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Abstract
A planar graph is essentially 4-connected if it is 3-connected and every

of its 3-separators is the neighborhood of a single vertex. Jackson and
Wormald proved that every essentially 4-connected planar graph G on
n vertices contains a cycle of length at least 2n+4

5 , and this result has
recently been improved multiple times.

In this paper, we prove that every essentially 4-connected planar graph
G on n vertices contains a cycle of length at least 5

8 (n+2). This improves
the previously best-known lower bound 3

5 (n + 2).
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1 Introduction
The circumference circ(G) of a graph G is the length of a longest cycle of G.
Originally being the subject of Hamiltonicity studies, essentially 4-connected
planar graphs and their circumference have been thoroughly investigated through-
out literature. Jackson and Wormald [5] proved that circ(G) ≥ 2n+4

5 for ev-
ery essentially 4-connected planar graph G on n vertices. An upper bound
is given by an infinite family of essentially 4-connected planar graphs G such
that circ(G) = 2

3 (n + 4) [2]. Fabrici, Harant and Jendroľ [2] improved recently
the lower bound to circ(G) ≥ 1

2 (n + 4); this result in turn was strengthened to
circ(G) ≥ 3

5 (n+2) in [3]. It remained an open problem whether every essentially
4-connected planar graph G on n vertices satisfies circ(G) > 3

5 (n + 2).
In this paper, we present the following result.

Theorem 1 Every essentially 4-connected planar graph G on n vertices con-
tains a cycle of length at least 5

8 (n + 2). If n ≥ 16, circ(G) ≥ 5
8 (n + 4).

This result encompasses most of the results known for the circumference of
essentially 4-connected planar graphs (some of which can be found in [2, 4, 8]).
In particular, it improves the bound circ(G) ≥ 13

21 (n + 4) that has been given
in [2] for the special case that G is maximal planar for sufficiently large n (in
fact, for every n ≥ 16, as explained in Section 4).

2 Preliminaries
Throughout this paper, all graphs are simple, undirected and finite. For a vertex
x of a graph G, denote by degG(x) the degree of x in G. For a vertex subset
A ⊆ V , let the neighborhood NG(A) of A consist of all vertices in V − A that
are adjacent to some vertex of A. For vertices v1, v2, . . . , vi of a graph G, let
(v1, v2, . . . , vi) be the path of G that visits the vertices in the given order. We
omit subscripts if the graph G is clear from the context.

A separator S of a graph G is a subset of V such that G−S is disconnected;
S is a k-separator if |S| = k. A separator S is trivial if at least one component of
G−S is a single vertex, and non-trivial otherwise. Let a graph G be essentially
4-connected if G is 3-connected and every 3-separator of G is trivial. It is well-
known that, for every 3-separator S of a 3-connected planar graph G, G−S has
exactly two components.

A cycle C of a graph G is isolating (sometimes also called outer-independent)
if every component of G − V (C) is a single vertex that has degree three in G.
An edge xy of a cycle C of G is extendable if x and y have a common neighbor
in G− V (C). For example, Figure 2 depicts (a part of) an isolating cycle C for
which the edge yz becomes extendable after contracting the edge zu. According
to Whitney [7], every 3-connected planar graph has a unique embedding into
the plane (up to flipping and the choice of the outer face). Hence, we assume
in the following that the embeddings of such graphs are fixed.



JGAA, 24(1) 21–46 (2020) 23

3 Proof of Theorem 1
Let G be an essentially 4-connected plane graph. It is well-known that every
3-connected plane graph on at most 10 vertices is Hamiltonian [1]; thus, for
4 ≤ n ≤ 10, this implies circ(G) = n ≥ 5

8 (n + 2). Since these graphs contain
in particular the essentially 4-connected plane graphs on at most 10 vertices,
we assume n ≥ 11 from now on. For n ≥ 11, it was shown in [2, Lemma 4(ii)]
that G contains an isolating cycle of length at least 8. Let C be a longest such
isolating cycle of length c := |E(C)| ≥ 8. We will show that c ≥ 5

8 (n + 2), so
that C is a cycle of the desired length.

Clearly, C contains no extendable edge xy, as otherwise one could find a
longer such cycle by replacing xy in C with the path (x, v, y), where v /∈ V (C)
is a common neighbor of x and y. Let V − be the subset of vertices of V that
are contained in the open set of R2 − C that is bounded (hence, strictly inside
C), and let V + := V − V (C) − V −. We assume that |V −| ≥ 1 ≤ |V +|, since
otherwise we are done, as then c ≥ 2

3 (n + 2) is implied by [2, Lemma 5]. Let
H be the plane graph obtained from G by deleting all chords of C (i. e., all
edges xy ∈ E − E(C) satisfying x, y ∈ V (C)) and let H− := H − V + and
H+ := H − V −. A face of H is called minor if it is incident to exactly one
vertex of V −∪V +, and major otherwise. Let M− and M+ be the sets of minor
faces in H− and H+, respectively. For example, in Figure 2, we have a ∈ V −,
b ∈ V +, f ∈M− and f ′ ∈M+.

Note that a face f of H is incident to no vertex of V − ∪ V + if and only if
it is bounded by C (i.e., if f is either the region inside or outside C). Since we
assumed |V −| ≥ 1 ≤ |V +|, our definition of minor faces coincides with the one
of [3], so that we can use the following inequality.

Lemma 1 ([3], Inequality (i)) |M− ∪M+| ≥ |V − ∪ V +|+ 2.

In H, an edge e of C is incident with exactly two faces f and f ′ of H. In
this case we say f ′ is opposite to f with respect to e. A face f of H is called
j-face if it is incident with exactly j edges of C; the edges of C that are incident
with f are called C-edges of f . Since C does not contain an extendable edge,
we have j ≥ 2 for every minor j-face of H. For two faces f and f ′ of H, let
mf,f ′ be the number of common C-edges of f and f ′.

