
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 24, no. 3, pp. 155–170 (2020)
DOI: 10.7155/jgaa.00522

Maximum Cut Parameterized by
Crossing Number

Markus Chimani 1 Christine Dahn 2 Martina Juhnke-Kubitzke 1

Nils M. Kriege 3 Petra Mutzel 2 Alexander Nover 1

1School of Mathematics/Computer Science, University Osnabrück, Germany
2Institute for Computer Science, University of Bonn, Germany

3Department of Computer Science, TU Dortmund University, Germany

Abstract

Given an edge-weighted graph G on n nodes, the NP-hard Max-Cut
problem asks for a node bipartition such that the sum of edge weights join-
ing the different partitions is maximized. We propose a fixed-parameter
tractable algorithm parameterized by the number k of crossings in a given
drawing of G. Our algorithm achieves a running time of O(2k · p(n + k)),
where p is the polynomial running time for planar Max-Cut. The only
previously known similar algorithm [8] is restricted to embedded 1-planar
graphs (i.e., at most one crossing per edge) and its dependency on k is
of order 3k. Finally, combining this with the fact that crossing number
is fixed-parameter tractable with respect to itself, we see that Max-Cut
is fixed-parameter tractable with respect to the crossing number, even
without a given drawing. Moreover, the results naturally carry over to
the minor-monotone-version of crossing number.

Submitted:
August 2019

Reviewed:
December 2019

Revised:
January 2020

Accepted:
February 2020

Final:
February 2020

Published:
March 2020

Article type:
Regular paper

Communicated by:
G. Liotta

E-mail addresses: markus.chimani@uni-osnabrueck.de (Markus Chimani) christine.dahn@cs.uni-

bonn.de (Christine Dahn) juhnke-kubitzke@uni-osnabrueck.de (Martina Juhnke-Kubitzke)

nils.kriege@cs.tu-dortmund.de (Nils M. Kriege) petra.mutzel@cs.uni-bonn.de (Petra Mutzel)

anover@uni-osnabrueck.de (Alexander Nover)

http://dx.doi.org/10.7155/jgaa.00522
mailto:markus.chimani@uni-osnabrueck.de
mailto:christine.dahn@cs.uni-bonn.de
mailto:christine.dahn@cs.uni-bonn.de
mailto:juhnke-kubitzke@uni-osnabrueck.de
mailto:nils.kriege@cs.tu-dortmund.de
mailto:petra.mutzel@cs.uni-bonn.de
mailto:anover@uni-osnabrueck.de

156 Chimani et al. Maximum Cut Parameterized by Crossing Number

1 Introduction

Cut problems in graphs are a well-established class of problems attracting inter-
est since the beginning of modern algorithmic research. Given an edge-weighted
undirected graph, the Max-Cut problem asks for a node partition into two sets,
such that the sum of the weights of the edges between the partition sets is max-
imized. The problem is getting increasing attention in the literature due to its
applicability to various scenarios: these range from `1-embeddability [11], to the
layout of electronic circuits [3, 9], to solving Ising spin glass models, which are
of high interest in physics [1]. Besides the theoretical merits, such models need
to be solved in adiabatic quantum computation [32]. Furthermore, quadratic
unconstrained binary optimization (QUBO) problems can be solved via Max-
Cut. Many combinatorial optimization problems can be stated in the form of
QUBO such as multicommodity-flow problems, maximum clique, vertex cover,
scheduling, and many others. Also see [10, 11] for a more in-depth overview on
applications.

The Max-Cut problem has been shown to be NP-hard for general
graphs [24]. Papadimitriou and Yannakakis [36] have shown that the Max-
Cut problem is even APX-hard, i.e., there does not exist a polynomial-time
approximation scheme unless P=NP. Goemans and Williamson proposed a
randomized constant-factor approximation algorithm [17], which has been
derandomized by Mahajan and Ramesh [31], achieving a ratio of 0.87856.
Several special cases of the problem allow polynomial algorithms: If the weights
of all edges are negative we obtain a Min-Cut problem, which can be solved,
e.g., via network flow. Other special cases are, e.g., graphs without long odd
cycles [20] or weakly bipartite graphs [19]. The case of planar input graphs is of
particular interest. Orlova and Dorfman [34] and Hadlock [21] have shown how
to solve Max-Cut in polynomial time for unweighted planar graphs. Those
algorithms can be extended to weighted planar graphs; the currently fastest
algorithms for the weighted case have been suggested by Shih et al. [38] and by
Liers and Pardella [30], and achieve a running time of p(n) = O(n3/2 log n) on
planar graphs with n nodes. Barahona has shown that the planarity condition
can be relaxed to graphs not contractible to K5 [2].

Similarly, it has been shown that Max-Cut can be solved in polynomial
time if the graph can be embedded on a surface of constant genus g [14, 15].
However, the edge-weights have to be restricted to integers whose absolute val-
ues are bounded by a polynomial in the input. The central idea of this algorithm
is to write the generating function of cuts as a linear combination of 4g Pfaffi-
ans. This algorithm is in fact highly non-trivial to realize: In order to obtain an
implementable algorithm, [15] reports on a scheme, which depends on the exis-
tence of sufficiently many prime numbers within a given interval, which cannot
be guaranteed in general.

