

�

x y

f1 ft

u1 v1

dK

T

IS

Figure 5: Illustration of the second part of proof for Theorem 5.

So whenever G has no K-blocking arc, it is possible to compute a maximum-
weight dK-rooted convex set of G in polynomial time by first computing the
cover relation of the K-rooted poset, then using Picard’s algorithm [37]. Note
that the relation 6K can be computed in polynomial time as we show later.
There are some well-known examples of chordal graphs G such that for every
K in KG, the clique-separator graph of G has no K-blocking arc. For example,
k-trees have no arc in their clique-separator graph (see Patil [36] for details). We
recall that a k-tree is a graph formed by starting with a clique of size k + 1 and
then repeatedly adding vertices with exactly k neighbors inducing a clique. In
the next section, we will see how to deal with the case where the clique-separator
graph contains a K-blocking arc.

4 A polynomial-time algorithm

We now consider chordal graphs G with one or more K-blocking arcs in their
clique-separator graph, for some K in KG. We describe an algorithm for finding
a maximum-weight convex set rooted in K.

For a chordal graph G with clique-separator graph G we define the subgraph
G	 a for a = (S1, S2) in ArG as the graph induced by the union of S1 and the
connected component of G− S1 that intersects S2. Figure 6 shows an example
of the 	 operation. Note that G 	 a is also a chordal graph (as any induced
subgraph of a chordal graph is also chordal).

For a chordal graph G = (V,E), a subset R of V and a weight function w, we
denote by opt(G,R) a maximum-weight R-rooted convex set of G with respect
to w. If R is a singleton {r}, we will write opt(G, r) instead of opt(G, {r}). The
algorithm proceeds in two main steps. In a first preprocessing phase, for each
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G = (V,E)

1

2

3 4 5

d{2,3,4} d{2,4,5}

d{1,2}

G

{1, 2, d{1,2}} {2}

{2, 3, 4, d{2,3,4}}

{2, 4}

{2, 4, 5, d{2,4,5}}

a

H = G	 a

2

3 4 5

d{2,3,4} d{2,4,5}

H

{2, 3, 4, d{2,3,4}}

{2, 4}

{2, 4, 5, d{2,4,5}}

Figure 6: An example of the 	 operation.

arc a = (S1, S2), we compute opt(G	 a, S1) that is, a maximum-weight convex
set of G 	 a rooted in the vertex separator S1. After this preprocessing phase
we denote by label(a) the solution of this subproblem. An algorithm for this
preprocessing phase is described in Section 4.2.

4.1 Computation phase

In this second phase, we are going to use the labels of the arcs to compute
a maximum-weight dK-rooted convex. The algorithm proceeds essentially by
collapsing the vertices of the subgraph (G	a)−S1 into a single vertex za for each
arc a = (S1, S2) that is K-blocking. The weight of za is then set to w(label(a))−
w(S1), so that the weight of an optimal solution remains unchanged. This is
detailed in Algorithm 1.

Note that the number of K-blocking arcs decreases at each iteration of the
loop. Indeed, at least the vertex separator S2 disappears. One step of the
algorithm is illustrated by Figure 7. Since the goal is to find a maximum-weight
convex set in the graph, we need to remember that including the vertex za in a
solution for the collapsed instance amounts to choosing the set label(a) \ S1 in
a solution of the original instance.

Theorem 6 Let G = (V,E) be a chordal graph with a maximal clique K and
let a = (S1, S2) be a K-blocking arc of ArG. Let G∗ be the graph obtained
from G after applying Steps 2–4 of Algorithm 1 on a. Then w(opt(G, dK)) =
w(opt(G∗, dK)).
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Algorithm 1: Finding a maximum dK-rooted convex set in a chordal
graph

Input: a chordal graph G and its clique-separator graph G, a maximal
clique K of G, a weight function w, the function label

Output: a maximum-weight K-rooted convex set C
1 while ∃ a = (S1, S2) ∈ ArG such that a is K-blocking do
2 Identify the vertices of (G	 a)− S1 into a new vertex za
3 w(za)← w(label(a))− w(S1)
4 Add a dummy vertex to the new maximal clique {za} ∪ S1

5 Update G
6 Use Picard’s algorithm to compute a maximal weight dK-rooted convex

set C of G
7 Return C

S1

S2

G

S1

S2

a

S1
G∗

S1

{za, d{za}∪S1
} ∪ S1

d{za}∪S1
za

Figure 7: Illustration of the transformation in Algorithm 1 and the implication
for the clique-separator graph.

