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On L-shaped point set embeddings of trees:
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Abstract

An L-shaped embedding of a tree in a point set is a planar drawing
of the tree where the vertices are mapped to distinct points and every
edge is drawn as a sequence of two axis-aligned line segments. There has
been considerable work on establishing upper bounds on the minimum
cardinality of a point set to guarantee that any tree of the same size
with maximum degree 4 admits an L-shaped embedding on the point
set. However, no non-trivial lower bound is known to this date, i.e., no
known n-vertex tree requires more than n points to be embedded. In
this paper, we present the first examples of n-vertex trees for n ∈ {13, 14,
16, 17, 18, 19, 20} that require strictly more points than vertices to admit
an L-shaped embedding. Moreover, using computer help, we show that
every tree on n ≤ 12 vertices admits an L-shaped embedding in every set
of n points. We also consider embedding ordered trees, where the cyclic
order of the neighbors of each vertex in the embedding is prescribed. For
this setting, we determine the smallest non-embeddable ordered tree on
n = 10 vertices, and we show that every ordered tree on n ≤ 9 or n = 11
vertices admits an L-shaped embedding in every set of n points. We also
construct an infinite family of ordered trees which do not always admit an
L-shaped embedding, answering a question raised by Biedl, Chan, Derka,
Jain, and Lubiw.
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1 Introduction

An L-shaped embedding of a tree in a point set is a planar drawing of the
tree where the vertices are mapped to distinct points of the set and every edge
is drawn as a sequence of two axis-aligned line segments; see Figure 1. Here
and throughout this paper, all point sets are such that no two points have
the same x- or y-coordinate. The investigation of L-shaped embeddings was
initiated in [5, 6, 7]. In particular, Di Giacomo et al. [5] showed that O(n2)
points are always sufficient to embed any n-vertex tree. Note that an L-shaped
embedding requires that the maximum degree of the tree is at most 4. Moreover,
if the maximum degree is 2, then the tree is a path and can be embedded
greedily on any point set of the same size. Formally, let fd(n) denote the
minimum number N of points such that every n-vertex tree with maximum
degree d ∈ {3, 4} admits an L-shaped embedding in every point set of size N .

Figure 1: An L-shaped embedding of a tree in a point set.

The second author’s master’s thesis [13] proposed a method to recursively
construct an L-shaped embedding of any n-vertex tree in any point set of
size O(n1.58) (see also [1]). Biedl et al. [3] improved on this, proving that
f3(n) = O(n1.22) and f4(n) = O(n1.55) points are enough. To this date, no lower
bound besides the trivial bound fd(n) ≥ n is known, i.e., no known n-vertex
tree requires more than n points to be embedded. Di Giacomo, Frati, Fulek,
Grilli, and Krug [5] specifically asked for a tree and point set that would prove
f4(n) > n. The same question was reiterated by Fink, Haunert, Mchedlidze,
Spoerhase, and Wolff [6], and by Biedl, Chan, Derka, Jain, and Lubiw [3]. Kano
and Suzuki [7] even conjectured that f3(n) = n.

Biedl et al. [3] also considered a more restricted setting of embedding ordered
trees, where the cyclic order of the neighbors of each vertex in the embedding
is prescribed. They presented a 14-vertex ordered tree which does not admit an
L-shaped embedding in a point set of size 141, and they raised the problem to
find an infinite family of such non-embeddable ordered trees.

1.1 Our results

We begin presenting our results for the setting where there are no constraints on
the cyclic order in which the neighbors appear around each vertex of the tree.

1Specifically, their counterexample is the 14-vertex caterpillar with 6 vertices on the central
path and a pending edge on each side of the four inner vertices of the path. The point set is
a (4, 6, 4)-staircase in our terminology (see Definition 5).
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Figure 2: The tree T13 (left) does not admit an L-shaped embedding in the
(2, 2, 2, 1, 2, 2, 2)-staircase point set S13 (right). The boxes B−3, . . . , B3 are highlighted
by dashed frames.

With brute-force computer search, we verified that all trees on n ≤ 12 vertices
can be embedded in every point set of size n.

Theorem 1 (Computer-based) Every tree on n ≤ 12 vertices admits an L-
shaped embedding in every set of n points.

We also formulated a SAT instance to test a given pair of tree and point set
for embeddability. This way, we found a 13-vertex tree that does not admit an
embedding in a particular point set.

Theorem 2 The tree T13 in Figure 2 does not admit an L-shaped embedding in
the point set S13 shown in the figure.

Even though the 13-vertex tree T13 was found using the help of a SAT solver,
a human-verifiable proof of Theorem 2 is not hard to obtain.

Besides the pair (T13, S13), we also found pairs of trees and point sets that
do not admit an embedding for larger values of n. Overall, we found pairs of
n-vertex trees and point sets of size n for n ∈ {13, 14, 16, 17, 18, 19, 20}. For n =
15, however, our computer search did not yield any non-embeddable example
(the search was not exhaustive). We remark that all known non-embeddable
trees contain T13 as a subtree.

We now focus on the more restricted setting of ordered trees introduced
in [3], where the cyclic order of the neighbors of each vertex in the embedding
is prescribed.

Theorem 3 (Computer-based) Every ordered tree on n ≤ 9 vertices or on
n = 11 vertices admits an L-shaped embedding in every set of n points.

We also found a 10-vertex tree that does not admit an embedding in a
particular point set. This is a smaller non-embeddable instance than the one
for n = 14 previously presented in [3].
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Figure 3: The ordered tree T10 (left) does not admit an L-shaped embedding in the
point set S10 (right).
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Figure 4: A family of ordered trees T ∗
r (left) that does not admit an L-shaped

embedding in the n-point (2, . . . , 2)-staircase (right) for n = 9r + 8 and even r ≥ 10.
The boxes of the point set are highlighted.

Theorem 4 The ordered tree T10 in Figure 3 does not admit an L-shaped em-
bedding in the point set S10 shown in the figure.