A graph is 1-planar if it allows a drawing where each edge is involved in at
most one crossing. A 1-plane graph is such a graph, together with an embed-
ding realizing this property. The Max-Cut problem on 1-plane graphs with k
edge crossings has recently been shown to be fixed-parameter tractable (FPT)

JGAA, 24(3) 155–170 (2020) 157

with parameter k [8]. More precisely, it was shown that such instances can be
solved in O(3k ·p(n)) time, where p(n) is the running time of a polynomial-time
Max-Cut algorithm on planar graph with n nodes, e.g., [30,38]. There are no
restrictions on the edge weights.

Our contribution. In this paper, we improve on the latter result in several
ways: Firstly, we drop the requirement of 1-planarity, i.e., we consider graphs
that can be drawn with at most k crossings (even if multiple such crossings lie
on the same edge). We therefore handle the case of the well-established notion
of the graph’s crossing number. Secondly, we reduce the runtime dependency
on k from 3k to 2k. Finally, unlike the previous result, our approach can be
extended to an FPT algorithm which does not even require a crossing-realizing
drawing as an input; however, this increases the running time and requires a
deep algorithm from the literature as a black box [18, 26]. Interestingly, we
achieve these results by a simpler approach (compared to [8]). Comparing our
algorithm with [15], we have no restrictions on the edge weights. Even in the
restricted scenario, our algorithm is faster for graphs whose crossing number
is at most twice its genus. Furthermore, we require only easily-implementable
data structures and subalgorithms (if we are given a crossing-realizing drawing),
compared to advanced methods from algebra.

The general idea of our algorithm is to recursively get rid of each crossing,
each time resulting in two new subinstances. We end up with a set of up to 2k

planar graphs, each of which can be solved using a known polynomial-time Max-
Cut algorithm for planar graphs. The maximum over all these subinstances
then yields a maximum cut in the original instance.

Finally, we consider parameterizing the problem by the minor crossing num-
ber (see below for details). This measure is always at most the graph’s crossing
number. While the exponential dependency on the respective parameter is iden-
tical, the running time only slightly increases in its polynomial part.

Independent work. Kobayashi et al. [28] independently and simultaneously
obtained another fixed-parameter tractable algorithm for Max-Cut parame-
terized by crossing number achieving the same running time. However, while
we can always stay in the realm of maximum cuts when solving subinstances,
they have to consider maximum weighted b-factor problems. Their preprint was
uploaded to arXiv shortly after ours [6, 27].

Organization of the paper. Section 2 recapitulates the basic definitions for
cuts and crossings. In Section 3, we present our new algorithm and prove its
correctness and running time. Section 4 extends the results to the minor crossing
number case. We end with a conclusion and open problems in Section 5.

158 Chimani et al. Maximum Cut Parameterized by Crossing Number

2 Preliminaries

Throughout this paper we consider undirected edge-weighted graphs. The input
for our Max-Cut problem is a graph G = (V,E, c), where ce ∈ R denotes the
(positive or negative) weight of edge e, for each edge e ∈ E. A partition of the
nodes V into two sets S ⊆ V and S = V \ S defines the cut δ(S) = {uv ∈ E |
u ∈ S ⇔ v 6∈ S}. The value c(δ(S)) =

∑
e∈δ(S) ce of a cut is the sum of all edge

weights of the edges in the cut. Given G, the Max-Cut problem asks for a cut
with highest value. Since a graph can have multiple cuts of equal value, only
the value of a maximum cut is unique, not the cut itself.

A non-degenerated drawing of a graph in the plane is a map of its nodes to
distinct points in R2, and a map of its edges to curves connecting the respective
endpoints, not including the points of any other node. Any point mapped to
the plane either corresponds to a graph node, or is contained in at most two
edge curves. A shared non-endpoint between two curves is called a crossing.

A graph is planar if it admits a drawing without any crossings. It is well
known that planarity can be tested in linear time [23]. For non-planar graphs it
is natural to ask for a drawing with as few crossings as possible. The smallest
such number is the crossing number cr(G) of G. Not only is it NP-hard to
compute cr(G) [16], but even the so called realizability problem turns out to be
NP-hard [29]: Given a graph G and a set X of edge pairs, is there a drawing
D of G such that X contains an edge pair if and only if the pair’s two edge
curves cross in D? The key problem in testing realizability is that it is hard
to figure out whether there exist orderings of the crossings along the respective
edges that allow the above properties.

Therefore, sometimes more restricted crossing variants are considered. For
example, 1-planar graphs admit drawings where every edge is involved in at
most one crossing. Not all graphs can be drawn in such a way, since 1-planar
graphs can have at most 4|V | − 8 edges; also, the 1-planar number of crossings
is in general larger than cr(G) [7, 35].

For a general drawing (not necessarily 1-plane), we typically encode its cross-
ings as a crossing configuration X . Therein, we not only store the pairs of edges
that cross, but for each edge also the order of the crossings as they occur along
its curve. The feasibility of a crossing configuration can be tested in time linear
in |V |+ |X | by replacing crossings with dummy nodes of degree 4, testing pla-
narity, and checking the cyclic order around dummy nodes.1 Although we will
not require this fact in the following, this also allows us to efficiently deduce a
drawing that respects X . It is well understood that we can restrict ourselves
to good drawings when considering the (traditional) crossing number of graphs:
adjacent edges never cross and no edge pair crosses more than once.