If we can prove

2c ≥ 10
3 |M

− ∪M+|, (1)

then Theorem 1 follows directly from the inequality |M− ∪M+| ≥ n− c + 2 of
Lemma 1. We charge every j-face of H with weight j (and thus have a total
charge of weight 2c) and discharge these weights in H by applying the following
set of rules exactly once. In order to prove Inequality (1), we will aim to prove
that every minor face of H has weight at least 10/3 after the discharging.
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Rule R1: Every major face f of H sends weight mf,f ′ to every minor face f ′

opposite to f .

Rule R2: Every minor face f of H sends weight 2
3 mf,f ′ to every minor 2-face

f ′ opposite to f .

Rule R3: Every minor face f of H sends weight 1 to every minor 3-face f ′

that is opposite to f with respect to the middle C-edge of f ′.

Rule R4: Let f1 be a minor 4-face that has an opposite minor j-face f satis-
fying j ≥ 4 and mf1,f = 2, as well as an opposite minor 2- or 3-face f2
satisfying mf1,f2 = 2. Then f sends weight 2/3 to f1.

Rule R5: Let f1 be a minor 5-face that has an opposite minor j-face f satis-
fying j ≥ 4 and mf1,f = 2, as well as two opposite minor 2-faces. Then f
sends weight 1/3 to f1.

For example, in Figure 2, both faces f and f ′ would send weight 2/3 to each
other according to Rule R2, which effectively cancels the exchange of weights.
Rules R2 and R3 may be seen as a refinement of the two rules given in [3]; for
that reason, some of the early cases about minor 2- and 3-faces in the following
case distinction will be similar as in [3].

Let w denote the weight function on the set F (H) of faces of H after
Rules R1–R5 have been applied. Clearly,

∑
f∈F (H) w(f) = 2c still holds. In

order to prove that the weight w(f) of every minor face f of H is at least 10/3
and no major face has negative weight, we distinguish several cases. For most
of them, we construct a cycle C that is obtained from C by replacing a subpath
of C with another path. In such cases, C will be an isolating (which is easy to
verify due to V (C) ⊆ V (C)) cycle of G that is longer than C (we say C is ex-
tended); this contradicts the choice of C and therefore shows that the considered
case cannot occur. Note that the vertices of C that are depicted in the following
figures are pairwise non-identical, because c ≥ 8; in the rare figures that show
more than 8 vertices of C, C has always at least the number of vertices shown.

Let f ∈ F (H).

Case 1: f is a major j-face for any j.
Initially, f is charged with weight j. By Rule R1, f sends for every of its
C-edges weight at most 1 to an opposite face. We conclude w(f) ≥ 0.

Case 2: f is a minor 2-face (see Figure 1).
Let xy and yz be the C-edges of f and let a be the vertex of V − V (C)
that is incident with f . The face f is initially charged with weight 2 and
gains weight at least 4/3 by R1 and R2. If f does not send any weight to
other faces, this gives w(f) ≥ 10/3, so assume that f sends weight to some
face f ′ 6= f .
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x y z

a

f

C

Figure 1: Case 2

According to R1–R5, f ′ is opposite to f and either a minor 2-face or a
minor 3-face of H. Without loss of generality, let f ′ be opposite to f with
respect to the edge yz. We distinguish the following subcases.

Case 2a: f ′ is a minor 2-face and xy is a C-edge of f ′.
Then {x, z} is the neighborhood of y in G, which contradicts the
3-connectivity of G.

Case 2b: f ′ is a minor 2-face and xy is not a C-edge of f ′ (see Figure 2).
Then a longer isolating cycle C is obtained from C by replacing the
path (x, y, z, u) with the path (x, a, z, y, b, u) (see Figure 2), which
contradicts the choice of C.

x y z u

a

f

f ′

b

C

Figure 2: Case 2b

x y z u

a

f

f ′

b

C

Figure 3: Case 2c

Case 2c: f ′ is a minor 3-face (see Figure 3).
Since we assumed that f sends weight to f ′, one C-edge of f , say
without loss of generality yz, is the middle C-edge of f ′, according
to R3. The edge yu (see Figure 3) exists in G (but not in H, as H
does not contain chords of C), because otherwise dG(y) = 2, which
contradicts that G is 3-connected. Then C is obtained from C by
replacing the path (x, y, z, u) with the path (x, a, z, y, u).

Case 3: f is a minor 3-face (see Figure 4).
Then f is initially charged with weight 3 and gains weight at least 1
by R1 and R3. If f sends weight at most 2/3 to other faces, this gives
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w(f) ≥ 10/3, so assume that f sends weight more than 2/3. Since all weights
are multiples of 1/3, f has to send weight at least 3/3. In particular, this
implies that Rule R2 or R3 applies on f .

v x y z

a

f

C

Figure 4: Case 3

Let f1, f2 and f3 be the (possibly identical) opposite faces of f with respect
to the C-edges vx, xy, yz of f (see Figure 4). Then f2 is not a minor 2-face
for the same reason as in Case 2c. We distinguish the following subcases.

Case 3a: Neither f1 nor f3 is a minor 3-face (see Figure 5).
Then f2 is neither a minor 2-face nor a minor 3-face, and f1 and f3
are minor 2-faces, as otherwise by R1–R5 f would not send a total
weight of more than 2/3 to its opposite faces. Moreover, b 6= d (in
the notation of Figure 5), since xy is not extendable. Then C is
obtained from C by replacing the path (w, v, x, y, z, u) with the path
(w, b, x, v, a, z, y, d, u).

w v x y z u

a

f

f1 f3

b d

C

Figure 5: Case 3a

v x y z u

a

f

f3

d

C

Figure 6: Case 3b

Case 3b: f1 or f3 is a minor 3-face (see Figure 6).
The face f2 is not a minor 3-face with middle C-edge xy, as otherwise
{v, z} would be a 2-separator of G. Hence, f1 6= f3. Since f sends
a total weight of more than 2/3 to its opposite faces, at least one of
f1 and f3 is a minor 3-face that has its middle C-edge in {vx, yz}
by R3, say without loss of generality that the middle C-edge of f3 is
yz. Then C is obtained from C by replacing the path (v, x, y, z, u)
with the path (v, a, z, y, x, d, u).
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Case 4: f is a minor 4-face (see Figure 7).
Then f is initially charged with weight 4. If f looses a total net weight
of at most 2/3, then w(f) ≥ 10/3, so assume that weight at least 3/3 is sent
to opposite faces. We have to show that this is impossible by considering
Rules R2–R5.

v w x y z

a

f

C

Figure 7: Case 4

Assume first that f has an opposite minor 2-face f ′. We distinguish the
following subcases.

