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with Approximately Optimal Height
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Abstract

In this paper, we study how to draw trees so that they are planar,
straight-line and respect a given order of edges around each node. We
focus on minimizing the height, and show that we can always achieve a
height of at most 2pw(T ) + 1, where pw(T ) (the so-called pathwidth) is
a known lower bound on the height of the tree T . Hence our algorithm
provides an asymptotic 2-approximation to the optimal height. The width
of such a drawing may not be a polynomial in the number of nodes.
Therefore we give a second way of creating drawings where the height is
at most 3pw(T ), and where the width can be bounded by the number of
nodes. Finally we construct trees T that require height 2pw(T ) + 1 in all
planar order-preserving straight-line drawings.
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1 Introduction

Let T be a tree, i.e., a connected graph with n nodes and n − 1 edges. Trees
occur naturally in many applications, e.g., family trees, organizational charts,
directory structures, etc. To be able to understand and study such trees, it
helps to create a visualization, i.e., to draw the tree. This is the topic of this
paper.

There are many different requirements that one could impose on tree-draw-
ings: Does the drawing have to be [strictly] upward (parents are [strictly] above
their children), order-preserving (a fixed cyclic order of edges at each node is
respected), straight-line (edges are drawn as straight line segments), and do we
care about minimizing the area or the number of layers? One could further
distinguish by the maximum degree of the tree and by imposing further condi-
tions on how edges can be drawn. All tree-drawing algorithms require that the
drawing is planar (has no crossings), and nodes are placed at grid points.

In consequence, there are many results concerning how to draw trees. A
good overview of results up till 2014 was given by Di Battista and Frati [6]. In
a recent breakthrough paper, Chan [4] lowered the long-standing area-bounds
for some of the drawing models. It has also only recently been shown that
minimizing the area is NP-hard in some of the upward tree-drawing models
[3, 1].

In this paper, we focus on the number of layers needed for planar, straight-
line, order-preserving drawings of trees of arbitrary degrees, but we do not
require drawings to be upward. (We often omit “planar, straight-line, order-
preserving”, as we study no other drawing-types except during the literature-
review.) Formally, a drawing is said to be a k-layer drawing if all y-coordinates
(possibly after translation) are in the range {1, . . . , k}; we also say that it has
height k and layers 1, . . . , k (from top to bottom). We do not always require
x-coordinates to be integers, but when we do, then the drawing has width w if
all x-coordinates are in the range {1, . . . , w}.

It has been known since 1992 that any n-node tree has a drawing on log2(n+1)
layers [5, 6]. (This, and many of the papers listed below, bound the width, not
the height, but since we do not require drawings to be upward this is the same
after a 90◦ rotation.) This bound is tight for the complete ternary tree [5] and
hence cannot be improved in terms of n. However, some trees can be drawn on
significantly fewer layers. To this end, Suderman [12] showed that every tree
T can be drawn on d 32pw(T )e layers, where pw(T ) denotes the pathwidth of a
tree T (defined in Section 2). Since any tree T requires at least pw(T ) layers
[7], Suderman hence gives an asymptotic 3

2 -approximation on the number of
layers required by a tree. (“Asymptotic” means that up to a constant term
his number of layers is within a factor of 3

2 of the optimum.) Later Mondal et
al. showed that the minimum number of layers required for a tree can be found
in polynomial time [10].

All the results listed above were for unordered trees, i.e., the drawing algo-
rithm is allowed to rearranged the subtrees around each node arbitrarily. In
contrast to this, we study order-preserving drawings. Recall that this means
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that we are given an ordered tree, i.e., a fixed cyclic order of edges around each
node, and the drawing must respect this. Garg and Rusu [8] showed that any
ordered tree has an order-preserving upward drawing with O(log n) layers and
area O(n log n); the number of layers can be seen to be at most 3 log n. In a
recent paper [2] we showed that the number of layers can also be bound by
2rpw(T )− 1 (where rpw(T ) is the so-called rooted pathwidth); this is at most
4pw(T ) + 1 and hence an asymptotic 4-approximation for the number of layers
in an ordered tree-drawing.

In this paper, we give a different construction for order-preserving drawings
of trees which is inspired by the approach of Suderman [12]. We show that
every tree T has an order-preserving drawing on 2pw(T )+1 layers; this is hence
an asymptotic 2-approximation algorithm on the number of layers for order-
preserving drawings. We also show that for some trees T , we cannot hope to do
better, i.e., T needs 2pw(T ) + 1 layers.

In the construction that we give here, the width is potentially very large.
We therefore give another (and in fact, much simpler) construction that draws
a tree T on 3pw(T ) layers and for which the width is n. Furthermore, our
drawing is a so-called rectangle-of-influence drawing (see [9]). Since any tree
has pw(T ) ≤ log3(2n+1) [11], our results are never worse than the ones of Garg
and Rusu, and frequently better.

2 Preliminaries

The pathwidth is a well-known graph-parameter, usually defined as the smallest
k such that a super-graph of the graph is an interval graph that can be colored
with k + 1 colors. For trees, there exists an equivalent simpler definition [12]
given below. For a tree T and a path P , we use T \ P to denote the forest
obtained by deleting all vertices of P .

Definition 1 The pathwidth pw(T ) of a tree T is 0 if T is a single node, and
minP maxT ′⊆T\P {1 + pw(T ′)} otherwise. Here the minimum is taken over all
paths P in T , and the maximum is taken over all subtrees T ′ of T \ P .