Before proving Theorem 6, we make two simple observations.

Lemma 5 Let G be a chordal graph, S be a minimal vertex separator of G and
let V1 and V2 be the vertex sets of two distinct components of G− S. If C1 and
C2 are two S-rooted convex sets in the graphs induced by V1 ∪ S and V2 ∪ S
respectively, then C1 ∪ C2 is a convex set of G.

Proof: By contradiction, suppose there are c and c′ in C1 ∪C2 and a chordless
path (c, f1, . . . , fn, c

′) of G with f1, . . . , fn outside of C1 ∪C2. There must exist
i in {1, . . . , n} such that fi is in S otherwise we have a contradiction with the
fact that S is a separator. But then, fi ∈ C1 ∪C2 because S ⊆ C1 ∩C2, and we
have a contradiction. �

Lemma 6 Let G = (V,E) be a chordal graph with a maximal clique K and let
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a = (S1, S2) be a K-blocking arc of ArG. Then, for a dK-rooted convex set C
in G that contains some vertex of (G	 a)− S1, we have S1 ⊂ C.

Proof: By contradiction, let s1 be in S1 \ C and let c be in C ∩ (G	 a− S1).
We know that dK and c are not in the same connected component of G − S1.
Because a is K-blocking, there is a chordless path (dK , v1, . . . , vn, s1, s2) with
s2 ∈ S2 \ S1, s1 ∈ S1 and vn /∈ S1. There is also a path (s1, s

′
2, . . . , c) in G	 a

with s′2 ∈ S2\S1 from which we can extract a chordless path that only intersects
S1 in s1. So we build a path (dK , v1, . . . , vn, s1, . . . , c) that can not have a chord,
a contradiction. �

Proof: [Proof of Theorem 6] We decompose the equality into two inequalities.
First, we show w(opt(G, dK)) > w(opt(G∗, dK)). More precisely, we show that
for every dK-rooted convex C∗ of G∗, we have a dK-rooted convex set C of
G with w(C) = w(C∗). If za /∈ C∗ we take C = C∗ and we are done. Now,
if za ∈ C∗, we define C as the union of C∗ \ {za} (which is convex because
N(za) induces a clique) with label(a). Obviously w(C) = w(C∗), we only need
to check that C is convex. Because a is K-blocking, N(za) \ {d{za}∪S1

} = S1

is a minimal dKza-separator, hence C \ {za} must include S1. We also know
that S1 is contained in label(a). From Lemma 5, C is convex in G, therefore
w(opt(G, dK)) > w(opt(G∗, dK)).

We now show w(opt(G, dK)) 6 w(opt(G∗, dK)). More precisely, for every
dK-rooted convex C of G, we have a dK-rooted convex set C∗ of G∗ with
w(C) 6 w(C∗). If C does not intersect (G 	 a) − S1, we take C∗ = C and we
are done. If C does intersect (G 	 a) − S1, we define C∗ as the union of za
with the vertices of C that also are in G∗. We have w(C) 6 w(C∗), otherwise
we contradict the maximality of label(a). From Lemma 6, the vertices of C
that are also in G∗ form a convex set containing S1. Since {za} ∪ S1 is a
clique, hence is convex, Lemma 5 implies that C∗ is also convex. So we have
w(opt(G, dK)) 6 w(opt(G∗, dK)). �

4.2 Preprocessing

We now describe the algorithm for computing the labels for the arcs in G. This
step is done only once and does not depend on the root of the convex set we are
looking for. Recall that the label of an arc a = (S1, S2) is the maximum-weight
convex set of G	 a rooted in S1. Note that this algorithm uses Algorithm 1 as
a subroutine on smaller graphs.