1In general, a specified edge pair may not really cross but merely “touch”; this is trivial
to detect after testing planarity by checking the cyclic order of the edges around the dummy
node. Given such a “flawed” configuration, we trivially obtain one with less crossings by
removing such crossing pairs from X

JGAA, 24(3) 155–170 (2020) 159

3 Algorithm

Our main idea for computing the maximum cut in an embedded weighted graph
is to eliminate its crossings one by one. In the end, we use a Max-Cut algorithm
for planar graphs. We first introduce a slight variant of Max-Cut:

Definition 1 (Partially-Fixed Maximum Cut, PF-Max-Cut) Given an
edge weighted graph G = (V,E, c) and a set of fixed edges F ⊆ E, find a cut of
maximum value that contains all elements of F .

A cut is feasible if it contains F . A PF-Max-Cut instance is infeasible if it
does not allow a feasible cut. It is easy to see that an instance is infeasible if and
only if F contains a cycle of odd length. We denote a maximum objective value
by MaxCutpf(G,F), and let MaxCutpf(G,F) = −∞ for infeasible instances.

Observe that (as for Max-Cut) we do not need to consider a given crossing
configuration X as part of the problem description (see Corollary 7). However,
since having X allows for simplifications and a better running time, we will for
now assume that we are given the graph together with a crossing configuration
X .2 We will explain later how to remove this assumption in Corollary 7.

Given any edge vw with weight cvw in a PF-Max-Cut instance, we define
the operation to bisubdivide vw at v as follows: Subdivide vw twice, i.e., replace
vw by a path of length 3 with two new degree-2 nodes. We denote the new
node incident to v or w by v or w, respectively. We consider the notation · an
operand.3

The edges vv and vw have weight 0, ww retains the weight cvw. Furthermore,
we add vv, vw to F , and if vw ∈ F , we replace it in F by ww. Clearly, both
vv, vw will be in any feasible cut; node w will always lie in the same partition
set as v, and v in the other (cf. Figure 1b). Most importantly this gives:

Lemma 2 The feasible cuts in an original PF-Max-Cut instance 〈G,F 〉 are
in 1-to-1 correspondence to feasible cuts of equal value in a bisubdivided instance
〈G′, F ′〉.

Proof: Let vw be the edge in G that is bisubdivided at v to obtain 〈G′, F ′〉.
By construction, we know that both edges vv, vw have cost 0 and are in F ′, and
thus in any F ′-feasible cut. Consequently, in any F ′-feasible cut, v and w will
lie in a common partition set. Let S′ ⊂ V (G′) be a node subset that induces
some feasible (with respect to F ′) cut in G′. Then, the node set S = S′ \ {v, w}
induces a feasible (with respect to F) cut in G. Cut δ(S) contains edge vw if
and only if δ(S′) contains ww. Since both these edges have identical cost, the
total costs of both cuts are equal.

2As noted above, we may assume that no such X ever specifies “touching points”; we can
reduce such configurations whenever our algorithm retrieves a new crossing configuration.

3Observe that per recursion step, we will bisubdivide at most one edge per incident node
(recall that adjacent edges never cross in good drawings). Thus, the above simple notation
is unambiguous. In the graphs of the subproblems, see below, we may assume the nodes to
be named afresh, and thus we may again perform bisubdivisions without creating notational
ambiguity.

160 Chimani et al. Maximum Cut Parameterized by Crossing Number

v

x

w

y

(a) A crossing in G.

v

x

w

y

x

y

v w

(b) The same crossing in G′ with the crossing
edges bisubdivided at v resp. x.

Figure 1: The situation at a crossing between vw and xy in G. In G′, the two edges
of the crossing are bisubdivided at v and x, respectively, and the zig-zag edges are
added to the set of fixed edges F ′. As an example, the node coloring at v, v, w gives
a partition of these nodes that is forced by the respective newly added edges in F ′.
(Dashed and dotted edges show examples of other edges in G, resp. G′.)

Inversely, let S ⊂ V (G) be a node subset that induces some feasible (with
respect to F) cut in G. Then, consider the cut in G′ induced by S′ = S ∪ {s},
where s = w if v ∈ S, and s = v otherwise. Both fixed edges vv, vw are in δ(S′)
and the cut is thus feasible. Again, δ(S′) contains edge ww if and only if δ(S)
contains vw, and both cut values are thus equal. �

When we identify two nodes a, b in a graph with one another, they become
a common entity that is incident to all of their former neighbors. We will only
identify nodes that are neither adjacent nor share neighbors.

When identifying nodes in G of some PF-Max-Cut instance 〈G,F 〉, the set
F is retained, subject to replacing the edges formerly incident to a or b with
their new counterparts.

We are now ready to describe our algorithm. We are given a Max-Cut
instance G = (V,E, c), together with some crossing configuration X with
k crossings. Let F = ∅ be the set of fixed edges and consider 〈G,F 〉 as a
PF-Max-Cut instance. From 〈G,F,X〉, we pick a crossed edge vw, and
derive two new triplets Ti = 〈Gi, Fi,Xi〉, for i ∈ {v, w}. Both derived
crossing configurations Xi attain at most k − 1 crossings and we can call our
algorithm recursively on Tv and Tw. As a base case, the derived graphs become
planar and (after a preprocessing to deal with the fixed edges) we apply an
efficient Max-Cut algorithm for planar graphs. The solutions of 〈Gi, Fi〉, for
i ∈ {v, w}, yield a solution of 〈G,F 〉. Observe, however, that 〈Gi, Fi〉 may
become infeasible.