A path where the minimum of Definition 1 is achieved is called a main
path. Note that we may assume that a main path connects a leaf to a leaf, for
otherwise making it longer gives another main path. In particular, if T is not a
single-node tree, then the main path contains at least one edge.

We draw trees by splitting them at a path, drawing subtrees recursively,
and merging them. The following terminology is helpful. For a tree T and a
strict sub-tree C, a linkage-edge is an edge e of T with exactly one end in C
(called the linkage-node) and the other end not in C (called the anchor-node).
Usually C will be a connected component of T \ P for some path P , and then
the linkage-edge of C is unique. An external linkage-edge of a tree T is an edge
e that belongs to an (unspecified) super-tree T ′ of T and has exactly one end
in T and the other in T ′ − T .
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Figure 1: An HVA-drawing (defined in Section 3) on 4 layers. (v, x) is the
linkage-edge of C, with v the anchor-node and x the linkage-node. The drawing
is ev-exposed (presuming the order in the supertree is respected), but not ex-
exposed since x is not unique among the rightmost nodes.

To be able to merge subtrees, we need to specify conditions on subtrees,
concerning not only where linkage-nodes are placed, but also where external
linkage-edges could be drawn such that edge-orders are respected.

Definition 2 Let Γ be an order-preserving drawing of an ordered tree T , and
let e = (v, u) be an external linkage-edge of T with v ∈ T .

We say that Γ is e-exposed if v is in the top or bottom level, and after
inserting e by drawing outward (up or down) from v, the drawing respects the
edge-order at v in the super-tree of T that defined the external linkage-edge.

We say that Γ is e-reachable if v is drawn either as unique leftmost or as
unique rightmost node, and after inserting e by drawing outward (left or right)
from v, the drawing respects the edge-order at v in the super-tree of T that
defined the external linkage-edge.

See also Fig. 1. We sometimes use the terms top-e-exposed, bottom-e-
exposed, left-e-reachable and right-e-reachable if we want to clarify the place-
ment of node v.

Occasionally, we modify drawing Γ by doing linear transformations; this
preserves planarity and makes it easier to merge Γ. We list below the ones
that we use and which properties they preserve; all of them preserve the height
of the drawing. The simplest transformation is a a horizontal flip (mirroring
Γ across a vertical line), which reverses the orders of edges at all nodes, but
preserves whether Γ is e-exposed or e-reachable. We sometimes do a rotation
by 180◦, which preserves edge-orders and whether Γ is e-exposed or e-reachable,
but converts a top-e-exposed drawing into a bottom-e-exposed one and vice
versa.

We also sometimes shrink Γ horizontally, i.e., map any point (x, y) to (εx, y)
for some small ε > 0. This preserves edge-orders and whether Γ is e-exposed or
e-reachable. Note that this may make x-coordinates non-integral, which is not
a problem since (with the exception of the last step of Theorem 3) we do not
require integral x-coordinates. Another useful operation is a skew, where any
point (x, y) of Γ is mapped to point (x+ αy, y) for some constant α. This pre-
serves whether Γ is e-exposed, but does not necessarily preserve e-reachability,
because the end v of e that is required to be leftmost or rightmost may cease
to be so after a skew.
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Finally we explain the reversal trick, which will help cutting down on the
number of cases that we need to consider. For a given tree T , let T rev be the tree
obtained from T by reversing all edge-orders at all nodes. Note that a horizontal
flip of a drawing of T gives a drawing of T rev . During the constructions described
below, we will sometimes need that three neighbors w,w′, w′′ of a node v occur
in clockwise order around v. This may or may not be true in T , but it always
holds in one of T and T rev . Therefore, if need be, we draw T rev rather than T ,
and flip the final drawing horizontally to obtain the desired drawing of T .

3 3pw(T)-Layer HVA-Drawings

In this section, we construct special types of drawings of trees that we call HVA-
drawings: Every edge is either Horizontal, Vertical, or connects Adjacent layers.
We will see (in the proof of Theorem 3) that such drawings can be modified
without affecting height or planarity to achieve small width. We construct such
drawings using induction on the pathwidth; the following is the hypothesis.

Lemma 1 Let T be an ordered tree, and let e be an external linkage-edge with
end v ∈ T . Then T has an e-exposed HVA-drawing on 3pw(T ) + 1 layers.
Moreover, if T has at least two nodes and a main path that ends at v, then it
has such a drawing on 3pw(T ) layers.

We first give an outline of the idea of the proof of Lemma 1. Exactly as
in Suderman’s construction for his Lemma 7 [12], we split the tree twice along
paths before recursing, choosing the paths such that they cover a main path
and reach the node v specified in Lemma 1. All remaining subtrees then have
pathwidth at most pw(T ) − 1, are hence drawn at most three units smaller
recursively, and can be merged into a drawing of these two paths. The main
difference between our construction and Suderman’s is that we must respect the
order, both within the merged subtrees and near the external linkage-edge. This
requires a more complicated drawing for the path, and more argumentation for
why we have enough space to merge.

We phrase our main step (“how to merge subtrees of a path”) as a lemma in
terms of an abstract height-bound k, so that we can use it for different values of
k. For one of these merges, it is necessary to allow one component to be one unit
taller than the others; the crux to obtain the 3pw(T )-bound is to realize that
one such component can always be accommodated. Let χ(x) be an indicator
function that is 1 if x is true and 0 otherwise.