Case 4a: f ′ has C-edges wx and xy (see Figure 8).
Then vx or xz is an edge of G and C can be extended by detouring
C through one of these edges and d, which contradicts the choice of
C.

v w x y z

a

f

f ′

d

C

Figure 8: Case 4a

t v w x y z u

a

f

f ′f1

b d

C

Figure 9: Case 4b

Case 4b: Every opposite minor 2-face of f has exactly one C-edge of f
(see Figure 9).
In particular, mf,f ′ = 1. Without loss of generality, let f ′ have the
C-edge yz. Then f sends weight 2/3 to f ′ by R2, and R1 does not
decrease the weight of f . Moreover, if f sends weight to another face
with the Rules R4 or R5, then xy is a C-edge of a major face (since C
does not contain any extendable edge) and f gains weight 1 from this
major face, so that w(f) ≥ 4− 2/3 + 1− 2/3 = 11/3, which contradicts
w(f) < 10/3. Therefore, f has by R2 and R3 an opposite minor 2-
or 3-face f1 6= f ′. If f1 is a minor 2-face, mf,f1 = 1, so that f1 has
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the C-edge vw. Then neither wx nor xy is a C-edge of a minor face
opposite to f , as such a minor face would be a 2-face with C-edges
wx and xy (see Case 4a). Thus, f gains weight 2 from the major
face(s) with C-edges wx and xy, which contradicts w(f) < 10/3.
Hence, f1 is a minor 3-face. Since w(f) < 10/3, the middle C-edge
of f1 is either vw or wx. If it is vw, C can be obtained from C
by replacing the path (t, v, w, x, y, z, u) with (t, b, x, w, v, a, z, y, d, u)
(see Figure 9), as we have b 6= d, since otherwise C would contain the
extendable edge xy. Hence, let the middle C-edge of f1 be wx. Then
wz /∈ E(G), as otherwise C could be extended by replacing the path
(v, w, x, y, z) with (v, b, y, x, w, z). Since {v, y} is not a 2-separator of
the 3-connected graph G, this implies xz ∈ E(G). Then C can be
obtained from C by replacing the path (x, y, z, u) with (x, z, y, d, u),
which contradicts the choice of C.

From Cases 4a+b, we conclude that f ′ has either the C-edges vw and wx or
the C-edges xy and yz, say without loss of generality the latter.

Case 4c: f ′ has C-edges xy and yz, and f has an opposite major face
(see Figure 10).
Then wy /∈ E(G), as otherwise C can be extended by detouring
through f ′. Hence, vy ∈ E(G), as otherwise degG(y) = 2. Since f
has an opposite major face and wx is not an extendable edge of C, wx
is a C-edge of such an opposite major face f ′′. Then f gains weight
1 from f ′′ by R1 and sends by R2 weight 2/3 to a minor opposite
2-face with C-edge vw in order to satisfy the assumption w(f) < 10/3
(see Figure 10 and note that R4 and R5 do not apply here). But
this is impossible, as then C can be extended by replacing the path
(t, v, w, x, y, z) with (t, b, w, v, y, x, d, z), since b 6= d.

t v w x y z

a

f

f ′

b d

C

Figure 10: Case 4c

t v w x y z

a

f

f1 f ′

b d

C

Figure 11: Case 4d

Case 4d: f ′ has C-edges xy and yz, and wx is a C-edge of a minor 2-
or 3-face f1 (see Figure 11).
As in Case 4c, wy /∈ E(G) and vy ∈ E(G). Hence, f1 is a minor
3-face, as otherwise degG(w) = 2. Then C is obtained from C by
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replacing the path (t, v, w, x, y, z) with (t, b, x, w, v, y, z) (note that
b = d is possible).

Case 4e: f ′ has C-edges xy and yz, and wx is a C-edge of a minor j-face
f1 with j ≥ 4 (see Figure 12).
Then f gains weight 2/3 from f1 by R4 and sends weight 4/3 to f ′.
Hence, we get the contradiction w(f) = 10/3, unless f sends weight
2/3 to f1 by R4 or 1/3 to f1 by R5. In that case, j = 4 or j = 5 and
there are only minor 2-faces opposite to f1. As argued in Case 4c,
wy /∈ E(G) and vy ∈ E(G). Moreover, uw (and su in case of j = 5;
see Figure 12) are not edges of G, as otherwise C can be extended by
detouring through g. Hence, ux ∈ E(G), as otherwise degG(u) = 2,
which is a contradiction. This implies degG(w) = 2, which is a
contradiction.

r s t u v w x y z

f

f1

f2 f3

f ′

agh

b d

C

Figure 12: Case 4e

From Cases 4a–e, we conclude that f has no opposite minor 2-face. Then
w(f) < 10/3 and R1–R5 imply that f has an opposite minor 3-face that
has a C-edge of f as middle C-edge (due to R3), or an opposite minor
4-face f ′ with mf,f ′ = 2 that has an opposite minor 2- or 3-face f2 with
mf ′,f2 = 2 (due to R4); note that we still contradict w(f) < 10/3 when f
has two opposite minor 5-faces, to each of which f sends weight 1/3 by R5.
We therefore distinguish these remaining subcases.

Case 4f: f has an opposite minor 3-face f ′ with middle C-edge wx or xy
(see Figure 13).
Without loss of generality, let xy be the middle C-edge of f ′. Then
vy /∈ E(G), as otherwise C can be extended by replacing the path
(v, w, x, y, z) with (v, y, x, w, d, z). This implies wy ∈ E(G), as oth-
erwise degG(y) = 2. Since {w, z} is no 2-separator of G, vx ∈ E(G).
Then C can be extended by replacing the path (v, w, x, y, z) with
(v, x, y, w, d, z).