Let us describe this recursion step formally (cf. also Figures 1 and 2). We
define the crossing split operation that, given a triplet 〈G,F,X〉, yields the two

JGAA, 24(3) 155–170 (2020) 161

triplets Tv and Tw: Let 〈G = (V,E, c), F 〉 be a PF-Max-Cut instance and X a
crossing configuration of G. Consider a crossing χ ∈ X with crossing edges vw
and xy. For j ∈ {v, w, x, y}, let Yj be the ordered sets of crossings in X between
j and χ (cf. the dotted edges in Figure 1: e.g., the crossings between the two
dotted edges and ww in Figure 1b are in Yw as they are between χ and w in
Figure 1a). Let the intermediate instance 〈G′, F ′〉 be obtained from 〈G,F 〉 by
bisubdividing vw at v and bisubdividing xy at x. For i ∈ {v, w}, let 〈Gi, Fi〉 be
the PF-Max-Cut instance obtained from 〈G′, F ′〉 by identifying x with i (see
Figures 2c and 2d). Intuitively, the two graphs obtained by the identifications
represent the two possibilities whether x is on the same side of the cut as v or
not. We obtain a corresponding crossing configuration Xi from X by removing
χ and placing the crossings Yj (retaining their order) on the edge jj, for all
j ∈ {v, w, x, y}. The triplets Tv = 〈Gv, Fv,Xv〉 and Tw = 〈Gw, Fw,Xw〉 are the
results of the crossing split operation with respect to 〈χ, vw, xy〉.

Lemma 3 Let 〈G = (V,E, c), F 〉 be a PF-Max-Cut instance and X a crossing
configuration of G with k crossings. Let χ ∈ X be any crossing with some
crossing edges vw and xy, and consider the crossing split operation with respect
to 〈χ, vw, xy〉. For i ∈ {v, w}, let 〈Gi, Fi,Xi〉 be the resulting triplets. Then we
have:

1. for i ∈ {v, w}, Xi is a feasible crossing configuration for Gi with at most
k − 1 crossings; and

2. MaxCutpf(G,F) = maxi∈{v,w}{ MaxCutpf(Gi, Fi) }.

Proof: Consider any drawing D of G realizing X . By routing the new paths
(vv, vw,ww resp. xx, xy, yy) along the curves of their original edges (vw resp.
xy) we obtain a drawing D′ of G′ from D. Thereby, for j ∈ {v, w, x, y}, we place
the new nodes j in a close neighborhood of χ on the curve segment between j
and χ, so that xy is only crossed by vw and vice versa. Note that the number of
crossings in D′ is equal to that of D, since all crossings in Yj in D are transferred
to the edge jj in D′, for all j ∈ {v, w, x, y}, and the original crossing χ between
xy and vw in D has a counterpart χ′ in D′ between the edges vw and xy. Since
the edges vw and xy are crossing free except for χ′, we can follow (in a close
neighborhood) the curves of vw from any of its end points up to χ′, and onwards
from there along the curve of vw to any of its end points. Since these routes
are crossings-free, we call them free routes. When we now identify x with v,
we can locally redraw our drawing such that χ′ vanishes and no other crossings
arise, see Figure 2c. Observe that x has precisely two neighbors: y and x. The
identification is thus such that we may remove x and insert edges yv and xv
instead. The former can trivially be drawn without any crossings along the free
route between y and v. The curve for the latter edge is the concatenation of the
former curve of xx and the free route between x and v. The number of crossings
along the edge xx (with now x = v) does thus not change. We can perform the
analogous redrawing when identifying x with w, see Figure 2d. This establishes
claim (1).

162 Chimani et al. Maximum Cut Parameterized by Crossing Number

Two nodes v and x can either be on the same side of a cut, or they are
on opposite sides. Therefore, we create two new subproblems in which v and
x are in the same partition set or not, respectively. In Gv (where we identify
x with v), we have a path of two edges between v and x (namely vv and vx),
both of which are in Fv. Thus, v and x have to be in the same partition set,
see Figure 2c. Conversely, in Gw (where we identify x with w), we have a path
of three edges between v and x (namely vv, vw, and wx), all of which are in
Fw. Thus, v and x have to be in different partition sets, see Figure 2d. We can
see that the respective constructions do not induce any further restrictions on
the set of cuts. In particular, both derived instances still allow any partition
choice between w and x, between w and y, and between x and y. Overall, every
feasible cut in 〈G′, F ′〉 can be realized either in 〈Gv, Fv〉 or in 〈Gw, Fw〉.

If we know the maximum cut in instance 〈Gv, Fv〉 and the maximum cut in
instance 〈Gw, Fw〉, we can pick the larger of these two cuts and transfer it back
to 〈G′, F ′〉. By applying Lemma 2 twice (once for the bisubdivision of vw at v
and once for the bisubdivision of xy at x), the maximum cut in 〈G′, F ′〉 induces
a maximum cut in 〈G,F 〉 of the same value. Claim (2) follows. �

If we are in a base case – the considered graph is planar – we can use an
efficient Max-Cut algorithm for planar graphs:

Lemma 4 Consider a PF-Max-Cut instance 〈G = (V,E, c), F 〉 with a planar
graph G. Let p(|V |) be a polynomial upper bound on the running time of a Max-
Cut algorithm on the planar graph G. We can compute an optimal solution to
〈G,F 〉 – or decide that the instance is infeasible – in O(p(|V |)).