Remarkably, the pair (T10, S10) is the only one on n = 10 vertices/points
not admitting an L-shaped embedding.

Moreover, we construct an infinite family of ordered trees that do not admit
an L-shaped embedding on certain point sets, answering a question raised by
Biedl, Chan, Derka, Jain, and Lubiw in [3]. As it turns out, the point sets that
appear to be difficult for embedding have a regular staircase shape as shown in
Figure 4 (see also Figure 2).

Definition 5 (Staircase point set) For any integer n with n = a1 + · · ·+ ak
where a1, . . . , ak ∈ N, the (a1, . . . , ak)-staircase is the point set consisting of a
sequence of k disjoint boxes, ordered from top-left to bottom-right, and the ith
box contains a sequence of ai points with increasing x- and y-coordinate.

Theorem 6 For any even r ≥ 10, the ordered tree T ∗r on n = 9r + 8 vertices
in Figure 4 does not admit an L-shaped embedding in the n-point (2, . . . , 2)-
staircase.
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We conjecture that T ∗r does not admit an embedding in the same point set,
even when considered as an unordered tree, i.e., in the original unrestricted
setting.

1.2 Related work

Besides the problem of finding L-shaped embeddings of arbitrary trees in arbi-
trary point sets, various special classes of trees and point sets have also been
studied. For instance, perfect binary and perfect ternary n-vertex trees can
be embedded in any point set of size O(n1.142) or O(n1.465), respectively [3].
Moreover, trees with pathwidth k can be embedded in any set of 2kn points [13,
Chapter 3.3.2] (see also [1]).2 Further, any n-vertex caterpillar with maximum
degree 3 can be embedded in any point set of size n [5]. A caterpillar is a tree
with the property that all leaves are in distance 1 of a central path. For maxi-
mum degree 4 caterpillars, the currently best known upper bound is 4n/3+O(1)
many points [13, Chapter 5.2.1]. Biedl et al. [3] showed that any ordered cater-
pillar can be embedded in any point set of size O(n log n).

When point sets are chosen uniformly at random, i.e., the y-coordinates
are a random permutation, it is known that O(n log n(log log n)2) and O(n1.332)
points are sufficient to embed any tree with maximum degree 3 or 4, respectively,
with probability at least 1/2 [13, Chapter 4] (see also [1]).

Another known setting are non-planar L-shaped point set embeddings, where
L-shaped edges are allowed to cross properly, but edge-segments must not over-
lap. For this setting, it is known that n points are sufficient to embed any
n-vertex tree with maximum degree 3 [5, 6] or any n-vertex caterpillar with
maximum degree 4 [13, Theorem 21]. For n-vertex trees with maximum de-
gree 4 the currently best upper bound on the required number of points is
7n/3 +O(1) [13, Theorem 7].

1.3 Outline of this paper

In Section 2 we present a key lemma that is used repeatedly in our constructions.
In Sections 3 and 4 we present the proofs of Theorems 2 and 4, respectively.
Section 5 is devoted to proving Theorem 6. We describe our computational
approach to proving Theorems 1 and 3 by exhaustive search in Section 6. More
non-embeddable small trees are presented in Section 7, together with our SAT
model which is used to verify non-embeddability. We conclude in Section 8 with
some challenging open problems.

2 Key lemma

The following key lemma is used several times in our arguments about non-
embeddability of unordered trees. It asserts that in an L-shaped embedding,
two tree vertices of degree 4 cannot both be mapped to the two points in a box

2For the definition of pathwidth, we refer the reader to [12].
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of size 2 in a staircase point set. The size here refers to the number of points in
the box, not to the width or height. Our examples in Theorem 2, Theorem 6,
and the ones in Section 7 are all constructed by considering trees with many
degree 4 vertices, and staircase point sets with many boxes of size 2, which
creates many constraints.

Lemma 7 Let T be an unordered tree with two vertices X1 and X2 of degree 4.
Not both X1 and X2 can be mapped to the two points in a box of size 2 in a
staircase point set.

Proof: For the sake of contradiction assume that both X1 and X2 are mapped
to the two points in a box of size 2 in the staircase point set. W.l.o.g. we
may assume that X2 is above and to the right of X1. As X1 and X2 both
have degree 4, each of them has edges incident to its left, right, bottom and
top. Consider the two edges incident to the top and the right of X1, and the
two edges incident to the bottom and left of X2. Among these edges, at most
one can be an edge connecting X1 and X2 (provided they are adjacent in T ).
Consequently, one of these edges connects X1 to another vertex outside this
box, and one of these edges connects X2 to another vertex outside this box. As
all points outside this box are either above and to the left of it or below and to
the right of it, these two edges must cross, a contradiction; see Figure 5. �

X1

X2

X1

X2

X1

X2

Figure 5: Illustration of the proof of Lemma 7. Crossing edges are highlighted.

3 Proof of Theorem 2

Consider the (unordered) tree T13 and the (2, 2, 2, 1, 2, 2, 2)-staircase point set S13

depicted in Figure 2. We label the degree-3 vertex of T13 by Y and the three
degree-4 vertices of T13 by X1, X2, X3. Moreover, we label the boxes in the
staircase point set S13 from left to right by B−3, B−2, . . . , B3. Note the symme-
try of T13, as the vertex Y joins three isomorphic subtrees. Moreover, S13 has
reflection symmetries along both diagonals of the grid.

For the sake of contradiction, we assume that an L-shaped embedding of T13
in S13 exists. We first derive three lemmas that capture which boxes the ver-
tices X1, X2, X3, Y can be mapped to in such an embedding, and we then com-
plete the proof by distinguishing two main cases.
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In the embedding, the L-shaped edge between any two neighboring vertices
of the tree can have one of four possible orientations, and we refer to it as an

-, -, -, or -edge.

Lemma 8 Neither of the four vertices X1, X2, X3, Y is mapped to B−3 or to B3.