Case 4g: f has an opposite minor 3-face f ′ with middle C-edge vw or
yz, but no opposite 4-face (see Figure 14).
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v w x y z

a

f

f ′

d

C

Figure 13: Case 4f

t v w x y z u

a

f

f ′f1

b d

C

Figure 14: Case 4g

Without loss of generality, let yz be the middle C-edge of f ′. Let
f1 be the face opposite to f that has C-edge wx. Then f1 is not
major, as otherwise w(f) = 4− 1 + 1 > 10/3, since f has no opposite
minor 2-faces. For the same reason, f1 is a minor j-face satisfying
j ≥ 3. If j ≥ 5, f1 sends weight 2/3 to f due to R4, which contradicts
w(f) < 10/3, as f sends weight at most 1/3 to f1 due to R5 (exactly
1/3 only if j = 5 and f1 has two opposite 2-faces).
Since j 6= 4 by assumption, f1 is a minor 3-face (see Figure 14).
Then wy /∈ E(G), as otherwise C is obtained from C by replacing
the path (v, w, x, y, z, u) with (v, a, z, y, w, x, d, u), and wz /∈ E(G),
as otherwise C is obtained from C by replacing the path (w, x, y, z, u)
with (w, z, y, x, d, u). Hence, tw ∈ E(G), as otherwise degG(w) = 2.
Then C is obtained from C by replacing the path (t, v, w, x, y, z, u)
with (t, w, v, a, z, y, x, d, u), which contradicts the choice of C.

Case 4h: f has an opposite minor 3-face f ′ with middle C-edge vw or
yz and an opposite 4-face f1 (see Figure 15).
Without loss of generality, let yz be the middle C-edge of f ′. Then
mf,f1 = 2, as otherwise wx is a C-edge of a major face, which would
imply w(f) = 4−1+1 > 10/3. Hence, f1 sends weight 2/3 to f by R4,
which implies that f must send weight 2/3 to f1 by R4, as otherwise
w(f) ≥ 10/3. Hence, f1 has an opposite minor 2- or 3-face f2 that
satisfies mf1,f2 = 2 (see Figure 15). Then wy /∈ E(G), as other-
wise C can be extended by replacing the path (v, w, x, y, z, q) with
(v, a, z, y, w, x, d, q), and wz /∈ E(G), as otherwise C can be extended
by replacing the path (w, x, y, z, q) with (w, z, y, x, d, q). If f2 is a
3-face, this implies by symmetry tw /∈ E(G) and uw /∈ E(G), which
contradicts degG(w) ≥ 3. Hence, f2 is a 2-face. Then uw /∈ E(G), as
otherwise C can be extended by replacing the path (t, u, v, w) with
(t, g, v, u, w), which implies tw ∈ E(G), as otherwise degG(w) = 2.
This contradicts degG(u) ≥ 3.

Case 4i: f has no opposite minor 3-face whose middle C-edge is a C-edge
of f (see Figure 16).
Then, as argued before, f has an opposite minor 4-face f ′ with
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t u v w x y z q

b d

f ′f1

ff2

ag

C

Figure 15: Case 4h

mf,f ′ = 2 and C-edges xy and yz, that has an opposite minor 2-
or 3-face f2 with mf ′,f2 = 2. According to R4, f sends weight 2/3 to
f ′. Let f ′′ be the face opposite to f that has C-edge wx. Then f ′′

must be either a second opposite minor 4-face with mf,f ′′ = 2 that
has an opposite minor 2- or 3-face f1 with mf ′′,f1 = 2 (due to R4), or
a opposite minor 5-face with mf,f ′′ = 2 that has two opposite minor
2-faces (due to R5), as otherwise w(f) ≥ 4− 2/3 = 10/3, since f sends
no weight to any 2- or 3-face by R2 or R3. Note that g = a = h and
b = d are possible.

s t u v w x y z q r

b d

f ′f ′′

f f2f1

ag h

C

Figure 16: Case 4i

We claim that in all cases vy is an edge of G. Consider the case that
f2 is a 2-face (see Figure 16). Then yq /∈ E(G), as otherwise C can
be extended by replacing the path (y, z, q, r) with (y, q, z, h, r), and
thus xq ∈ E(G), as otherwise degG(q) = 2. This implies that vy or
wy is in G, as otherwise degG(y) = 2. Since wy /∈ E(G), as other-
wise C can be extended by replacing the path (w, x, y, z, q, r) with
(w, y, x, q, z, h, r), we have vy ∈ E(G), as claimed. Now consider the
remaining case that f2 is a 3-face. By symmetry, we will assume in-
stead that f1 is a 3-face and prove that wz ∈ E(G) (such that the no-
tation of Figure 16 can be used); this implies vy ∈ E(G) for the case
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that f2 is a 3-face. Then wy /∈ E(G), as otherwise C can be extended
by replacing the path (s, t, u, v, w, x, y) with (s, g, v, u, t, b, x, w, y),
and uw /∈ E(G), as otherwise C can be extended by replacing the
path (s, t, u, v, w, x) with (s, g, v, w, u, t, b, x). In addition, tw /∈ E(G),
as otherwise C can be extended by replacing the path (s, t, u, v, w)
with (s, g, v, u, t, w). Then wz ∈ E(G), as claimed, since otherwise
degG(w) = 2, which is a contradiction.
Hence, we proved that in all cases vy ∈ E(G). If f ′′ is a 5-face,
then ux ∈ E(G) by the last argument of Case 4e, which contradicts
degG(w) ≥ 3. Hence, f ′′ is a 4-face, and no matter whether f1 is
a 2- or 3-face, wz is an edge of G by a symmetric argument to the
one of the last paragraph. This contradicts that G is plane, because
vy ∈ E(G).