Proof: We transform the PF-Max-Cut instance into a traditional Max-Cut
instance by attaching a large weight to the edges in F . Namely, we add M
to the weight of each edge f ∈ F , where M = 2 ·

∑
e∈E |ce|. The omission

of a single edge of F from the solution cut (even if picking all other edges of
positive weight) will already result in a worse objective value than picking all
of F and all edges of negative weight. The instance is infeasible if and only if
the computed cut does not contain all of F ; this can also be deduced purely by
checking whether the objective value is at least M · |F |+

∑
e∈E:ce<0 ce. �

We proved our lemma above for a general case (by adding M to the weight
of each edge in F), but in fact we only require a slightly weaker version, since
in our algorithm cf = 0 for all f ∈ F . Thus it suffices to set cf = M instead
of adding M to cf . Using any of the currently fastest Max-Cut algorithms for
planar graphs [30, 38] leads to O(|V |3/2 log |V |) time in the above lemma. We
could speed-up infeasibility detection by checking whether F contains a cycle of
odd length prior to the transformation; while this only requires O(|V |) time via
depth-first search, the overall asymptotic runtime for the lemma’s claim does of
course not improve.

Theorem 5 Let G = (V,E, c) be an edge-weighted graph and X a crossing
configuration of G with k crossings. Let p(n) be a polynomial upper bound on

JGAA, 24(3) 155–170 (2020) 163

v

x

w

y

x

y

v w

(a) Induced partition in G′ with x and v on
the same side of the partition.

v

x

w

y

x

y

v w

(b) Induced partition in G′ with x and v on
different sides of the partition.

v

x

w

y

y

v w

(c) In Gv , x is identified with v.

v

x

w

y

y

v w

(d) In Gw, x is identified with w.

Figure 2: An illustration of the two cases where v and x are either on the same side
of the partition (a/c) or on opposite sides (b/d). In the two graphs Gv and Gw, the
crossing was removed while retaining the partition property. The node coloring gives
a partition of the nodes that is induced by the newly added edges in F ′, resp. Fv or
Fw. (Dashed and dotted edges show examples of other edges in G′, resp. Gv or Gw.)

the running time of a Max-Cut algorithm on planar graphs with n nodes. We
can compute a maximum cut in G in O(2k · p(|V |+ k)) time.

Proof: As described above, we solve the instance by considering the PF-Max-
Cut instance 〈G,F = ∅〉 together with X . Thus the triplet 〈G,F,X〉 forms the
initial input of our recursive algorithm R.

Algorithm R proceeds as follows on a given triplet: If the triplet’s graph is
planar, we solve 〈G,F 〉 via Lemma 4. Otherwise, we use Lemma 3 to obtain
two new input triples Tv, Tw, for each of which we call R recursively. Their
returned solutions (i.p., their solution values) induce the optimum solution for
the current input triplet. However, while the number of crossings decreases by
(at least) one per recursion step, the graph’s size increases by three nodes.

The runtime complexity follows from the fact that we consider two choices
per crossing in the given X , and thus construct 2k graphs. For each such graph,

164 Chimani et al. Maximum Cut Parameterized by Crossing Number

which has |V |+ 3k nodes, we run the planar Max-Cut algorithm. �

Above, we trivially have k ∈ O(|V |4) and thus |V |+ k ∈ O(poly(|V |)).

Corollary 6 The above algorithm is an FPT algorithm with parameter k, pro-
vided that a crossing configuration X with k crossings is part of the input. More-
over, the attained running time is polynomial for any k ∈ O(log |V |). Using the
currently fastest Max-Cut algorithm for planar graphs [30, 38], our algorithm
yields a running time of O(2k · (|V |+ k)3/2 log(|V |+ k)).

Quite sophisticated results by Grohe [18] and Karabayashi and Reed [26]
show that the problem to compute the crossing number of a graph is in FPT
(even in linear time) with respect to its natural parameterization: Given a
graph G and a number k ∈ N, we can answer the question “cr(G) ≤ k ?” in
time O(f(k) · n). In case of a yes-instance, we obtain a corresponding crossing
configuration X as a witness. The computable function f(k) is purely dependent
on k. However, the dependency f(k) is double exponential, and the algorithm
far from being practical. Still, these results formally allow us to get rid of the
requirement that X is part of the input:

Corollary 7 Given an edge-weighted undirected graph G. Computing a maxi-
mum cut in G is FPT with parameter cr(G).

4 Minor Crossing Number

We say G is a minor of H, denoted by G � H, if G can be obtained from H
by deletion and contraction of edges. The minor crossing number of G is given
by mcr(G) = min{cr(H) | G � H}. A realization of mcr(G) is a pair (H,X)
with G � H and X being a crossing configuration of H with mcr(G) crossings.
It is easy to see that for graphs G′ of maximum degree 3 we have cr(G′) =
mcr(G′). Similarly, any graph G allows a realizing graph H (cr(H) = mcr(G))
of maximum degree 3 where vertices of G are replaced by disjoint cubic trees.

By definition we always have mcr(G) ≤ cr(G); as such mcr(G) can be a
stronger FPT-parameter. Also, in contrast to crossing number, the minor
crossing number is monotone with respect to graph minors, i.e., the family
{G | mcr(G) ≤ k} is minor closed. Thus, by [37], we can (theoretically) check
whether mcr(G) ≤ k in O(|V (G)|3) time for fixed k ∈ N.