Proof: All points in B−3 and B3 lie on the bounding box of the point set, so
if one of the Xi is mapped to such a point, then one of the four edges incident
with Xi would leave the bounding box, which is impossible. Moreover, Y cannot
be mapped to one of these two boxes, as otherwise one of the Xi, which are the
only neighbors of Y in T13, would be mapped to the other point of that same
box. �

Lemma 7 immediately gives the following result.

Lemma 9 Each of the degree-4 vertices Xi is mapped to a distinct box.

Lemma 10 Not all three points X1, X2, X3 lie on the same side (above, below,
left, or right) of Y .

Proof: It suffices to prove one of the statements, then the others follow by
symmetry. Suppose for the sake of contradiction that X1, X2, X3 all lie above Y .
As one edge is incident to the right of Y , one of the Xi, say X3, is mapped to
the same box, and Y is below and to the left of X3 in that box; see Figure 6.
Moreover, Y X3 is an -edge. As X3 has degree 4, and each box contains at
most two points, the edge incident to the top of Y that connects Y to X1 or X2

crosses the edge incident to the left of X3, a contradiction. �

X3

Y

X1, X2

Figure 6: Illustration of the proof of Lemma 10.

By Lemma 8 and Lemma 10, Y is mapped to one of the boxes B−1, B0,
or B1. By Lemma 9 we may assume that X1, X2, X3 appear in distinct boxes
in exactly this order from left to right and also from top to bottom, and none of
them is in B−3 or B3. Moreover, from Lemma 10 we conclude that X1 and X3

are in other boxes than Y , so at most Y and X2 are in the same box. We now
distinguish two cases.

Case 1: Y and X2 are mapped to the same box. By symmetry, we may
assume that they are mapped to B1 and that X2 lies above and to the right
of Y . Then the vertex X3 must be mapped to the box B2; see Figure 7(a). If



350 Mütze, Scheucher On L-shaped point set embeddings of trees

Y X3 were an -edge, then it would cross the edge incident to the bottom of X2.
It follows that Y X3 is an -edge. Note that the edge incident to the right of X2

can only connect to a leaf L that is mapped to B2∪B3, and L must be mapped
to the right of X3, as otherwise the edges X2L and Y X3 would cross. The edges
that are incident to the bottom and right of X3 can only connect to points
from B2 ∪ B3, so together with X3 and L we already have four vertices that
are mapped to B2 ∪B3. Consequently, the edge incident to the top of X3 must
connect to a point outside of B1 ∪B2 ∪B3, and therefore this edge crosses the
edge X2L (see the marked crossing in the figure), a contradiction.

Y
X2

X3

L

B1

B2

B3

(a) Case 1

Y

X2

X1

L

(b) Case 2

Figure 7: Illustration of the proof of Theorem 2.

Case 2: Y and X2 are mapped to distinct boxes, so all four points X1, X2,
X3, Y are in different boxes. By symmetry, we assume that X1 and X2 both lie
above and to the left of Y , and X3 lies below and to the right of Y . Moreover,
we assume that Y X1 is an -edge and that Y X2 is an -edge; see Figure 7(b).
Note that X2 cannot connect to any points right of Y , and X1 can only connect
to such points by the edge incident to the right of X1. As Y is either mapped
to B0 or B1, there are at most 7 points above and to the left of Y . Therefore,
as X1 and X2 together with their leaves form a set of 8 points, Y must be
mapped to B1, and exactly one leaf L of X1 is mapped to a point right of Y ,
connected to X1 via an -edge. Note that X2 cannot be mapped to B0, as then
the edge incident to the bottom of X2 could not connect to any point without
either crossing Y X1 or Y X2. Consequently, X2 is mapped to B−1. However,
as B−1 and B0 together contain only 3 points, and X2 together with its leaves
form a set of 4 vertices, at least one of the two edges incident to the left or top
of X2 must connect to a point above or left of X1, and this edge will cross either
the edge Y X1 or X1L (creating one of the two marked crossings in the figure),
again a contradiction.

In both cases we obtain a contradiction to the assumption that T13 admits
an L-shaped embedding in the point set S13. This completes the proof of The-
orem 2.
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Figure 8: Illustration of the proof of Theorem 4.

4 Proof of Theorem 4

Consider the ordered tree T10 and the point set S10 depicted in Figure 3. We
label the two degree-4 vertices of T10 by X1, X2 and the two degree-2 vertices
incident to X1 and X2 by I1 and I2, respectively. Moreover, we label the leaves
adjacent to X1 and X2 by L1, L

′
1, L2, L

′
2, and the leaves adjacent to I1 and I2

by L′′1 and L′′2 , as shown in the figure. We label the points of the point set S10

from left to right by P1, . . . , P10. Note the symmetry of T10, and observe that S10

has reflection symmetries along both diagonals of the grid.

For the sake of contradiction, we assume that an order-preserving L-shaped
embedding of T10 in S10 exists. Clearly, none of the degree-4 vertices X1, X2 can
be mapped to any of the four points P1, P2, P9, P10 which lie on the bounding
box of the point set S10. We also claim that X1, X2 cannot be mapped to P3

or P8. By symmetry, it suffices to exclude the case that X1 is mapped to P3.
In this case, we may assume by symmetry that the edge X1X2 is incident to
the right of X1. Consequently, due to the cyclic order of the neighbors of X1,
I1 must be mapped to P1 and L1 must be mapped to P2. Then L′′1 cannot be
mapped to any point, a contradiction.

It follows that X1 and X2 are mapped to the points P4, P5, P6, P7. By
symmetry, we may assume that X1 is mapped to P4. We now distinguish six
cases, illustrated in Figure 8:

• Case 1a: X2 is mapped to P5 and X1X2 is an -edge. In this case, the edge
incident to the bottom of X1 and the edge incident to the left of X2 must
cross, a contradiction.
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• Case 1b: X2 is mapped to P5 and X1X2 is an -edge. In this case, the edge
incident to the right of X1 and the edge incident to the top of X2 must cross,
a contradiction.