Lemma 2 Let T be an ordered tree with an external linkage-edge e1 = (v0, v1)
with v1 ∈ T . Let P = v1, . . . , vl (the “draw-path”) be a path in T , and let CS

(the “special component”) be one component of T \ P . Fix an integer k ≥ 1.
Assume that any component C ′ of T \P has an e′-exposed HVA-drawing on

k′ layers, where k′ = k + χ(C ′=CS) and e′ is the linkage-edge of C ′. Then T
has an e1-exposed HVA-drawing on k + 2 layers.
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Figure 2: Merging at a draw-path P drawn as a battlement curve. In this and all
following pictures the draw-path P is drawn turquoise (thick), and components
that require special consideration are orange (patterned).

Proof: We start by drawing path P as a battlement curve on k + 2 layers.
Draw (v1, v2) as a vertical line segment connecting the top and bottom layer,
and then alternate horizontal edges and vertical edges such that all vertices are
on the top and bottom layer, the curve is x-monotone, and v1, v2 are leftmost.
See also Fig. 2. We have a choice whether v1 is in the top or bottom layer, and
make this choice such that the anchor-node vs of the special component CS is
drawn in the top layer. Either way, v1 is in the top or bottom layer, and so e1
is exposed as long as we merge components while respecting edge-orders.

We think of the battlement curve as being extended at both ends with nodes
v0 and vl+1, vl+2. This is done only to avoid having to describe special cases
below when anchor-vertices are v1 or vl; the added edges are not included in
the final drawing.

For any component C ′ of T \P , the order of edges at its anchor-node vj forces
on which side of the battlement curve C ′ should be inserted. More precisely, C ′

should be placed below the battlement curve if and only if at the anchor-node
vj of C ′ the ccw order of edges around vj contains 〈(vj , vj−1), the linkage-edge
of C ′, (vj , vj+1)〉 as a subsequence. Using the reversal-trick, if need be, we
can hence ensure that the special-component CS should be placed below the
battlement curve. Also recall that we want an e1-exposed drawing, and used
edge e1 = (v0, v1) as extension of the battlement curve. Components with
anchor-node v1 will be placed below/above the battlement-curve so that the
edge-order is correct relative to e1. Since e1 is drawn horizontally, we could
therefore draw it outward from v instead and satisfy the edge-order condition
of “e1-exposed”.

Now we explain how to merge the drawing Γ′ of component C ′. Let us
first assume that Γ′ has height at most k, as is the case for all components
except CS . Say Γ′ must be added below the battlement curve (adding it above
the battlement curve is symmetric). The anchor-node vj of C ′ is incident to a
region below the battlement curve, say this is the region below the horizontal
edge (vh, vh+1) for some h ∈ {j − 2, j − 1, j, j + 1}.

Consider Fig. 2. The linkage-edge e′ of C ′ is exposed in Γ′. If vj = vh
or vj = vh+1, then rotate Γ′, if needed, such that it is top-e′-exposed, so the
linkage-node of C ′ is in the top layer of Γ′. Place Γ′ in the k layers below the top
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one, then e′ connects two adjacent layers and we obtain an HVA-drawing. (We
assume for this and all later merging-steps that Γ′ has been shrunk horizontally
sufficiently so that this fits.) If vj = vh−1 or vj = vh+2, then rotate Γ′, if needed,
such that it is bottom-e′-exposed, so the linkage-node of C ′ is in the bottom
layer of Γ′. Place Γ′ in the k layers above the bottom one, then e′ connects two
adjacent layers and we obtain an HVA-drawing. If more than one component is
adjacent to vj , then place these components in the order dictated by the edge
order at vj . One easily verifies planarity, that we have an HVA-drawing, and
that the drawing is order-preserving.

It remains to explain how to deal with the special component CS whose
drawing may use k + 1 layers. We ensured that the anchor-node vs of CS is
drawn in the top layer, and CS should be placed below the battlement curve.
We can hence insert it as in the first case above: the bottom layer of the region
below (vs, vs+1) is free to be used for the drawing of CS . See Fig. 2. �

Now we are ready to prove Lemma 1, i.e., to build an e-exposed HVA-drawing
of a tree T .

Proof: We proceed by induction on pw(T ). In the base case, pw(T ) = 0, so
T is a single node that can be drawn on 1 = 3pw(T ) + 1 layers; the external
linkage-edge is exposed automatically. For the induction step, pw(T ) ≥ 1. Let
Pm be a main path of T . We have three cases.

In the first case, Pm begins at the node v that is the end of e in T . Apply
Lemma 2 with draw-path P := Pm, external linkage-edge e1 := e and k =
3pw(T ) − 2. (We have no need for a special component CS in this case.) Any
component C ′ of T \P has pathwidth at most pw(T )−1, and hence by induction
can be drawn on 3(pw(T )−1)+1 = 3pw(T )−2 = k layers with its linkage-edge
exposed. Therefore, T can be drawn on k + 2 = 3pw(T ) layers as desired.