Given a connected graph G with mcr(G) = k, we can obtain a graph H from
G realizing mcr(G) in polynomial time as follows: Choose a node v of degree
at least 4. Try different pairs of neighbors w1, w2 ∈ N(v) until finding the first
with mcr(G̃) ≤ k, where G̃ is obtained from G by splitting v into two nodes
v1 and v2 with N(v1) = {v2, w1, w2}, N(v2) = (N(v) ∪ {v1}) \ {w1, w2}4. We
call the edge v1v2 a split edge. Iterating this for each high degree node, yields a
graph H of maximum degree 3 realizing mcr(G) = cr(H). Note that H has at
most O(|E(G)|) nodes.

4Observe that in general this splitting operation may increase mcr; we search for a split

JGAA, 24(3) 155–170 (2020) 165

v

v1

v2

v3 v4

v5 v6

Figure 3: Visualization of the split operation to obtain an mcr-realization. Left: part
of a graph G with cr(G) > mcr(G). Right: part of G̃ after splitting v five times. Bold
green lines denote split edges.

Let N = −3 ·
∑
e∈E(G) |ce|. Attaching the weight N to each split edge, we

can make sure that these edges are not in any maximum cut of H. Clearly, the
cuts in H not containing any split edges are in one-to-one correspondence with
cuts in G. Using Theorem 5, we obtain an algorithm computing a maximum
cut on G parameterized by the mcr(G). Similarly to Corollary 7 we do not
require an explicit realization as part of the input (using the above construction
method for H).

Corollary 8 (i) Let G = (V,E, c) be an edge-weighted undirected graph with
mcr(G) = k, (H,X) a realization of mcr(G), and p(n) be a polynomial upper
bound on the running time of a Max-Cut algorithm on planar graphs with n
nodes. We can compute a maximum cut in G in O(2k · p(|E(G)|+ k)) time.

(ii) Given an edge-weighted undirected graph G, computing a maximum cut
in G is FPT with parameter mcr(G).

5 Conclusion and Open Problems

Given a graph together with a feasible crossing configuration with k crossings,
we previously only knew that Max-Cut is polynomial time solvable if k is
constant and the graph is 1-planar, i.e., each edge is involved in at most one
crossing. The runtime dependency on k has been to the order of 3k [8].

Herein, we improved on this in several ways: Firstly, we decreased the de-
pendency on k to the order of 2k. Secondly, we extended the applicability to
any graph with (at most) k crossings: our parameter becomes the true cross-
ing number of the graph, without any 1-planarity restriction. This shows that

(which has to exists) for which it does not increase. Since the split is an inverse minor
operation, mcr can never decrease.

166 Chimani et al. Maximum Cut Parameterized by Crossing Number

Max-Cut is in FPT with respect to the graph’s crossing number. Moreover, we
achieve these improvements by introducing simpler ideas than those proposed
for the former result, yielding an overall surprisingly simple algorithm. Com-
pared to the result of Kobayashi et al. [28], we are able to stay within the realm
of Max-Cut. Finally, our result naturally carries over to the minor crossing
number.

The skewness of a graph is the minimum number of edges to remove such
that the graph becomes planar. The genus of a graph is the minimum oriented
genus of a surface onto which the graph can be embedded without crossings. In
FPT research, there are many algorithmic approaches that consider graphs with
bounded genus g, see, e.g. [4, 5, 12, 13]. However, the obtained FPT algorithms
are typically parameterized by the objective value z, or by the combined param-
eter (z, g). There are much fewer results that obtain FPT algorithms parame-
terized purely with g. Notable examples are the graph genus problem itself [33]
(where z and g coincide by definition), and the graph isomorphism problem [25]
(which generalizes the linear-time algorithm for the problem on planar graphs).
There are even fewer parameterized results with respect to skewness; the prob-
ably best known example is that maximum flow can be solved in the running
time of planar graphs, if the graph’s skewness is fixed [22]. Our above algorithm
seems to be the first time that the crossing number has been proposed as an
efficient non-trivial FPT parameter for any widely known problem.

Besides the weight-restricted case of [15] (briefly described in the introduc-
tion), it is unclear whether Max-Cut could be FPT with respect to either
skewness or genus. We deem this an interesting question for further research.

JGAA, 24(3) 155–170 (2020) 167

References

[1] F. Barahona. On the computational complexity of Ising spin glass models.
Journal of Physics A: Mathematical and General, 15(10):3241, 1982. doi:
10.1088/0305-4470/15/10/028.

[2] F. Barahona. The Max-Cut problem on graphs not contractible to
K5. Operations Research Letters, 2(3):107–111, 1983. doi:10.1016/

0167-6377(83)90016-0.

[3] F. Barahona, M. Grötschel, M. Jünger, and G. Reinelt. An application of
combinatorial optimization to statistical physics and circuit layout design.
Operations Research, 36(3):493–513, 1988. doi:10.1287/opre.36.3.493.

[4] H. L. Bodlaender, F. V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh,
and D. M. Thilikos. (Meta) Kernelization. Journal of the ACM, 63(5):44:1–
44:69, 2016. doi:10.1145/2973749.

[5] J. Chen, I. A. Kanj, L. Perkovic, E. Sedgwick, and G. Xia. Genus
characterizes the complexity of certain graph problems: Some tight re-
sults. Journal of Computer and System Sciences, 73(6):892–907, 2007.
doi:10.1016/j.jcss.2006.11.001.