• Case 2a: X2 is mapped to P6 and X1X2 is an -edge. In this case, the edge
incident to the top of X1 and the edge incident to the left of X2 must cross,
a contradiction.

• Case 2b: X2 is mapped to P6 and X1X2 is an -edge. Clearly, none of the
four vertices L′1, L′2, I1, and I2 can be mapped to P1, P2, or P3. We claim that
L′′1 and L′′2 cannot be mapped to any of these points either. By symmetry, it
suffices to show the argument for L′′1 : Indeed, X1I1 is an -edge, and I1 can
only be mapped to one of P5, P8, P9, or P10. If L′′1 is mapped to one of P1,
P2, or P3, then I1 and L′′1 must be joined via an -edge. Consequently, if I1
is mapped to P5, then the edge I1L

′′
1 intersects the edge X1X2. On the other

hand, if I1 is mapped to P8, P9 or P10, then together the two edges X1I1
and I1L

′′
1 prevent at least one of the two points P9, P10 from being reachable

from X2 via one or two L-shaped edges. Indeed, given the two edges X1I1
and I1L

′′
1 , then neither P9 nor P10 can be reached from X2 via a single edge,

and the only way to reach one of these points via two edges from X2 is
to first take a -edge incident to the top of X2, but the edge incident to
the top of X2 must lead to the leaf L2. This completes the argument that
L′′1 and L′′2 cannot be mapped to P1, P2, or P3. Consequently, only two
vertices, namely L1 and L2 can be mapped to the three points P1, P2, P3, a
contradiction.

• Case 3: X2 is mapped to P7. The subcases where X1X2 is an -edge or an
-edge are symmetric, so it suffices to consider the first one. In this case we

can argue as in Case 2b that only L1 and L2 can be mapped to the three
points P1, P2, P3, a contradiction.

In each case we obtain a contradiction, so the proof of Theorem 4 is complete.

5 Proof of Theorem 6

Throughout this section, we assume that r ≥ 10 is even and n = 9r + 8. We
label the degree-4 vertices of the ordered n-vertex tree T ∗r along the central path
by X0, . . . , Xr+1, and for any vertex Xi, 1 ≤ i ≤ r, we label its two neighbors of
degree 4 not on the central path by X ′i and X ′′i , as shown in Figure 9. For our
later arguments it will be convenient to orient the edges of T ∗r which are not on
the central path. Edges incident to a leaf are oriented away from the leaf and
edges X ′iXi and X ′′i Xi are oriented towards Xi. In an embedding of the tree,
any L-shaped oriented edge appears in one of eight possible orientations, and
four of them are important for our proofs; we refer to them as an -, -, -, or

-edge, respectively, where the arrow marks the tip of the oriented edge.
Lemma 7 immediately gives the following result.

Lemma 11 Each of the degree-4 vertices Xi for 0 ≤ i ≤ r+ 1, and X ′i, X
′′
i for

1 ≤ i ≤ r, is mapped to a distinct box of the n-point (2, . . . , 2)-staircase.
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T ∗r

. . .
X0 Xr+1X1 X2 Xr

X ′1 X ′′1 X ′r X ′′r

Figure 9: Labeling of vertices of the ordered tree T ∗
r for the proof of Theorem 6.

We refer to the sequence of - or -edges connecting the central path vertices
X0, . . . , Xr+1 as the spine. By symmetry, we may assume w.l.o.g. that X0 is
mapped to a box on the left of X1. In the following we distinguish two main
cases, depending on whether X0X1 is an -edge or an -edge.

5.1 Case 1: X0X1 is an -edge

Throughout this section, we assume that X0X1 is an -edge. Lemma 11 and the
cyclic order of neighbors around each of the vertices Xi, i = 0, . . . , r + 1, now
enforce a particular shape of all tree edges that connect two degree-4 vertices,
as captured by the following lemma; see Figure 10.

X ′′i

XiX ′i

X0

Xr+1

X1

Figure 10: Illustration of Lemma 12.

Lemma 12 The vertices X0, . . . , Xr+1 appear exactly in this order from left
to right, and any two consecutive such vertices are connected by an -edge.
Moreover, for i = 1, . . . , r,

• the vertices X ′i and Xi are connected by an -edge;
• the vertices X ′′i and Xi are connected by an -edge;
• the end segments of the three edges directed from the leaves towards the ver-

tices X ′i, X
′′
i , X0, and Xr+1 form a , , , and , respectively.
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Pi

X0
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Pi

Xr+1

Xi
Pi

Xj

X ′j

Xi

Pi

Xr+1

Xj

X ′′j

Xi

Pi below the spine Pi above the spine

Figure 11: Illustration of the six different cases in Lemma 13. The corresponding
blockers are highlighted with bold lines.

By Lemma 11, each box containing one of the Xi, 1 ≤ i ≤ r, contains a
second point to which a leaf is mapped. We denote this point by Pi. Combining
Lemmas 11 and 12 yields the following lemma, which is illustrated in Figure 11.

Lemma 13 For every point Pi below the spine exactly one of the following four
conditions holds:

• Pi is connected to X0 by an -edge;
• Pi is connected to Xr+1 by an -edge;
• there is an index j, 1 ≤ j < i, such that Pi, X

′′
j , Xj are joined by two con-

secutive -edges;
• there is an index j, i < j ≤ r, such that Pi, X

′
j , Xj are joined by two consec-

utive -edges.

For every point Pi above the spine exactly one of the following two conditions
holds:

• there is an index j, 1 ≤ j ≤ r, such that Pi, X
′
j and X ′j , Xj are joined by an

-edge and an -edge, respectively, wrapping around the top left end of the
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spine;
• there is an index j, 1 ≤ j ≤ r, such that Pi, X

′′
j and X ′′j , Xj are joined by an

-edge and an -edge, respectively, wrapping around the bottom right end of
the spine.