In the next case, Pm contains v, but does not end at v. Removing an edge
(v, s) incident to v from Pm splits it into two paths X and S, named such that
X ends at v and S ends at s. See Fig. 3(a). Apply Lemma 2 with draw-path
P := X, external linkage-edge e1 := e, k = 3pw(T )− 1, and special component
CS as the component of T \ P that contains s. Any component C ′ 6= CS of
T \ P has pathwidth at most pw(T )− 1, and hence by induction can be drawn
on 3(pw(T ) − 1) + 1 = 3pw(T ) − 2 < k layers with its linkage-edge exposed.
(We can pad the drawing with an empty layer suitably to achieve that the
height is exactly k.) The special component CS may have pathwidth pw(T ),
but can use S as its main path. Since S ends at the linkage-node s of CS ,
therefore by induction CS can be drawn on 3pw(T ) = k + 1 layers with its
linkage-edge (s, v) exposed. So the lemma can be applied, and T can be drawn
on k + 2 = 3pw(T ) + 1 layers as desired.

In the final case, Pm does not contain v. Let Cv be the component of T \Pm

that contains v, and let x be the anchor-node of Cv. Let R be the path in T
from v to x. Removing an edge (s, x) incident to x from Pm splits it into two
paths X and S, named such that X ends at x and S ends at s. See Fig. 3(b).

Apply Lemma 2 with draw-path P := R ∪ S, external linkage-edge e1 := e,
k = 3pw(T ) − 1, and special component CS as the component of T \ P that
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Figure 3: Finding the draw-path if node v is not an end of the main path Pm

(black, thick). (a) v is in Pm, and we use X as the draw-path. (b) v is in a
component Cv of T \ Pm, and the draw-path consists of X and path R (blue,
thick dashed) that leads from Pm to v. To avoid cluttering we omit subtrees.

contains s. Any component C ′ 6= CS of T \P has pathwidth at most pw(T )−1,
because it is either a component of T \ Pm (hence has smaller pathwidth by
definition of a main path) or a subtree of Cv (hence pw(C ′) ≤ pw(Cv) < pw(T )
since Cv is a component of T \ Pm). Therefore any component C ′ 6= CS of
T \ P can by induction be drawn on 3(pw(T )− 1) + 1 = 3pw(T )− 2 < k layers
with its linkage-edge exposed. The special component CS may have pathwidth
pw(T ), but can use S as its main path. Since S ends at the linkage-node s of
CS , therefore by induction CS can be drawn on 3pw(T ) = k + 1 layers with its
linkage-edge (s, x) exposed. So the lemma can be applied, and T can be drawn
on k + 2 = 3pw(T ) + 1 layers as desired. �

Theorem 3 Any ordered tree T has an order-preserving planar straight-line
HVA-drawing with height at most max{1, 3pw(T )} and width at most |V (T )|.

Proof: If T has pathwidth 0 then it is a singleton node and the bound is obvious,
so assume pw(T ) ≥ 1. Fix a main path of T , and insert a dummy external-
linkage-edge at its end. The resulting tree has the same pathwidth. Now apply
Lemma 1 to obtain an order-preserving planar straight-line HVA-drawing Γ of
the required height.

It remains to argue the width, for which we need a small detour. A rectangle-
of-influence drawing (see e.g. [9]) is a straight-line drawing in the plane such that
for any edge (u,w), the minimum axis-aligned rectangle R(u,w) containing u
and w is either the line segment uw, or its interior contains no other nodes of
the drawing. It is well-known that in a rectangle-of-influence drawing we can
change the x-coordinates without affecting planarity, as long as relative orders
are preserved.

Observe that any HVA-drawing is a rectangle-of-influence drawing, because
any edge (u,w) is either horizontal or vertical (then R(u,w) is the line segment
uw) or (u,w) connects adjacent layers (then the interior of R(u,w) consists of
points that are between layers and hence contains no other nodes).
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So modify the obtained drawing Γ into drawing Γ′ as follows. Enumerate
all x-coordinates of nodes as x1, . . . , xW with x1 < x2 < · · · < xW , and then
assign x(w) := i if node w had x-coordinate xi. Keep y-coordinates unchanged.
Clearly the relative orders of coordinates have been preserved, so Γ′ is planar
since Γ was planar. Also all edges are again horizontal, vertical or connect
adjacent layers, and the height is unchanged. The width is W ≤ |V (T )|, which
gives the result. �

4 (2pw(T) + 1)-Layer Drawings of Ordered Trees

We now improve the number of layers, at the cost of not having an upper bound
on the width. Our construction is very similar to the one of Suderman for his
Lemma 19 [12], except that we must be more careful when merging subtrees so
that the order is preserved. There are two key differences to the construction
from the previous section:

1. We split three times along paths, and achieve that the resulting subtrees
have pathwidth at most pw(T )− 2.

2. In the top-level split, we do not require that the draw-path P begins at
the node v at which the external linkage-edge e attaches.

The second change makes the top-level split much more efficient, but means
that when recursing in the sub-tree Cv that contains v, we now must consider
two linkage-edges: the external linkage-edge e and the linkage-edge from Cv to
P . (We make one exposed and the other reachable.) This will complicate the
induction hypothesis (which is expressed in the following lemma) significantly.

Lemma 3 Let T be an ordered tree and e be an external linkage-edge.
(a) T has a drawing on 2pw(T ) + 1 layers that is e-exposed.
(b) Let e′ be a second external linkage-edge that has no common end with e.

Then T has a drawing on 2pw(T ) + 2 layers that is e-exposed and e′-reachable.

This lemma will be proved by induction on the pathwidth. For the induction
step, we need to merge components into a drawing of a path. Since this will be
done repeatedly with different paths, we phrase this merging-step as a lemma
using as height-bound an abstract constant k. This lemma is quite similar to
Lemma 2, but has more complicated conditions that are illustrated in Fig. 4.