[6] M. Chimani, C. Dahn, M. Juhnke-Kubitzke, N. M. Kriege, P. Mutzel,
and A. Nover. Maximum cut parameterized by crossing number. CoRR,
abs/1903.06061, 2019. URL: http://arxiv.org/abs/1903.06061.

[7] M. Chimani, P. Kindermann, F. Montecchiani, and P. Valtr. Crossing
numbers of beyond-planar graphs. In Graph Drawing and Network Visu-
alization - 27th International Symposium, GD 2019, pages 78–86, 2019.
doi:10.1007/978-3-030-35802-0_6.

[8] C. Dahn, N. M. Kriege, and P. Mutzel. A fixed-parameter algorithm
for the Max-Cut problem on embedded 1-planar graphs. In C. S. Il-
iopoulos, H. W. Leong, and W. Sung, editors, Combinatorial Algorithms
- 29th International Workshop, IWOCA 2018, volume 10979 of Lecture
Notes in Computer Science, pages 141–152. Springer, 2018. doi:10.1007/
978-3-319-94667-2_12.

[9] C. De Simone, M. Diehl, M. Jünger, P. Mutzel, G. Reinelt, and G. Rinaldi.
Exact ground states of Ising spin glasses: New experimental results with a
branch-and-cut algorithm. Journal of Statistical Physics, 80(1-2):487–496,
1995. doi:10.1007/BF02178370.

[10] M. Deza and M. Laurent. Applications of cut polyhedra I. J. Comput.
Appl. Math., 55(2):191–216, 1994. doi:10.1016/0377-0427(94)90020-5.

[11] M. Deza and M. Laurent. Applications of cut polyhedra II. J. Comput.
Appl. Math., 55(2):217–247, 1994. doi:10.1016/0377-0427(94)90021-3.

https://doi.org/10.1088/0305-4470/15/10/028
https://doi.org/10.1088/0305-4470/15/10/028
https://doi.org/10.1016/0167-6377(83)90016-0
https://doi.org/10.1016/0167-6377(83)90016-0
https://doi.org/10.1287/opre.36.3.493
https://doi.org/10.1145/2973749
https://doi.org/10.1016/j.jcss.2006.11.001
http://arxiv.org/abs/1903.06061
https://doi.org/10.1007/978-3-030-35802-0_6
https://doi.org/10.1007/978-3-319-94667-2_12
https://doi.org/10.1007/978-3-319-94667-2_12
https://doi.org/10.1007/BF02178370
https://doi.org/10.1016/0377-0427(94)90020-5
https://doi.org/10.1016/0377-0427(94)90021-3

168 Chimani et al. Maximum Cut Parameterized by Crossing Number

[12] J. A. Ellis, H. Fan, and M. R. Fellows. The dominating set problem is fixed
parameter tractable for graphs of bounded genus. Journal of Algorithms,
52(2):152–168, 2004. doi:10.1016/j.jalgor.2004.02.001.

[13] F. V. Fomin, D. Lokshtanov, V. Raman, and S. Saurabh. Bidimensionality
and EPTAS. In D. Randall, editor, Proceedings of the Twenty-Second An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, pages
748–759. SIAM, 2011. doi:10.1137/1.9781611973082.59.

[14] A. Galluccio and M. Loebl. On the theory of Pfaffian orientations. II.
T-joins, k-cuts, and duality of enumeration. Electronic Journal of Combi-
natorics, 6, 1998.

[15] A. Galluccio, M. Loebl, and J. Vondrak. Optimization via enumeration:
a new algorithm for the max cut problem. Mathematical Programming,
90:273–290, 2001. doi:10.1007/PL00011425.

[16] M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM
Journal on Algebraic Discrete Methods, 4(3):312–316, 1983. doi:10.1137/
0604033.

[17] M. X. Goemans and D. P. Williamson. Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite program-
ming. Journal of the ACM, 42(6):1115–1145, 1995. doi:10.1145/227683.
227684.

[18] M. Grohe. Computing crossing numbers in quadratic time. Journal of Com-
puter and System Sciences, 68(2):285–302, 2004. doi:10.1016/j.jcss.

2003.07.008.

[19] M. Grötschel and W. R. Pulleyblank. Weakly bipartite graphs and the
Max-Cut problem. Operations Research Letters, 1(1):23–27, 1981. doi:

10.1016/0167-6377(81)90020-1.

[20] M. Grötschel and G. L. Nemhauser. A polynomial algorithm for the Max-
Cut problem on graphs without long odd cycles. Mathematical Program-
ming, 29(1):28–40, 1984. doi:10.1007/BF02591727.

[21] F. Hadlock. Finding a maximum cut of a planar graph in polynomial time.
SIAM Journal on Computing, 4(3):221–225, 1975. doi:10.1137/0204019.

[22] J. M. Hochstein and K. Weihe. Maximum s-t-flow with k crossings in
O(k3n log n) time. In N. Bansal, K. Pruhs, and C. Stein, editors, Proceed-
ings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2007, pages 843–847. SIAM, 2007. doi:10.1145/1283383.
1283473.