The algorithm is composed of two main ingredients. First, we need to label
the arcs in an order such that the computation only involves arcs that are already
labeled. We prove that we can achieve this by following the order of inclusion
of the graphs G	a. Second, in order to compute the optimal convex set rooted
in S1, we need to check all possible roots dK such that S1 is contained in K.
This is detailed in Algorithm 2.

In step 6 of Algorithm 2, we can force S1 to be in the solution C∗ by assigning
a sufficiently large weight to each vertex of S1 before calling Algorithm 1. More
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Algorithm 2: Labeling the arcs in G
Input: a chordal graph G and its clique-separator graph G, a maximal

clique K of G, a weight function w
Output: the label function

1 while ∃ an arc in ArG without label do
2 Select a = (S1, S2) ∈ ArG without label such that every arc a′ with

G	 a′ ⊂ G	 a is already labeled
3 M ← S1

4 Let Ka be the set of maximal cliques of G that contain S1 and are
contained in G	 a

5 for K in Ka do
6 Using Algorithm 1, compute a maximum-weight convex set C∗

of G	 a rooted in dK and containing S1

7 M ← maxw{M,C∗}
8 label(a)←M

precisely, we assign them the weight
∑

v∈V |w(v)|. By Lemma 2, looking for all
the dK-rooted convex sets with K in Ka ensures that we will find a maximum-
weight S1-rooted convex set of G	 a.

Note that Algorithm 2 labels the arcs in an order compatible with the partial
order of inclusion of the graphs G	a. The following lemma guarantees that the
K-blocking arcs that will be processed by Algorithm 1 are all already labeled.

Lemma 7 Let G be a chordal graph with clique-separator graph G and let a =
(S1, S2) in ArG and a′ = (S3, S4) an arc of the clique-separator graph of G	 a.
If G	 a′ 6⊂ G	 a, then a′ is not K-blocking for any maximal clique K in Ka.

Proof: Suppose that G	 a′ 6⊂ G	 a. We show that S3 is not a minimal s4dK-
vertex separator for s4 in S4 \ S3. If G 	 a′ = G 	 a, then dK is connected to
s4 in (G	 a′)− S3 and we have the result.

If G	 a′ 6= G	 a, there is v in G	 a′ such that v is not in G	 a. So there
must exist a chordless path p from s4 to v that avoids S3. But, because S4 is
in G	 a and v is not, the path p must contains a vertex s1 ∈ S1. Now, because
{s1, dK} is an edge in G, we can deduce the existence of a path from s4 to dK
that avoids S3. �

A complete execution of the algorithm on an example is given in Section 6.

5 Time complexity

From Algorithms 1 and 2, it seems straightforward that the time complexity
needed to solve the maximum-weight convex set problem on a chordal graph
G = (V,E) is bounded by a polynomial in |V | and |E|. More precisely, we
see that the complexity of the algorithm used to solve Problem 1 on G will
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be bounded by that of the preprocessing step. Indeed, the preprocessing step
involves |V ||E| calls to Picard’s algorithm. We recall that the time complexity of

Picard’s algorithm in our case is O(|V ||E| log( |V |
2

|E| )). Hence the overall running

time of our algorithm is O(|V |2|E|2 log( |V |
2

|E| )). If we denote by n the number of

vertices of the input graph, then this running time is O(n6 log n).
To prove that the maximum-weight convex set problem on a chordal graph

can be solved in this running time we need to show that all the information we
need in Algorithms 1 and 2 can be computed in a time bounded asymptotically
by the time of the preprocessing step. More precisely, given the chordal graph

G, we can compute the following information in O(|V |2|E|2 log( |V |
2

|E| )) time: the

clique-separator graph G of G, the vertices in G	a for each a in ArG , the cliques
in KG for which a is K-blocking for each a in ArG , the clique in Ka for each
a in ArG , the matrix of the relations 6K for each K in KG and a total order
on the arcs G such that G 	 a ⊆ G 	 a′ implies a < a′ for a, a′ in ArG . The
detailed proofs are given below. This concludes the proof of Theorem 3.