Case 5: f is a minor 5-face (see Figure 17).
Then f is initially charged with weight 5. If f looses a total net weight
of at most 5/3, then w(f) ≥ 10/3, so assume otherwise. We distinguish the
following subcases.

u v w x y z
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f

C

Figure 17: Case 5

Case 5a: f sends weight to an opposite minor 5-face f ′ (see Figure 18).
Without loss of generality, let xy and yz be C-edges of f ′ by R5.
Then f sends weight 1/3 to f ′, and f ′ has two opposite minor 2-faces
f1 and f2. Since w(f) < 10/3, f does neither send weight to a second
5-face nor to a 4-face nor to a 3-face (as there may be at most one
of each kind and, if so, no 2-face that receives weight from f). This
implies that the edge uv is a C-edge of a minor 2-face f3 opposite
to f , and that vw and wx are the C-edges of a second minor 2-face
f4 opposite to f (see Figure 18). Then f ′ sends weight 1/3 back to f
by R5, but w(f) = 5− 3 · 2

3 = 3 < 10/3 is still satisfied.
We have yp /∈ E(G) and pr /∈ E(G), as otherwise C can be extended
by detouring through g. Since degG(p) ≥ 3, xp ∈ E(G). By symme-
try, wz ∈ E(G), which implies yw ∈ E(G). Then C can be extended
by replacing the path (v, w, x, y) with (v, b, x, w, y).

Case 5b: f sends weight to an opposite minor 4-face f ′ (see Figure 19).
Without loss of generality, let xy and yz be C-edges of f ′ by R4.
Assume first that f sends weight to an opposite minor 3-face f1.
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Figure 18: Case 5a

Then f sends total weight 5/3 to f ′ and f1, and the middle C-edge
of f1 is either uv or vw. Both cases contradict w(f) < 10/3, since no
further weight is sent. The same argument gives a contradiction if f
sends weight to a minor 4-face different from f ′.
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Figure 19: Case 5b

Hence, f sends a total weight of at least 4/3 to minor 2-faces, as R2
sends only multiples of weight 2/3. This implies that f has an opposite
minor 2-face f1 with mf,f1 = 2. If f1 has C-edges uv and vw, then
wx is again a C-edge of major face, which sends weight 1 to f and
thus contradicts w(f) < 10/3. Hence, f1 has C-edges vw and wx
(see Figure 19). Then uw and wy are not edges of G, as otherwise
C can be extended by detouring through b. Hence, wz ∈ E(G), as
otherwise degG(w) = 2. Moreover, yq /∈ E(G) and xq ∈ E(G) for
the same reason as in Case 4i, which contradicts degG(y) ≥ 3.

Case 5c: f sends weight to an opposite minor 3-face f ′ with middle C-
edge wx (see Figure 20).
In order to have w(f) < 10/3, by R1–R3, f sends weight 2/3 to each of
the minor 2-faces f1 and f2 having C-edges uv and yz, respectively.
Then uw and xz are not edges of G, as otherwise C can be extended
by detouring C through b or g, respectively. Since {v, y} is not a 2-
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separator of G, this implies that either wz ∈ E(G) or ux ∈ E(G), say
by symmetry the former. Then we can obtain C from C by replacing
the path (v, w, x, y, z) with (v, d, y, x, w, z).
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Figure 20: Case 5c

Case 5d: f sends weight to an opposite minor 3-face f ′ with middle C-
edge vw or xy, but not to any opposite minor 4- or 5-face (see Fig-
ure 21).
Without loss of generality, let the middle C-edge of f ′ be xy. Then
vy /∈ E(G), as otherwise C can be extended by replacing the path
(v, w, x, y, z) with (v, y, x, w, d, z). Let f1 be the face opposite to f
that has vw as a C-edge. Since w(f) < 10/3, f1 is either a minor
3-face with middle C-edge uv or a minor 2-face with C-edges vw and
wx. Assume to the contrary that f1 is a 2-face. Then vx /∈ E(G), as
otherwise C can be extended by detouring through b. This implies
vz ∈ E(G), as otherwise degG(v) = 2. Then {w, z} is a 2-separator
of G, which is a contradiction.
Hence, f1 is a 3-face (see Figure 21). Then ux /∈ E(G), as oth-
erwise C can be extended by replacing the path (r, u, v, w, x) with
(r, b, w, v, u, x). Thus, since {w, z} is no 2-separator of G, uy or
vx is an edge of G. Assume to the contrary that uy /∈ E(G). Then
vx ∈ E(G), and we have wy /∈ E(G), as otherwise C can be extended
by replacing the path (r, u, v, w, x, y, z) with (r, b, w, y, x, v, u, a, z).
Since degG(y) ≥ 3, this implies uy ∈ E(G). Assume to the con-
trary that vx /∈ E(G). Then xz ∈ E(G), as otherwise degG(x) = 2,
and C can be extended by replacing the path (r, u, v, w, x, y, z) with
(r, b, w, v, u, y, x, z), which gives a contradiction. Hence, uy ∈ E(G)
and vx ∈ E(G). Then C can be extended by replacing the path
(u, v, w, x, y, z) with (u, y, x, v, w, d, z).