[23] J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected
components. SIAM Journal on Computing, 2(3):135–158, 1973. doi:

10.1137/0202012.

https://doi.org/10.1016/j.jalgor.2004.02.001
https://doi.org/10.1137/1.9781611973082.59
https://doi.org/10.1007/PL00011425
https://doi.org/10.1137/0604033
https://doi.org/10.1137/0604033
https://doi.org/10.1145/227683.227684
https://doi.org/10.1145/227683.227684
https://doi.org/10.1016/j.jcss.2003.07.008
https://doi.org/10.1016/j.jcss.2003.07.008
https://doi.org/10.1016/0167-6377(81)90020-1
https://doi.org/10.1016/0167-6377(81)90020-1
https://doi.org/10.1007/BF02591727
https://doi.org/10.1137/0204019
https://doi.org/10.1145/1283383.1283473
https://doi.org/10.1145/1283383.1283473
https://doi.org/10.1137/0202012
https://doi.org/10.1137/0202012

JGAA, 24(3) 155–170 (2020) 169

[24] R. M. Karp. Reducibility among combinatorial problems. In R. E.
Miller and J. W. Thatcher, editors, Proceedings of a symposium on the
Complexity of Computer Computations, New York, The IBM Research
Symposia Series, pages 85–103. Plenum Press, New York, 1972. URL:
http://www.cs.berkeley.edu/~luca/cs172/karp.pdf.

[25] K. Kawarabayashi. Graph isomorphism for bounded genus graphs in linear
time. arXiv.org, abs/1511.02460, 2015. URL: http://arxiv.org/abs/

1511.02460.

[26] K. Kawarabayashi and B. A. Reed. Computing crossing number in linear
time. In D. S. Johnson and U. Feige, editors, Proceedings of the 39th Annual
ACM Symposium on Theory of Computing, STOC 2007, pages 382–390.
ACM, 2007. doi:10.1145/1250790.1250848.

[27] Y. Kobayashi, Y. Kobayashi, S. Miyazaki, and S. Tamaki. An FPT
algorithm for Max-Cut parameterized by crossing number. CoRR,
abs/1904.05011, 2019. URL: http://arxiv.org/abs/1904.05011.

[28] Y. Kobayashi, Y. Kobayashi, S. Miyazaki, and S. Tamaki. An improved
fixed-parameter algorithm for Max-Cut parameterized by crossing number.
In Combinatorial Algorithms - 30th International Workshop, IWOCA 2019,
pages 327–338, 2019. doi:10.1007/978-3-030-25005-8_27.

[29] J. Kratochv́ıl. String graphs. II. recognizing string graphs is NP-hard.
Journal of Combinatorial Theory, Series B, 52(1):67 – 78, 1991. doi:

10.1016/0095-8956(91)90091-W.

[30] F. Liers and G. Pardella. Partitioning planar graphs: a fast combinato-
rial approach for Max-Cut. Computational Optimization and Applications,
51(1):323–344, 2012. doi:10.1007/s10589-010-9335-5.

[31] S. Mahajan and H. Ramesh. Derandomizing semidefinite program-
ming based approximation algorithms. SIAM Journal on Computing,
28(5):1641–1663, 1995. doi:10.1109/SFCS.1995.492473.

[32] C. C. McGeoch. Adiabatic Quantum Computation and Quantum Annealing:
Theory and Practice. Synthesis Lectures on Quantum Computing. Morgan
& Claypool Publishers, 2014. doi:10.2200/S00585ED1V01Y201407QMC008.

[33] B. Mohar. A linear time algorithm for embedding graphs in an arbitrary
surface. SIAM J. Discrete Math., 12:6–26, 1999.

[34] G. I. Orlova and Y. G. Dorfman. Finding maximum cut in a graph. Engi-
neering Cybernetics, 10(3):502–506, 1972.

[35] J. Pach and G. Tóth. Graphs drawn with few crossings per edge. Combi-
natorica, 17(3):427–439, 1997. doi:10.1007/BF01215922.

http://www.cs.berkeley.edu/~luca/cs172/karp.pdf
http://arxiv.org/abs/1511.02460
http://arxiv.org/abs/1511.02460
https://doi.org/10.1145/1250790.1250848
http://arxiv.org/abs/1904.05011
https://doi.org/10.1007/978-3-030-25005-8_27
https://doi.org/10.1016/0095-8956(91)90091-W
https://doi.org/10.1016/0095-8956(91)90091-W
https://doi.org/10.1007/s10589-010-9335-5
https://doi.org/10.1109/SFCS.1995.492473
https://doi.org/10.2200/S00585ED1V01Y201407QMC008
https://doi.org/10.1007/BF01215922

170 Chimani et al. Maximum Cut Parameterized by Crossing Number

[36] C. H. Papadimitriou and M. Yannakakis. Optimization, approxima-
tion, and complexity classes. Journal of Computer and System Sciences,
43(3):425 – 440, 1991. doi:10.1016/0022-0000(91)90023-X.

[37] N. Robertson and P. Seymour. Graph minors. XIII. the disjoint paths
problem. Journal of Combinatorial Theory, Series B, 63(1):65 – 110, 1995.
doi:10.1006/jctb.1995.1006.

[38] W.-K. Shih, S. Wu, and Y.-S. Kuo. Unifying maximum cut and minimum
cut of a planar graph. IEEE Transactions on Computers, 39(5):694–697,
1990. doi:10.1109/12.53581.

https://doi.org/10.1016/0022-0000(91)90023-X
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1109/12.53581

	Introduction
	Preliminaries
	Algorithm
	Minor Crossing Number
	Conclusion and Open Problems