Consider any pair of points Pi, X0 as in Lemma 13 connected by an -edge.
We refer to this edge together with the short diagonal line joining the points Xi

and Pi in the same box (this line is not part of the tree embedding), as a -
blocker starting at Xi and ending at X0; see Figure 11. Similarly, given any
triple of points Pi, X

′′
j , Xj as in Lemma 13 joined by two consecutive -edges,

we refer to these two edges together with the line joining Xi and Pi, as a -
blocker starting at Xi and ending at Xj . Moreover, given any triple of points
Pi, X

′
j , Xj as in Lemma 13 joined by an -edge followed by an -edge wrapping

around the top left end of the spine, we refer to these two edges together with
the line joining Xi and Pi, as a -blocker starting at Xi and ending at Xj .
The terms -blocker, -blocker and -blocker are defined analogously; see the
bottom part of Figure 11. The right hand side of Figure 11 shows that for a

-blocker or a -blocker, there is no constraint on j for a given i (other than
1 ≤ j ≤ r). Observe also that no tree edge can cross a blocker.

X0

X1

X2

X3

X4

X5

X6 X7

P1

P3

P4

P6

(i1, i2, i3) = (3, 1, 0)

(i1, i2, i3, i4) = (6, 4, 5, 6)

P5

X8

X9

(i1, i2, i3, i4, i5) = (8, 6, 4, 5, 6)
P8

Figure 12: Illustration of the definition of blocker sequences. The figure shows three
blocker sequences, one starting at X3 and ending at X0 with corresponding index
sequence (i1, i2, i3) = (3, 1, 0), one starting and ending at X6 with corresponding
index sequence (i1, i2, i3, i4) = (6, 4, 5, 6), and one starting at X8 and ending at X6

with corresponding index sequence (i1, i2, i3, i4, i5) = (8, 6, 4, 5, 6).

For every index i1, 1 ≤ i1 ≤ r, we define a finite sequence of blockers as
follows; see Figure 12: For j = 1, 2, . . . we consider the point Xij and the
blocker starting at Xij . The endpoint Xij+1 of this blocker defines the next
index ij+1. If ij+1 /∈ {i1, . . . , ij} ∪ {0, r + 1}, we repeat this process, otherwise
we stop. This yields a finite sequence of indices i1, i2, . . . , i`, such that any two
consecutive points Xij and Xij+1

are joined by a blocker starting at Xij and
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X ′′k
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Ω
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X ′′m

L
type 1

type 2

Figure 13: Illustration of Lemma 14.

ending at Xij+1 . Clearly, i2, . . . , i` all depend on the choice of i1. Moreover, by
the termination condition above we either have i` ∈ {i1, . . . , i`−1} if the blockers
close cyclically, or i` ∈ {0, r + 1} if the last blocker ends at X0 or Xr+1 (the
terminal index is included in the sequence). These two cases are illustrated in
Figure 12. We refer to the sequence of blockers generated in this fashion as the
blocker sequence starting at Xi1 .

Statement and proof of the following key lemma are illustrated in Figure 13.

Lemma 14 Let 1 ≤ a < b ≤ r be such that Pa and Pb are two consecutive
points above the spine each contained in a -blocker, and let Xk and X` be the
blocker endpoints, respectively. Then there are indices c, d with k < c < d ≤ `
such that Pc and Pd are above the spine.
Symmetrically, if Pa and Pb, 1 ≤ a < b ≤ r, are two consecutive points above
the spine each contained in a -blocker, then there are indices c, d with k ≤ c <
d < ` such that Pc and Pd are above the spine.

Observe that this lemma does not make any assertions about the relative
positions of the points in {Xa, Xb} and {Xk, X`}. In particular, it does not
make any assertions about the disjointness of the sets {Pa, Pb} and {Pc, Pd}.

Proof: It suffices to prove the first part of the lemma where Pa and Pb are both
contained in a -blocker. The second part follows by symmetry. Let h denote
the horizontal line segment slightly above the box containing X ′′` between the
two vertical segments of the -edges leaving Pa and Pb. Let v denote the vertical
line segment slightly left of the box containing X ′′` between the two horizontal
segments of the -edges leaving X ′′k and X ′′` . Let Ω denote the region enclosed
by the two -blockers starting at Xa and Xb and between the segments h and v,
without the point X ′′k . Note that Ω contains X ′′` and also the second point in
its box, but neither X ′′k nor the second point in its box, so Ω contains an even
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number of points from the (2, . . . , 2)-staircase. Observe also that no edge crosses
the segment h, as Pa and Pb are consecutive points above the spine. Consider
an edge crossing the segment v. By Lemma 12, this can only be an -edge
starting at a leaf L in Ω and ending at a vertex X ′′m for some m, k < m < `
(type 1), or an -edge starting at some X ′′m in Ω, k < m < `, and ending at Xm

(type 2). Figure 13 gives an illustration of both types of edges. In the case of a
type 2 edge, all three leaves adjacent to X ′′m must also be in Ω. Therefore, every
type 1 edge contributes 1 to the number of vertices in Ω, and every type 2 edge
contributes 4 to the number of vertices in Ω. Note that the other two leaves
adjacent to X ′′` apart from Pb must also be in Ω, so X ′′` together with these two
leaves contributes 3 to the number of vertices in Ω. As the number of points
from the (2, . . . , 2)-staircase in Ω is even, there must be at least one type 1 edge
starting at a leaf L in Ω and ending at a vertex X ′′m, k < m < `.

By Lemma 12, X ′′m is connected to Xm by another -edge. Now consider
the blocker sequence starting at Xm. We prove that it must contain a -or

-blocker. For the sake of contradiction suppose not. Then it can only have
-blockers, but no -, -, or -blockers: Indeed, an -blocker would lead to X0,

which is impossible because of the -edge between X ′′k and Xk that shields this
blocker sequence from the left. Moreover, an - or -blocker would force one of
the points Xi, 1 ≤ i ≤ r + 1, to lie inside Ω, which is impossible. However, if
the blocker sequence consists only of -blockers, then it must end at X0, which
is again impossible. This proves our claim that the blocker sequence starting
at Xm contains a - or -blocker, and the first such blocker in the sequence
will contain the desired point Pc, k < c ≤ m (if the very first blocker is of this
type then c = m).