Case 5e: f sends weight to an opposite minor 3-face f ′ with middle C-
edge uv or yz, but not to any opposite minor 4- or 5-face (see Fig-
ure 22).
Without loss of generality, let the middle C-edge of f ′ be yz. Assume
first that f sends weight to a second opposite minor 3-face f1 6= f ′.
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Figure 21: Case 5d

By Case 5d, f1 has not middle C-edge vw, so that f ′ must have
middle C-edge uv. Then wx is a C-edge of a major face opposite to
f that sends weight 1 to f , which contradicts w(f) < 10/3.
Hence, in order to satisfy w(f) < 10/3, f sends by R2 a total weight
of 4/3 to opposite minor 2-faces. This implies that there is a minor
2-face f2 opposite to f that satisfies mf,f2 = 2. Then f2 has not
C-edges uv and vw, as otherwise wx would once again be a C-edge
of a major face, which contradicts w(f) < 10/3. Hence, f2 has C-
edges vw and wx (see Figure 22). Then uw /∈ E(G), as otherwise C
can be extended by replacing the path (u, v, w, x) with (u, w, v, b, x),
and wy /∈ E(G), as otherwise C can be extended by replacing the
path (v, w, x, y) with (v, b, x, w, y). Since degG(w) ≥ 3, wz ∈ E(G).
Then C can be extended by replacing the path (w, x, y, z, q) with
(w, z, y, x, d, q), which is a contradiction.
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Figure 22: Case 5e

We conclude that f sends no weight to any opposite minor 3-, 4- or 5-face.
In order to satisfy w(f) < 10/3, f must therefore send a total weight of 6/3
to opposite minor 2-faces by R2. In particular, there is at least one minor
2-face f ′ opposite to f that has mf,f ′ = 2. We distinguish the following
subcases for f ′.
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Case 5f: f ′ has C-edges uv and vw, or xy and yz (see Figure 23).
Without loss of generality, let f ′ have C-edges xy and yz. Assume
first that f has a second opposite minor 2-face f1 6= f ′ with mf,f1 = 2.
Then f1 has not C-edges uv and vw, as then wx would be a C-edge
of a major face sending f weight 1, which implies w(f) = 5 − 4 ·
2
3 + 1 = 10/3. Hence, f1 has C-edges vw and wx (see Figure 23).
Then wy /∈ E(G), as otherwise C can be extended by replacing the
path (w, x, y, z) with (w, y, x, d, z). Hence, vy /∈ E(G), as otherwise
degG(w) = 2. Since degG(y) ≥ 3, we conclude uy ∈ E(G) and, by
degG(w) ≥ 3, uw ∈ E(G). Then C can be extended by replacing the
path (u, v, w, x) with (u, w, v, b, x).
Hence, f has no second opposite minor 2-face f1 6= f ′ with mf,f1 = 2.
Since f sends a total weight of 6/3 to opposite minor 2-faces by R2,
f has an opposite minor 2-face f2 6= f ′ that has C-edge uv but no
other C-edge of f . Then vw and wx are C-edges of major face(s),
which contradicts w(f) < 10/3.
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Figure 23: Case 5f

Case 5g: f ′ has C-edges vw and wx, or wx and xy (see Figure 24).
Without loss of generality, let f ′ have C-edges wx and xy. By Case 5f,
f has no second opposite minor 2-face f1 6= f ′ with mf,f1 = 2. By
w(f) < 10/3, f has an opposite minor 2-face f2 that has exactly one
of the C-edges of f as a C-edge. If this edge e is not yz, e = uv and
then vw is a C-edge of a major face, which contradicts w(f) < 10/3.
Hence e = yz. Since neither uv nor vw is a C-edge of a major face,
as this would again contradict w(f) < 10/3, uv and vw are C-edges of
a minor j-face f3 with j ≥ 4 that does not receive any weight from
f . Then f3 sends weight 1/3 to f by R5, which gives w(f) = 10/3 and
thus a contradiction.

Case 6: f is a minor 6-face (see Figure 25).
Then f is initially charged with weight 6. If f looses a total net weight of
at most 8/3, then w(f) ≥ 10/3, so assume that f looses a total net weight
of at least 9/3. We distinguish the following subcases.
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Figure 24: Case 5g
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Figure 25: Case 6

Case 6a: f sends weight to an opposite minor 5-face f ′ (see Figure 26).
Without loss of generality, let xy and yz be C-edges of f ′ getting
weight from f by R5. Then f sends weight 1/3 to f ′, and total
weight 8/3 to opposite minor 2-faces f3 and f4 by R1–R5, as otherwise
w(f) ≥ 10/3 (see Figure 26). Let f1 and f2 be the two minor 2-faces
opposite to f ′ due to R5.

t u v w x y z p q r s

a

i b d

g h

f

f ′

f1 f2

f3 f4

C

Figure 26: Case 6a

We have uw /∈ E(G) and wy /∈ E(G), as otherwise C can be extended
by detouring through b, and tw /∈ E(G), as otherwise degG(u) = 2.
Since degG(w) ≥ 3, wz ∈ E(G). Moreover, yp /∈ E(G) and pr /∈
E(G), as otherwise C can be extended by detouring through g. Since
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degG(p) ≥ 3, xp ∈ E(G). Hence, degG(y) = 2, which contradicts that
G is 3-connected.

Case 6b: f sends weight to an opposite minor 4-face f ′ (see Figure 27).
Without loss of generality, let xy and yz be C-edges of f ′ by R4.
Since w(f) < 10/3, f has neither an opposite minor 5-face, nor a
second opposite minor 4-face. Assume first that f sends weight to an
opposite minor 3-face f1. Then f sends total weight 5/3 to f ′ and f1,
and must therefore send weight 4/3 to minor 2-face(s), as otherwise
w(f) ≥ 10/3. Hence, f1 has middle C-edge tu, and f has one opposite
minor 2-face f2 that has C-edges vw and wx (see Figure 27).
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Figure 27: Case 6b

Then uw and wy are not edges of G, as otherwise C can be extended
by detouring through b. Moreover, tw /∈ E(G), as otherwise C can
be extended by replacing the path (s, t, u, v, w) with (s, h, v, u, t, w).
Hence, wz ∈ E(G), as otherwise degG(w) = 2. Moreover, yq /∈ E(G)
and xq ∈ E(G) for the same reason as in Case 4i, which contradicts
degG(y) ≥ 3.