Lemma 4 Let T be an ordered tree with an external linkage-edge e1 = (v1, v0)
with v1 ∈ T . Let the draw-path P = v1, . . . , vl be a path of T starting at v1. Let
ev = (v, u) be some other external linkage-edge with v ∈ T . Fix some k ≥ 1.

Assume that every component C ′ of T \P that is not Cv (defined below) can
be drawn on k layers with its linkage-edge exposed. Assume further that one of
the following conditions holds (see also Fig. 4):

I. v ∈ P and v 6= v1. [No component Cv is needed in this case.]
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II. v /∈ P , v is not adjacent to a vertex of P , and the component Cv of
T \P that contains v has a drawing on k+ 1 layers that is ev-exposed and
eC-reachable, where eC is the linkage-edge of Cv.

III. v /∈ P , v is adjacent to a vertex of P , and every component C ′′ of Cv \{v}
(where Cv as before is the component of T \P containing v) has a drawing
on k layers such that the edge connecting C ′′ to v is exposed.

Then T has a drawing on k + 2 layers that is ev-exposed and e1-reachable.

e1

v0

v1

v

ev

v2

C ′

C ′

rest of P

C ′

I.

Cv

e1

v0

v1

v ev

v2

C ′ C ′

C ′

eC

vi

rest of P

II.

Cv

e1

v0

v1

v

ev

v2

C ′ C ′

C ′

eC

vi

C ′′
C ′′

rest of P

III.

Figure 4: Notations for the three conditions for Lemma 4. The component Cv

of T \ P that contains v is orange (rising pattern).

Proof: The first step is to draw P on k + 2 layers as a zig-zag-curve1 between
the top and the bottom layer, with v1 leftmost. With this e1 ends at the unique
leftmost node and hence is reachable as long as we merge components suitably.
For ease of description, we think of the zig-zag-line as extended further left and
right with vertices v0 and vl+1; these will not be in the final drawing.

We have the choice of placing v1 in the top or in the bottom layer, and
make this choice as follows. Define vi to be v if v ∈ P and define vi to be the
anchor-node of Cv if v 6∈ P . Choose the placement of v1 such that vi is in the
top layer.

The following details the standard-method of merging a component C ′ an-
chored at vj ∈ P . See also Fig. 5. Assume that vj is in the top layer; the
other case is symmetric. Assume that the linkage-edge of C ′ was top-exposed
in the drawing Γ′ of C ′; else rotate Γ′ by 180◦ to make it so. Scan the edge-
order around vj to find the two incident path edges (vj , vj+1) and (vj , vj−1).
If the linkage-edge of C ′ appears clockwise between these two, then place Γ′

below edge (vj , vj+1), else place it above (vj , vj+1). In both cases, we do not
use the top layer for Γ′, and can hence connect to the linkage-node of C ′ while
preserving planarity and edge-orders since the linkage-edge was top-exposed. If
multiple components are anchored at vj , then we all place them in this region,
in the order as dictated by the edge-order at vj .

Now we show how to make the drawing ev-exposed while preserving e1-
reachability. We distinguish cases depending on which condition applies.

1Using a zig-zag-curve allows more flexibility in placing components, but means that we
will not have an HVA-drawing.
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k+2

v0

v1

. . .

vj vi=v

e1

. . .

ev

...

special placement

Figure 5: Adding components to a zig-zag path for Lemma 4. The component
marked with an arrow needs to be placed to the left of vi so that the edge-order
at ev is respected.

Condition I. We know that v = vi for some i > 1 and vi is in the top layer.
After applying the reversal-trick, if needed, we may assume that the clockwise
order at vi in the super-tree contains 〈(v, vi−1), ev, (v, vi+1)〉 as a subsequence.
Therefore, drawing ev upward from vi makes it top-exposed as long as we merge
components suitably.

Merge all components not anchored at vi with the standard-method. For a
component C ′ anchored at vi = v, the placement must be such that the order
including edge ev is also respected. This is done as follows (see also Fig. 5):
Determine where the linkage-edge of C ′ falls in the clockwise order around v.
If it is between ev and (vi, vi+1), or between (vi, vi+1) and (vi, vi−1), then place
C ′ with the standard-method. But if it is between (vi, vi−1) and ev, then place
the drawing of C ′ in the region above edge (vi, vi−1) (and to the right of any
components anchored at vi−1 that may also have been placed there). By i > 1,
this does not place anything to the left of v1, and so v1 continues to be e1-
reachable.

Condition II or III. Recall that the anchor-node vi of Cv is drawn in the top
layer. Apply the reversal-trick, if needed, to ensure that eC appears between
(vi, vi+1) and (vi, vi−1) in clockwise order around vi.

We merge the drawings of subtrees anchored at vi as follows. If Condition
II holds, then assume (after possible rotation) that the drawing Γv of Cv is
bottom-ev-exposed. Insert Γv in the region below (vi, vi+1). This is possible
(after skewing Γv as needed) without crossing, since the end of eC in Cv is the
unique leftmost or rightmost node of Γv. See Fig. 6. If Condition III holds, then
place v on the bottom layer, in the region below edge (vi, vi+1), and connect it
to vi. This makes ev bottom-exposed, as long as we are careful when placing
components of Cv \{v}. For each such component C ′′, we have a drawing Γ′′ on
k layers where the linkage-edge from C ′′ to v is exposed. Rotate Γ′′, if needed,
to make this edge bottom-exposed, and then place Γ′′ in the k layers above v,
either left or right of edge (vi, v), as dictated by the edge-order around v. See
Fig. 6.