An analogous argument applies to the blocker sequence starting at X`. As
the -edge between L and X ′′m shields this blocker sequence from the left, the
first - or -blocker in this sequence contains the desired point Pd, m < d ≤ `.
This completes the proof of the lemma. �

We will later use the following corollary of Lemma 14.

Corollary 15 Suppose there are in total α ≥ 2 points Pi1 , . . . , Piα , i1 < · · · <
i`, above the spine each contained in a -blocker, and let Xk be the endpoint of
the blocker starting at Xi1 . Then we have k < i1, and there are at least 2(α−1)
many points Pi with i > k above the spine.
Symmetrically, suppose there are in total α ≥ 2 points Pi1 , . . . , Piα , i1 < · · · < i`,
above the spine each contained in a -blocker, and let Xk be the endpoint of the
blocker starting at Xiα . Then we have k > iα, and there are at least 2(α − 1)
many points Pi with i < k above the spine.

Proof: By symmetry, it suffices to prove the statement for -blockers. For
j = 1, . . . , α, let Xkj be the endpoint of the blocker starting at Xij . As these
blockers do not intersect, we have k1 < k2 < · · · < kα and consequently the
intervals ]kj , kj+1], j = 1, . . . , α− 1, are pairwise disjoint. Applying Lemma 14
to the pair of consecutive points Pij , Pij+1

, j = 1, . . . , α − 1, shows that there
are at least two points Pi with i ∈ ]kj , kj+1] above the spine. Overall, this gives
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no free spine edge

L(A)

R(B)

one free spine edgeXc

Xc+1

X ′′c

X ′c+1
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R(X ′′c )

L(A)

A

B

Figure 14: Illustration of Lemma 16. Regions enclosed by blockers and the spine are
shaded.

2(α− 1) points Pi with i > k1 = k above the spine. As 2(α− 1) ≥ α, we must
have k < i1. �

Consider the collection of all blocker sequences starting at any of the pointsXi,
1 ≤ i ≤ r. Any blocker in one of these sequences encloses a region together with
the spine, and if this region touches a spine edge from the bottom left, then
we say that this spine edge is enclosed. Any spine edge that is not enclosed
is called free. In Figure 14, enclosed regions are shaded. For any point A of
the staircase point set, consider the second point A′ in the same box of the
staircase, and let L(A) denote the halfplane containing those two points, such
that the points lie slightly to the left of the boundary of the halfplane. We de-
fine the halfplane R(A) analogously, by changing left and right in the previous
definition.

Lemma 16 There is no valid embedding of T ∗r with zero or one free spine edges.

Proof: We choose two particular degree-4 vertices A and B of T ∗r as follows: If
there are no -blockers, then A := X0, and otherwise A is defined as the middle
vertex of the outermost -blocker. Similarly, if there are no -blockers, then
B := Xr+1, and otherwise B is defined as the middle vertex of the outermost

-blocker; see Figure 14. Note that if A = X0 and the spine edge X0X1 is
enclosed, then the edge incident to the bottom of X0 is part of a -blocker.
Similarly, if B = Xr+1 and the spine edge XrXr+1 is enclosed, then the edge
incident to the left of Xr+1 is part of a -blocker.
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We first assume that there is no free spine edge. Consider the regions L(A)
and R(B). Note that A and exactly two of the leaves adjacent to it lie in L(A),
and that B and exactly two of the leaves adjacent to it lie in R(B). On the
other hand, both regions contain an even number of points from the (2, . . . , 2)-
staircase. This immediately yields a contradiction, as none of the vertices
X ′i, X

′′
i , 1 ≤ i ≤ r, or any of the leaves adjacent to them can reach into L(A)

or R(B); see the left hand side of Figure 14.
It remains to consider the case that there is one free spine edge XcXc+1,

0 ≤ c ≤ r. In the following we only consider the subcase 1 ≤ c ≤ r − 1; see
the right hand side of Figure 14. The remaining subcases c = 0 and c = r are
symmetric, and can be handled analogously. We again consider the regions L(A)
and R(B). As XcXc+1 is the only free spine edge, at least one of the vertices X ′′c ,
X ′c+1 or one of the leaves adjacent to one of them must be inside L(A), and
one of them must be inside R(B). By symmetry, we may assume that the -
edge from X ′′c to Xc or the -edge entering X ′′c has its starting point in R(B).
This prevents the -edge from X ′c+1 to Xc+1 and the -edge entering X ′c+1 from
reaching into L(A). In this situation the starting point of the -edge enteringX ′′c
is the only one that can reach into L(A), wrapping around the entire spine,
which forces X ′′c to be in R(B). This, however, leads to a contradiction, as
only 3 vertices would be mapped to points in R(X ′′c ). �

With Corollary 15 and Lemma 16 in hand, we are ready to complete the
proof of Theorem 6 in the case that X0X1 is an -edge. We let αL and αR
denote the number of points Pi above the spine that are contained in a -
or -blocker, respectively, and we define α := αL + αR. Observe that by the
second part of Lemma 13, for every point Pi above the spine, the corresponding
point Xi in the same box is the starting point of a - or -blocker, so α is
the total number of points Pi above the spine. Moreover, when considering the
points Pi above the spine from left to right, then we first encounter all those
that are contained in a -blocker, and then all those that are contained in a

-blocker. By symmetry we may assume that αL ≤ αR. In the following we
distinguish the five cases α ∈ {0, 1, 2, 3, 4} and the case α > 4, and we show
that none of them can occur.

Case α = 0: We claim that in this case, exactly one of the spine edges XcXc+1,
0 ≤ c ≤ r, is free. Applying Lemma 16 will therefore conclude the proof.