5.1 Detailed time complexity

We now prove that for a chordal graph G = (V,E) given by its adjacency matrix,
and a weight function on the vertices, the running time of our algorithm is in

O(|V |2|E|2 log( |V |
2

|E| )), in the worst-case. We need to check that the information

needed for the execution of Algorithms 1 and 2 can be computed in advance,
only once for a given graph. We recall that for a graph G, finding a connected
component of G−X that contains v where X ⊆ V and v ∈ V \X can be done
in time O(|V | + |E|) as stated by Hopcroft and Tarjan [23]. We will use the
following lemma.

Lemma 8 Given a (connected) chordal graph G = (V,E) with clique-separator
graph G, we have |V | − 1 6 |E| and |ArG | 6 |E|.

Proof: The first inequality follows from connectedness. For the second inequal-
ity, notice each arc (S1, S2) ∈ ArG is generated by two cliques S1 and S2 such
that S1 ⊂ S2 and there is no vertex S3 such that S1 ⊂ S3 ⊂ S2. We assign to
each arc a = (S1, S2) a unique edge {s1, s2} in G with s1 ∈ S1 and s2 ∈ S2.
This implies |ArG | 6 |E|. �

Lemma 9 Given a chordal graph G = (V,E) and its clique-separator graph G,
listing G	 a for all a in ArG can be done in O(|E|2).

Proof: For each arc a = (S1, S2), we need to find the connected component of
G − S1 that intersects S2. Using Lemma 8, we have O(|E|2) as total running
time. �

Lemma 10 Given a chordal graph G = (V,E) with clique-separator graph G,
obtaining the list, for each a in ArG, of the cliques in KG for which a is K-
blocking takes O(|E|2|V |2).
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Proof: By Lemma 9 we can obtain the list of G	a for all a in ArG in O(|E|2).
Then, for each a = (S1, S2) in ArG , and for each K in KG, we check two
conditions. First, that dK is not in G 	 a (i.e. S1 is a dks2-separator for s2 in
S2). Second, that there is no a′ = (S3, S1) in ArG such that dK is not in G	 a′

(i.e. S1 is minimal among the s2dK-separator for every s2 in S2). �

Lemma 11 Given a chordal graph G = (V,E) and its clique-separator graph
G, obtaining the relations 6K for all K in KG takes time O(|V |2|E|2).

Proof: By Lemmas 9 and 10 we can obtain, for each arc a in ArG , the vertices
in G	a and the cliques in KG for which a is K-blocking in ArG in O(|E|2|V |2).
First, for all K in KG, we set dk 6K k for all k in K. Second, for all K in KG,
and for all a = (S1, S2) in ArG such that a is K-blocking, we set s 6K u for all
s ∈ S1 and u ∈ (G	 a)− S1. �

Lemma 12 Given a chordal graph G = (V,E) and its clique-separator graph
G, sorting the arcs of ArG such that G	 a ⊆ G	 a′ implies a < a′ can be done
in O(|V ||E|2) time.

Proof: We use Lemma 9 to obtain a list of G 	 a for all a in ArG . The
comparison between G	a and G	a′ for a, a′ in ArG takes O(|V |) time. Hence
sorting takes O(|V ||E|2) time. �

Lemma 13 Given a chordal graph G = (V,E) with clique-separator graph G
and the list of G	a for all a in ArG, obtaining elements in Ka for all a in ArG
takes O(|E||V |2) time.