We merge all other components C ′ of T \P with the standard-method. This
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includes any other components that may be anchored at vi; for those we place
them so that they are left/right of Cv as dictated by the edge-order, but still
remain in the region above or below (vi, vi+1) so that v1 is the unique leftmost
node. �

1

k+2

. . .

vi

. . .

Cv

ev

. .
.

v

eC

II.

1

k+2

vi

. . .
ev

v=vC

. . .

Cv

eC

III.

Figure 6: Merging component Cv (orange, rising pattern), depending on which
condition holds.

We are now ready to give the proof of Lemma 3.

Proof: Recall that we are given a tree T with an external linkage-edge e that
ends at v ∈ T , and possibly a second external-linkage e′ that ends at v′ ∈ T with
v 6= v′. We want to find drawings that are e-exposed and (perhaps) e′-reachable.

We proceed by induction on pw(T ). In the base case, pw(T ) = 0, so T is
a single node and drawing T on a single layer satisfies Claim (a). Claim (b)
is vacuously true since any two external linkage-edges would have the (unique)
node of T in common.

For the induction step let pw(T ) ≥ 1 and let Pm = v1, . . . , vl be a main path
of T . Any component C ′ of T \Pm has pathwidth at most pw(T )− 1 and hence
can be drawn using induction. For some components we will create different
drawings later to accommodate external linkage-edges.

Induction step for Claim (a): In this case no edge e′ has been specified; we
artificially insert one as follows. Since we may assume that Pm has at least one
edge, at least one end v′ of Pm is not node v; insert a dummy external-linkage
edge e′ here and note that it shares no end with e as required. The goal is to
apply Lemma 4 using path Pm, k = 2pw(T )− 1, ev := e, and e1 = e′. For this,
first observe that any component C ′ of T \ Pm has smaller pathwidth than T ,
hence can be drawn by induction on at most 2pw(T ) − 1 ≤ k layers with its
linkage-edge exposed. It remains to argue that one of the conditions holds.

If v ∈ Pm then Condition I holds (we know v 6= v′ since e and ev have no
end in common). If v /∈ Pm, then let Cv be the component of T \ Pm that
contains v and let eC and vC be its linkage-edge and linkage-node. We know
that Cv has pathwidth at most pw(T ) − 1. If vC 6= v, then apply induction
(Claim (b)) to get a drawing of Cv on 2pw(T ) = k+ 1 layers that is ev-exposed
and eC-reachable. So Condition II applies. Otherwise (vC = v) any component
C ′′ of Cv \ {v} has pathwidth at most pw(Cv) ≤ pw(T ) − 1, and by induction
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hence has a drawing on 2pw(T )− 1 = k layers such that the edge from C ′′ to v
is exposed. So Condition III holds.

We can hence apply Lemma 4 and get an e-exposed drawing of height k+2 =
2pw(T ) + 1 as desired.

Induction step for Claim (b): Recall that Pm = v1, . . . , vl is a main path
of T and v and v′ are the ends of edges that should be exposed and reachable,
respectively. We now split T along a draw-path derived from P and v′ and v;
this draw-path is different from what we used in Section 3 (and in particular,
begins at v′ rather than v).2

Fig. 7 illustrates the following definitions. If v′ ∈ Pm, then set s := v′ and
let R be an empty path. Otherwise, let s be the anchor-node of the component
of T \ Pm that contains v′, and let R be the path from v′ to s in T . If v ∈ Pm,
then set y := v. Otherwise, let y be the anchor-node of the component of T \Pm

that contains v. Note that we well may have s = y.

v

XS

. . . . . .
s

v′

R

Pm

e′

v

. . .

v

y

v
e

v

Y

↓

v

XS

. . .
s=y

v′

R

Pm

e′

v

. . .

v
v

e

v

Y

↓

v

. . . . . .

CS

v′

P

e′

v

CS

. . .

vCv

v
e

v

(a)

v

. . .
CS

v′

P

e′

v

CS

. . .

v
Cv v

e

v

(b)

Figure 7: Splitting the tree to obtain path P . The main path Pm is thick black,
the path R from Pm to v′ is blue (dashed). To avoid cluttering we omit subtrees.
(a) The subtrees of T \ Pm containing v′ and v are anchored at different nodes
of Pm. (b) The subtrees of T \Pm containing v′ and v are anchored at the same
node of Pm.

Let X be the sub-path of Pm between s and y (inclusive); it may be a single
vertex s=y. Let S and Y be the (possibly empty) two components of Pm \X,
named such that S is anchored at s and Y is anchored at y. Define the draw-
path P to be (Pm\S)∪R. Put differently, P is the path in T that connects v′ to
one of the ends of Pm, where the end of Pm is chosen such that the component

2This choice of paths is the same as in Suderman, Lemma 23, though we combine the
drawings of the subtrees quite differently to maintain edge orders.
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Cv of T \ P that contains v does not contain vertices of Pm, and therefore is
guaranteed to have pathwidth at most pw(T )− 1.

The goal is to apply Lemma 4 using P as the draw-path. However, if S
(the “rest” of Pm) is non-empty, then this is not straightforward, because the
component CS of T \ P that contains S has pathwidth pw(T ) and so cannot
necessarily be drawn small enough.