Consider the blocker sequences starting at Xi for all i = 1, . . . , r. Each
such blocker sequence contains only -, , -, and -blockers, but no - or

-blockers, and hence it either ends at X0 or Xr+1. If all blocker sequences end
at Xr+1, then the blocker sequence starting at X1 only consists of - and -
blockers, and it encloses all spine edges XiXi+1, 1 ≤ i ≤ r, i.e., X0X1 is the only
free spine edge and the claim is proved. Symmetrically, if all blocker sequences
end at X0, then the blocker sequence starting at Xr only consists of - and

-blockers, and it encloses all spine edges XiXi+1, 0 ≤ i < r, i.e., XrXr+1 is
the only free spine edge and the claim is proved. It remains to consider the case
that at least one blocker sequence ends at X0 and at least one ends at Xr+1. We
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let c be the largest index 1 ≤ i ≤ r for which the blocker sequence starting at Xi

ends at X0. By this definition, the blocker sequence starting at Xc contains no
points Xi for i > c, otherwise the blocker sequence starting at such a point Xi

would also end at X0. Consequently, the blocker sequence starting at Xc only
consists of - and -blockers, and it encloses all spine edges XiXi+1, 0 ≤ i < c,
which entails that all blocker sequences starting at Xi for any 1 ≤ i ≤ c end
at X0 as well. Consequently, the blocker sequence starting at Xc+1, which ends
at Xr+1 by definition, only consists of - and -blockers, and it encloses all spine
edge XiXi+1, c + 1 ≤ i ≤ r, which entails that all blocker sequences starting
at Xi for any c + 1 ≤ i ≤ r end at Xr+1 as well. We conclude that XcXc+1 is
the only free spine edge.

Case α = 1: We only need to consider the case (αL, αR) = (0, 1). Let Pa be
the unique point above the spine, i.e., Pa is contained in a -blocker. Consider
the blocker sequence starting at Xa. If it ends at X0, then it encloses all spine
edges XiXi+1, 0 ≤ i ≤ r, i.e., there are no free spine edges, and so we are
done with the help of Lemma 16. Otherwise this blocker sequence ends at Xa,
enclosing the spine edges XiXi+1, a ≤ i ≤ r. If a = 1, then Xa−1Xa = X0X1 is
the only free spine edge, and we are done using Lemma 16. Otherwise consider
the blocker sequences starting at Xi for all 1 ≤ i < a, which must end either
at X0 or Xa. We let c be the largest index 1 ≤ i < a for which the blocker
sequence starting at Xi ends at X0. Similarly to the case α = 0, we obtain that
the blocker sequence starting at Xc encloses all spine edges XiXi+1, 0 ≤ i < c,
that the blocker sequence starting at Xc+1 encloses all spine edges XiXi+1,
c + 1 ≤ i < a, and that XcXc+1 is the only free spine edge. Consequently, we
are done with the help of Lemma 16.

Case α = 2: We only need to consider the cases (αL, αR) = (1, 1) and
(αL, αR) = (0, 2). Let Pa, Pb, a < b, be the two points above the spine.

We first consider the case (αL, αR) = (1, 1), i.e., Pa is contained in a -
blocker and Pb is contained in a -blocker. Let Sa and Sb be the blocker
sequences starting at Xa and Xb, respectively. Observe that either Sa and Sb
both end at Xa, or both end at Xb, or Sa ends at Xa and Sb ends at Xb. In the
first two cases, there are no free spine edges, so applying Lemma 16 concludes
the proof. If b−a = 1, then XaXa+1 = Xb−1Xb is the only free spine edge, and
we are done with Lemma 16. Otherwise the blocker sequences starting at Xi

for all a < i < b either end at Xa or Xb. We let c be the largest index a < i < b
for which the blocker sequence starting at Xi ends at Xa. Similarly to the case
α = 0, we obtain that the blocker sequence starting at Xc encloses all spine
edges XiXi+1, a ≤ i < c, that the blocker sequences starting at Xc+1 encloses
all the spine edges XiXi+1, c + 1 ≤ i < b, and that XcXc+1 is the only free
spine edge, so applying Lemma 16 concludes the proof.

We now consider the case (αL, αR) = (0, 2), i.e., Pa and Pb are both con-
tained in a -blocker. Let Xk be the endpoint of the blocker starting at Xa.
From Corollary 15, we obtain that k < a, i.e., the blocker sequence starting
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at Xa must end at X0, enclosing all spine edges XiXi+1, 0 ≤ i ≤ r. Applying
Lemma 16 again completes the proof.

Case α = 3: We only need to consider the cases (αL, αR) = (1, 2) and
(αL, αR) = (0, 3). Let Pa, Pb, Pc, a < b < c, be the three points above the
spine.

We first consider the case (αL, αR) = (1, 2), i.e., Pb, Pc are both contained
in a -blocker. Let Xk be the endpoint of the blocker starting at Xb. From
Corollary 15, we obtain that k < b, i.e., the blocker sequence starting at Xb

must end at Xa, together with the blocker sequence starting at Xa, and both
enclose all spine edges XiXi+1, 0 ≤ i ≤ r. Consequently, we are done with the
help of Lemma 16.

We now consider the case (αL, αR) = (0, 3), i.e., all three points Pa, Pb, Pc are
contained in a -blocker. Corollary 15 implies that there are at least 2(αR−1) =
4 points Pi above the spine, a contradiction.

Case α = 4: We only need to consider the cases (αL, αR) = (2, 2), (αL, αR) =
(1, 3), and (αL, αR) = (0, 4). Let Pa, Pb, Pc, Pd, a < b < c < d, be the four
points above the spine.