Proof: For each arc a = (S1, S2) in ArG , we look at each K ∈ KG such that
S1 ⊂ K, and we check if the clique is in G	 a. �
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Figure 8: A chordal graph and its clique-separator graph for illustrating Algo-
rithms 1 and 2.
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S3K4 K5

Figure 9: The graph G	 a2 and its clique-separator graph.

6 Example

Looking at Algorithms 1 and 2, it seems possible to merge them to save com-
putation time. But the situation is not that simple, because in Theorem 6, the
assumption that a is K-blocking cannot be removed. To illustrate the mecha-
nism of the two algorithms, we give an example. Figure 8 shows a chordal graph
G, its clique-separator graph G and a weight function. The goal is to compute
opt(G, dK1

).

We look at the preprocessing phase first, and we use Algorithm 2 to label
a1 and a2. Because G 	 a2 ⊂ G 	 a1, we begin by computing label(a2). In
other words, we want to compute a maximum-weight S2-rooted convex set of
G 	 a2, illustrated in Figure 9. There is no K-blocking arc in G 	 a2 for any
K in Ka2 , we can directly use Picard’s algorithm on each clique in Ka2 after
temporarily changing the weight of the vertices in S2 in order to impose that S2

be contained in the solution. So Picard’s algorithm is used two times, with K4

and K5, and we keep the best solution among the outputs. The result will be a
convex set of weight 1, for instance {2, 4, 6, 7, 8, dK5

}, which becomes label(a2).

Now we compute label(a1), so we are looking for an S1-rooted convex set
in G 	 a1 represented in Figure 10. We temporarily change the weight of the
vertices in S1 and we run Algorithm 1 on the graph G	 a1 four times, with the
cliques K2, K3, K4 and K5. For the clique K4 there is no K4-blocking arc and
we use Picard’s algorithm. The same process is applied with K5. For the clique
K2, the arc a2 is K2-blocking but already labeled. So we identify the vertices of
(G	 a2)− S2 to a vertex za2 with weight w(label(a2))− w(S2) = 1. After this
operation, there is no K2-blocking arc and we use Picard’s algorithm. Figure 11
shows a visual representation of the transformation. The same process is applied
with K3. For the labeling of a1 we have used Picard’s algorithm four times. A
best S1-rooted convex set of G	 a1 is {2, 6, dK4

} with weight 4.

Now every arc is labeled, and we look at the computing phase. Because we
want a maximum-weight dK1

-rooted convex set, we run Algorithm 1. There is
only one K1-blocking arc, namely a1. So we identify the vertices of (G	a1)−S1

to a vertex za1
with weight w(label(a1))−w(S1) = 4. After this operation, there
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Figure 10: The graph G	 a1 and its clique-separator graph.
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Figure 11: The graph after the identification of vertices in order to remove
K2-blocking arcs.
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1

2

za1

dK1

dK7 K1 S1 {2, za1 , dK7}

Vertex Weight

1 1
2 0
za1 4

Figure 12: The state of the graph after removing the K1-blocking arc.

is no K1-blocking arc as shown in Figure 12, and we use Picard’s algorithm to
find {1, 2, za1

, dK1
} as a maximum-weight K1-rooted convex set, which gives rise

to the convex set C∗ = {1, 2, dK1
} ∪ (label(a1) \ S1) = {1, 2, 6, dK1

, dK4
} of G,

with w(C∗) = 5.

7 Conclusion

We described and studied an algorithm solving the maximum-weight convex set
problem in chordal graphs in polynomial time. Our approach relies on structural
results of chordal graphs (given by the clique-separator graph) and an efficient
algorithm that finds a maximum-weight ideal in a poset (Picard’s algorithm).
We hope our paper will pave the way for further research on other maximum-
weight convex set problems, for instance in convex geometries that arise from
AT-free graphs (see Chang et al. [6]). It would be interesting to better assess
the frontier between convex geometries for which the maximum-weight convex
set problem is solvable in polynomial time, and the other convex geometries.
Finally, we would like to thank both reviewers for their insightful comments.
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