Case 1: S = ∅. Use Lemma 4 with P as the draw-path, e1 := e′, ev := e, and
k = 2pw(T ).3 We must argue that this is feasible. First, any component C ′

of T \ P has pathwidth at most pw(T ) − 1 since S is empty and so P covers
the entire main path Pm. So C ′ has by induction (Claim (a)) a drawing on
2pw(T )− 1 ≤ k layers with its linkage-edge exposed.

If v ∈ P then Condition I holds (we know v 6= v′ since e and ev have no end
in common). If v 6∈ P then let Cv be the component of T \P that contains v, and
let eC and vC be its linkage-edge and linkage-node. If v 6= vC , then use induction
(Claim (b)) to obtain a drawing of Cv on 2pw(Cv) + 2 ≤ 2pw(T ) ≤ k+ 1 layers
such that ev is exposed and eC is reachable. So Condition II holds. Finally if
v = vC , then any component C ′′ of Cv \ {v} has pathwidth at most pw(Cv) ≤
pw(T ) − 1 and by induction (Claim (a)) C ′′ can be drawn on 2pw(T ) − 1 ≤ k
layers such that edge from C ′′ to v is exposed. So Condition III holds. Hence
regardless of the location of v we obtain a drawing of T on k + 2 = 2pw(T ) + 2
layers with e′ reachable and e exposed.

Case 2: S is non-empty, and component CS “belongs to the taller side” (defined
below). Construct a drawing of T \ CS as in Case 1. We say that CS belongs
to the taller side if the anchor-node vS of CS is in the top [bottom] layer and
the clockwise [counter-clockwise] order of edges around vs contains 〈(vs, vs+1),
the linkage-edge of CS , (vs, vs−1)〉 as a subsequence. Put differently, belonging
to the taller side means that the drawing of CS needs to be put into a region
that has 2pw(T ) + 1 levels that can be used for inserting drawings. Construct
a drawing ΓS of CS with its linkage-edge exposed on 2pw(T ) + 1 layers using
induction (Claim (a)). We can insert ΓS with the standard-method for merging
components since CS belongs to the taller side. See Fig. 8.

Case 3: S is non-empty and CS does not belong to the taller side. In this case
we need a special construction to accommodate CS .4 Let vs be the anchor-node
of S. Let T− be the tree that results from removing from T the component CS ,
as well as all components of T \ P that are anchored at vs. We first construct
a drawing of T− on 2pw(T ) + 2 layers as in Case 1. Assume that vs is in the
top level; the other case is symmetric. We know that CS does not belong to
the taller side, so it should normally be placed above edge (vs, vs+1) to preserve
edge-orders. (In the special case that vs = v, it may have to be placed above

3For Case 1, k = 2pw(T )− 1 would have been enough, but later cases build on top of this
and then require k = 2pw(T ).

4One might be tempted to appeal to the reversal-trick here to ensure that CS belongs to
the taller side. However, the reversal-trick was already used in Lemma 4 to ensure that Cv

belongs to the taller side of vi, and this is used here as a subroutine. We cannot apply the
reversal-trick for two different subtrees of one main path.



JGAA, 24(1) 1–19 (2020) 15

1

2pw(T )+2

vs

. . .

CS

. .
.

Figure 8: Inserting component CS (orange, falling pattern) if it belongs to the
taller side.

edge (vs, vs−1) instead to preserve edge-orders for ev; this can be handled in a
symmetric fashion.)

Observe that S is a main path of CS . We draw S as a zig-zag-curve alternat-
ing between layer 1 and layer 2pw(T ) + 1, going rightwards from vs. See Fig. 9
Any component C ′′ of CS \ S has pathwidth at most pw(T )− 1, and can hence
be drawn inductively (Claim (a)) on 2pw(T )− 1 layers with its linkage-edge ex-
posed. We can hence merge these components in the regions around S, exactly
as in Lemma 4. Finally, we must merge a component C ′ anchored at vs. If this
component came (in the clockwise order around vs) before the linkage-edge of
CS , then path S now blocks the connection to where we would normally place
C ′. (All other components at vs can be merged with the standard-construction.)
We know that C ′ can be drawn with 2pw(T )− 1 layers. Since the linkage-node
of CS is placed on layer 2pw(T ) + 1, we can place C ′ in the 2pw(T ) − 1 lay-
ers below the top-row and above the linkage-edge and connect it to vs without
violating planarity and respecting edge-orders.

vs

2pw(T )+2
vs+1

S
components
anchored at vs

Cs

2pw(T )−1
layers

Figure 9: The special construction for component CS if it does not belong to
the taller side. We draw (vs, vs+1) slightly curved to avoid having to scale too
much.

This special construction for CS does not interfere with the (potentially
special) construction for component Cv (presuming v 6∈ P ), because we had
ensured (by using the reversal-trick, if needed) that Cv belongs to the taller
side. So either Cv is in a different region altogether, or Cv is anchored at
vs+1, and we can easily keep these drawings separate. This finishes the proof of
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Lemma 3. �

By applying Lemma 3(a) with an arbitrary dummy-edge as external linkage-
edge, we hence obtain:

Theorem 4 Any tree T has a planar straight-line order-preserving drawing on
2pw(T ) + 1 layers.

Note that we make no claims on the width of the drawing. In fact, in order
to fit drawings of components within the regions underneath zig-zag-lines, we
may have to scale these components horizontally (or equivalently, widen the
zig-zags significantly).