Case 6c: f sends weight to an opposite minor 3-face f ′ with middle C-
edge vw or wx (see Figure 28).
Without loss of generality, let the middle C-edge of f ′ be wx. In
order to have w(f) < 10/3, f must by R2–R3 send weight 2 to minor
2-faces. Thus, f has two minor 2-faces f1 and f2 such that f1 has
C-edges tu and uv, and f2 has yz as a C-edge.
Then uw /∈ E(G), as otherwise C can be extended by detouring
C through b. In addition, ux /∈ E(G), as otherwise C can be ex-
tended by replacing the path (u, v, w, x, y) with (u, x, w, v, d, y). Then
uy /∈ E(G), as otherwise the fact that {v, y} is not a 2-separator of
G would imply uw ∈ E(G) or ux ∈ E(G). Since degG(u) ≥ 3,
uz ∈ E(G). Then we can obtain C from C by replacing the path
(t, u, v, w, x, y, z, q) with (t, a, z, u, v, w, x, y, g, q).

Case 6d: f sends weight to an opposite minor 3-face f ′ with middle C-
edge uv or xy (see Figure 29).
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Figure 28: Case 6c

Without loss of generality, let the middle C-edge of f ′ be xy. As in
Case 6c, w(f) < 10/3 implies that f has opposite minor 2-faces f1
and f2 such that f2 has C-edges uv and vw and f1 has C-edge tu
(see Figure 29).
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Figure 29: Case 6d

Then tv and vx are not edges of G, as otherwise C can be extended by
detouring C through b. In addition, vy /∈ E(G), as otherwise C can
be extended by replacing the path (v, w, x, y, z) with (v, y, x, w, d, z).
Since degG(v) ≥ 3, vz ∈ E(G). This implies that {w, z} is a 2-
separator of G, which contradicts that G is 3-connected.

Case 6e: f sends weight to an opposite minor 3-face f ′ with middle C-
edge tu or yz, but not to any opposite minor 4- or 5-face (see Fig-
ure 30).
Without loss of generality, let the middle C-edge of f ′ be yz. Assume
first that f has a second opposite minor 3-face f ′′. By Cases 6c+d,
f ′′ has middle C-edge tu. By w(f) < 10/3, f has an opposite minor
2-face f2 with C-edges vw and wx (see Figure 30). Then uw /∈
E(G) and wy /∈ E(G), as otherwise C can be extended by detouring
through b. Moreover, wz /∈ E(G), as otherwise C can be extended by
replacing the path (w, x, y, z, q) with (w, z, y, x, d, q). By symmetry,
tw /∈ E(G), which contradicts degG(w) ≥ 3.
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Figure 30: Case 6e

Hence, by R1–R3, f sends total weight 2 to at least two opposite
minor 2-faces f1 and f2. If mf,f1 = 1 or mf,f2 = 1, either the
edge uv or the edge wx would be a C-edge of a major face, which
contradicts w(f) < 10/3. Thus, f1 has C-edges tu and uv, and f2
has C-edges vw and wx. From the previous argument, we know that
uw, wy and wz are not in G. Since degG(w) ≥ 3, tw ∈ E(G). This
contradicts degG(u) ≥ 3.

We conclude that f sends no weight to any opposite minor 3-, 4- or 5-face.
In order to satisfy w(f) < 10/3, f must therefore send a total weight of 10/3
to opposite minor 2-faces by R2, as R2 sends only multiples of weight 2/3.
If some C-edge e of f is not a C-edge of a minor 2-face, e must be either
tu or yz, as otherwise e would be in a major face that sends weight 1 to f
and therefore contradicts w(f) < 10/3. Hence, f has three opposite minor
2-faces f1, f2 and f3 such that mf,f1 = mf,f2 = 2 and the C-edges of f1
and f2 are either uv, vw, wx, xy or one of tu, uv, vw, wx and vw, wx, xy, yz.
We distinguish these subcases.

Case 6f: The C-edges of f1 and f2 are tu, uv, vw, wx or vw, wx, xy, yz
(see Figure 31).
Without loss of generality, let f1 and f2 have the C-edges vw, wx, xy, yz.
By the above argument, f3 has the C-edges tu and uv (see Figure 31).
Then uw and wy are not in G, as otherwise C can be extended by
detouring through b. Moreoever, wz /∈ E(G), as otherwise degG(y) =
2. By symmetry, tw /∈ E(G), which contradicts degG(w) ≥ 3.

Case 6g: The C-edges of f1 and f2 are uv, vw, wx, xy (see Figure 32).
Then f3 has either tu or yz as a C-edge, say without loss of generality
the latter.
Then tv and vx are not in G, as otherwise C can be extended by
detouring through b. Moreover, vy /∈ E(G), as otherwise degG(x) =
2. Since degG(v) ≥ 3, vz ∈ E(G). Then xz /∈ E(G), as otherwise
C can be extended by detouring through g. Hence, we obtain the
contradiction degG(x) = 2.
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Figure 31: Case 6f
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Figure 32: Case 6g

Case 7: f is a minor 7-face (see Figure 33).
Then f is initially charged with weight 7. If f looses a total net weight of
at most 11/3, then w(f) ≥ 10/3, so assume that f looses a total net weight
of at least 12/3. According to R1–R5, f sends to every opposite face f ′

at most weight 2
3 mf,f ′ (for example, if f ′ is a minor 3-face, f sends only

weight at most 1
2 mf,f ′ by R3). Hence, f does not send any weight to a

5-face, as otherwise w(f) ≥ 10/3. We distinguish the remaining cases.
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Figure 33: Case 7

Case 7a: f sends weight to an opposite minor 4-face f ′ (see Figure 34).
Without loss of generality, let f ′ have C-edges xy and yz. Since
w(f) < 10/3, all other C-edges of f are C-edges of minor 2-faces f1,
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f2 and f3 (see Figure 34).
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Figure 34: Case 7a

Then yp /∈ E(G), as otherwise C can be extended by detouring
through g, and hence xp ∈ E(G), as otherwise degG(p) = 2. Also,
uw and wy are not in G, as otherwise C can be extended by detour-
ing through b. Hence, y has a neighbor in G that is incident to f
and different from {w, x, z}. We conclude wz /∈ E(G). In addition,
tw /∈ E(G), as otherwise degG(u) = 2. Thus, sw ∈ E(G), which
implies sy ∈ E(G). Then C can be obtained from C by replacing the
path (r, s, t, u, v, w, x, y, z) with (r, i, t, u, v, w, x, y, s, a, z).