5 2pw(T) + 1 Layers is Tight

We can show that the bound in Theorem 4 is tight. Define an ordered tree Ti
recursively as follows. T0 consists of a single node. Ti for i > 0 consists of a
path v1, v2, v3 and 12 copies of Ti−1, three attached at each of v1, v3 and three
attached on each side of the path at v2. (It does not matter which node of Ti−1
is used as linkage-node for these attachments.) See also Fig. 10.

v2v1 v3

Ti−1 Ti−1 Ti−1

Ti−1 Ti−1 Ti−1

Ti−1

Ti−1

Ti−1

Ti−1

Ti−1

Ti−1

Figure 10: Tree Ti has pathwidth i but requires 2i + 1 layers in an order-
preserving planar drawing.

By using v1, v2, v3 as main path, one sees that pw(Ti) ≤ i. We can now
show the lower bound on the height, which holds even if the drawing is not
straight-line.

Theorem 5 Any planar order-preserving drawing of Ti has at least 2i + 1 ≥
2pw(Ti) + 1 layers.

Proof: We prove this by induction on i; the case i = 0 is trivial since the
single-node tree T0 requires 1 layer. So assume that i > 0 and we already know
that Ti−1 requires at least 2i− 1 layers by induction. We need a helper-lemma.

Lemma 5 Let Hi be the tree that consists of a single node v with three copies
of Ti−1 attached. Then Hi requires at least 2i layers.
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Proof: Assume to the contrary that Hi could be drawn on 2i − 1 layers. For
each copy of Ti−1, we require 2i−1 layers. Hence each copy of Ti−1 gives rise to a
blocking path that connects the topmost and bottommost layer and stays within
that copy of Ti−1. Add a node v′ above the drawing connected to the three top
ends of the three blocking paths, and a node v′′ below the drawing connected
to the three bottom ends of the three blocking paths. See also Fig. 11(a). Also
observe that v is connected (via a path within that copy of Ti−1) to each of
the three blocking paths. Therefore the three blocking paths, together with
{v, v′, v′′}, give a planar drawing of a subdivision of K3,3, an impossibility. �

v

v′

v′′

(a)

v2

v1
v3

P
Ti−1 Ti−1Ti−1

(b)

Figure 11: (a) We can construct a planar drawing of K3,3. (b) If v2 is not in the
top row, then the path P forces a copy of Hi to be drawn within 2i− 1 layers.

Now we give the induction step of the proof of Theorem 5. Since Ti contains
Hi, by Lemma 5 it requires at least 2i layers. Assume for contradiction that
we have a drawing Γ of Ti on exactly 2i layers. Let P be a path that connects
a leftmost node in Γ to a rightmost node in Γ (breaking ties arbitrarily). Any
subtree that is node-disjoint from P must not intersect it by planarity and hence
must be drawn either within the bottommost 2i−1 layers or within the topmost
2i− 1 layer. See also Fig. 11(b).

Observe that P must contain path v1, v2, v3, for otherwise we have a copy
of Hi at one of v1, v3 that is node-disjoint from P and would be drawn in 2i− 1
layers, which is impossible. Now consider the layer that v2 is on. Since we have
2i ≥ 2 layers, one of the top and bottom layer does not contain v2, say v2 is
not on the bottom layer. Since path P uses v1, v2, v3, and since the drawing is
order-preserving, there must be three copies of Ti−1 that are attached at v2 and
above path P , hence in the top 2i−1 layers. Vertex v2 together with these three
copies forms an Hi, and since it is vertex-disjoint from P (except at v2, but v2
is not in the bottom layer either), it is drawn in 2i− 1 layers. This contradicts
Lemma 5, so no drawing Γ of Ti on 2i layers can exist. �

6 Remarks

In this paper, we studied planar straight-line order-preserving drawings of trees
that use few layers. Inspired by techniques of Suderman [12], we gave two
constructions. The first one is a 3-approximation for the height and the width
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is bounded by n. The second is an asymptotic 2-approximation for the height,
with no bound on the width. We also showed that ‘2’ is tight if one uses the
pathwidth for lower-bounding the height.

Our constructions are algorithmic, and the bottleneck for its run-time is the
extraction of main paths. It is known how to compute the pathwidth of a tree
in linear time [11]. It is not hard to see that for a rooted tree, this bottom-
up dynamic programming algorithm to compute the pathwidth stores sufficient
information that we can find a main path Pm, and the path R from the root
to the nearest node on Pm, in time O(|Pm ∪ R|) time. Our algorithm can be
viewed as traversing a rooted tree top-down (the root is vertex v in Lemma 1
and vertex v′ in Lemma 3). In each recursion we exactly need to find a main
path Pm and the path R that leads to it from the root; this hence takes time
O(|Pm ∪ R|). Also, Pm ∪ R = P ∪ S, where P is the draw-path, and S is the
draw-path used when recursing in the special component CS of T \ P . Hence
we next need to find main paths only in subtrees of T \ (Pm ∪ R). Since all
other steps of the recursion can also be done in O(|Pm ∪ R|) time, the overall
run-time is linear, presuming that we can handle arbitrarily small coordinates
in constant time.

As for open problems, all our constructions (and all the ones by Suderman)
rely on path decompositions, and hence yield only approximation algorithms
to the height of tree-drawings. The algorithm for optimum-height (unordered)
tree-drawings [10] uses an entirely different, direct approach. Is there a poly-
time algorithm that finds optimum-height ordered tree-drawings?
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