Case 7b: f sends weight to an opposite minor 3-face f ′ (see Figure 35).
Since w(f) < 10/3, the middle C-edge of f ′ must be either st or yz;
say without loss of generality the latter. For the same reason as in
Case 7a, all other C-edges of f are C-edges of minor 2-faces f1, f2
and f3 (see Figure 35). Note that if there is another 3-face f ′′ with
middle C-edge st, then the edges uv, vw and wx are not all C-edges
of some 2-face.
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Figure 35: Case 7b

Then uw /∈ E(G) and wy /∈ E(G), as otherwise C can be extended
by detouring through b. Moreover, wz /∈ E(G), as otherwise C can
be extended by replacing the path (w, x, y, z, q) with (w, z, y, x, d, q).
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Also tw /∈ E(G), as otherwise degG(u) = 2. Since degG(w) ≥ 3,
sw ∈ E(G). Since degG(u) ≥ 3, su ∈ E(G). Then C can be extended
by replacing the path (s, t, u, v) with (s, u, t, h, v).

Case 7c: f sends no weight to 3-, 4- and 5-faces (see Figure 36).
Then f sends a total weight of at least 6 · 2

3 = 4 to opposite minor
2-faces. The C-edges of these 2-faces must be consecutive on C, as
otherwise exactly one C-edge of f would be a C-edge of a major
face, which contradicts w(f) < 10/3. Hence, there are three minor 2-
faces f1, f2 and f3, whose C-edges are consecutive on C and satisfy
mf,f1 = mf,f2 = mf,f3 = 2 (see Figure 36). Assume without loss of
generality that f3 has C-edges xy and yz.
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Figure 36: Case 7c

Then uw and wy are not in G, as otherwise C can be extended by
detouring through d. Moreover, tw and wz are not in G, as otherwise
degG(u) = 2 or degG(y) = 2. Since degG(w) ≥ 3, sw ∈ E(G).
Moreover, su /∈ E(G), as otherwise C can be extended by detouring
through b. Hence, we obtain the contradiction degG(u) = 2.

Case 8: f is a minor 8-face (see Figure 37).
Then f is initially charged with weight 8. If f looses a total net weight of
at most 14/3, then w(f) ≥ 10/3, so assume that f looses a total net weight
of at least 15/3. Hence, f does not send any weight to a 4- or 5-face, as
otherwise w(f) ≥ 10/3. We distinguish the remaining cases.
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Figure 37: Case 8
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Case 8a: f sends weight to an opposite minor 3-face f ′ (see Figure 38).
Then w(f) < 10/3 implies that f ′ has exactly two C-edges that are
C-edges of f , and that every other C-edge of f is a C-edge of a minor
2-face. Without loss of generality, let f ′ have middle C-edge yz, and
let f1, f2 and f3 be the minor 2-faces opposite to f (see Figure 38).
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Figure 38: Case 8a

Then su, uw and wy are not edges of G, as otherwise C can be
extended by detouring through h or b. Moreover, wz /∈ E(G), as
otherwise C can be extended by replacing the path (w, x, y, z, q)
with (w, z, y, x, d, q). Also sw /∈ E(G) and tw /∈ E(G), as otherwise
degG(u) = 2. Since degG(w) ≥ 3, rw ∈ E(G). Since degG(u) ≥ 3,
ru ∈ E(G). This gives the contradiction degG(s) = 2.

Case 8b: f sends no weight to 3-, 4- and 5-faces (see Figure 39).
Then f sends a total weight of exactly 8 · 2

3 = 16/3 to opposite minor
2-faces, as R2 sends only multiples of 2

3 weight. Assume first that a
minor 2-face f4 opposite to f has C-edges xy and yz (see Figure 39).
Then wy /∈ E(G), as otherwise C can be extended by detouring
through g, and wz /∈ E(G), as otherwise degG(y) = 2. Then the
same arguments as in Case 8a give the contradiction degG(s) = 2.
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Figure 39: Case 8b

Hence, let yz be the only C-edge of f4 that is a C-edge of f . Then v
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has no neighbor that is incident to f and not in {u, w}, as otherwise t
or x has degree 2 in G. Hence, we obtain the contradiction degG(v) =
2.

Case 9: f is a minor j-face with j ≥ 9 (see Figure 40).
Then f is initially charged with weight j and looses a total net weight of
at most 2

3 j, so that w(f) ≥ 1
3 j ≥ 10

3 if j ≥ 10. Hence, j = 9 and every
C-edge of f is a C-edge of a minor 2-face. Since 9 is odd, we may assume
without loss of generality that one minor 2-face f1 has qr but no other
C-edge of f as a C-edge (see Figure 40). Then the same arguments as in
Cases 8a+b imply that degG(s) = 2.
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Figure 40: Case 9

This proves 2c =
∑

f∈F (H) w(f) ≥ 10/3 · |M− ∪M+|, which completes the proof
of Theorem 1. �

4 Remarks
We remark that the bound of Theorem 1 can be improved to 5

8 (n + 4) for every
n ≥ 16: then Lemma 5 in [2] implies the improved bound for the special case
that V − or V + is empty, while in the remaining case |V −| ≥ 1 ≤ |V +| Lemma 1
can be immediately strengthened to |M−∪M+| ≥ |V −∪V +|+4 using the same
proof with a different induction base (see also [3]). This immediately improves
the bound circ(G) ≥ 13

21 (n + 4) given in [2] for every n ≥ 16. We note that
circ(G) ≥ 5

8 (n + 4) does not hold for n ≤ 6, as for these values a cycle of length
at least 5

8 (n + 4) > n is impossible.
The proof of Theorem 1 is constructive and gives a quadratic-time algorithm

that finds a cycle of length at least 5
8 (n+2), by applying the result of [6] exactly

as shown in [3, Section Algorithm]. We therefore conclude the following theorem.

Theorem 2 For every essentially 4-connected plane graph G on n vertices, a
cycle of length at least 5

8 (n + 2) can be computed in time O(n2).
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