If (αL, αR) = (2, 2), then Corollary 15 shows that the blocker sequences
starting at Xb and Xc cannot coexist: Specifically, the blocker sequence start-
ing at Xb with a -blocker ends at Xi with b < i ≤ r + 1, and the blocker
sequence starting at Xc with a -blocker ends at Xj with 0 ≤ j < c. This is a
contradiction. Similarly, if (αL, αR) = (1, 3), then Corollary 15 shows that the
blocker sequences starting at Xa and Xb cannot coexist. If (αL, αR) = (0, 4),
then Corollary 15 implies that there are at least 2(αR − 1) = 6 points Pi above
the spine, a contradiction.

Case α > 4: Corollary 15 shows that there are at least 2(αL−1)+2(αR−1) =
2α − 4 points Pi above the spine, which is a contradiction, as 2α − 4 > α for
α > 4.

5.2 Case 2: X0X1 is an -edge

Throughout this section, we assume that X0X1 is an -edge. Lemma 11 and the
cyclic order of neighbors around each of the vertices Xi, i = 0, . . . , r + 1, now
enforce a particular shape of all tree edges that connect two degree-4 vertices,
as captured by the following lemma; see Figure 15.

Lemma 17 For i = 0, . . . , r, the vertex Xi is left of Xi+1 and both are connected
by an -edge if i is even, and the vertex Xi is right of Xi+1 and both are
connected by an -edge if i is odd. Moreover, for i = 1, . . . , r,

• the vertices X ′i and Xi are connected by an -edge if i is even, and they are
connected by an -edge if i is odd;
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Figure 15: Illustration of Lemma 17.

• the vertices X ′′i and Xi are connected by an -edge if i is even, and they are
connected by an -edge if i is odd;

• the end segments of the three edges directed from the leaves towards the ver-
tex X0 form a , and the end segments of the three edges directed from the

leaves towards X ′i and X ′′i form a or , respectively, if i is even, and a
or if i is odd.

We define the length of a spine edge XiXi+1, 0 ≤ i ≤ r, in the embedding
as the number of boxes in the (2, . . . , 2)-staircase between its endpoints plus 1.
For instance, if it connects two neighboring boxes, then its length is 1. By
Lemma 17, there is a unique longest spine edge XcXc+1, 0 ≤ c ≤ r, and the
two length sequences of the edges XiXi+1 for i = c, c + 1, . . . , r and Xi+1Xi

for i = c, c− 1, . . . , 0 are strictly decreasing, i.e., each of the two corresponding
parts of the spine spirals into itself in counterclockwise or clockwise direction,
respectively, as shown in Figure 15. By the requirement that r ≥ 10, the longer
of these two sequences consists of at least 6 spine edges, and by symmetry we
may assume that it is the latter one, i.e., the initial part of the spine looks as
shown in Figure 16.

For i ∈ {1, 2}, we let hi denote a horizontal line segment between the verti-
cal segments of the spine edges XiXi+1 and Xi+2Xi+3, passing above the box
containing X1 and P1 if i = 1 and below the box containing X2 and P2 if i = 2,
and let Ωi denote the region enclosed by the spine and this segment; see the
figure. One of the leaves of the tree T ∗r must be mapped to the point P1, which
lies in the same box as X1. This can only be the leaf adjacent to X ′′2 via an
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Figure 16: Illustration of the proof of Theorem 6 in Case 2.

-edge, or the leaf adjacent to X ′1 via an -edge (if P1 is above and to the right
of X1), or the leaf adjacent to X ′′1 via an -edge (if P1 is below and to the left
of X1). In the last two cases, the leaf adjacent to X ′′2 via an -edge must lie in
the region (R(X ′1)∩Ω1)\{X3} or in the region (R(X ′′1 )∩Ω1)\{X3}, respectively.
This is because this region contains an even number of points, and therefore an
even number of tree vertices must be mapped to them. In any case, the edge
incident to the right of X ′′2 must reach into Ω1. Consequently, the leaf adjacent
to X ′′3 via an -edge must lie in the region (L(X ′′2 )∩Ω2)\{X4}, in order to map
an even number of tree vertices to this region. However, as none of the leaves
adjacent to X ′2 can connect to P2, which lies in the same box as X2, no vertex
is mapped to P2, a contradiction.

This completes the proof of Theorem 6.

6 Computer-based proofs of Theorems 1 and 3

We implemented a C++ program to test if a given (unordered or ordered)
tree admits an L-shaped embedding in a given set of points. Our algorithm
recursively embeds vertices and edges in all possible ways until either a crossing
occurs or a valid drawing is obtained.

Each point set is represented by a permutation, which captures the y-
coordinates of the points from left to right. Those permutations are generated in
lexicographic order using the C++ standard library function next permutation.
When embedding unordered trees, we only need to test point sets that are non-
isomorphic up to rotation and mirroring, as an unordered tree is embeddable in
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a point set if and only if it is embeddable on the rotated or mirrored point set.
This filtering of point sets is achieved by considering only the lexicographically
smallest permutation under these two operations. Similarly, when embedding
ordered trees, we may omit testing point sets that are isomorphic up to rotation
(but not mirroring).

The list of all non-isomorphic unordered and ordered trees was generated
with SageMath [14], using the integrated nauty graph generator [9], and then
loaded by the C++ program.

When testing ordered trees, we only need to test trees that admit more than
one way to cyclically order the neighbors of all vertices, as otherwise the tree is
equivalent to the corresponding unordered tree. Here we consider two ordered
trees the same if they differ only in changing the orientation of all cyclic orders
from clockwise to counterclockwise or vice versa, which corresponds to mirroring
the embedding.

As pairs of trees and point sets can be tested independently, we parallelized
our computations; see Table 1. The source code of all those programs is available
as supplementary material to this paper or on the websites [10].

Table 1: Number of non-isomorphic point sets and unordered/ordered trees with
maximum degree 4 up to n ≤ 12, and the computation times of our C++ program.
The times marked with * are the sum of parallelized computations on 16 cores.

n point sets unordered trees CPU time point sets ordered CPU time
OEIS/A903 OEIS/A602 OEIS/A263685 trees

4 7 2 9 2
5 23 3 33 3
6 115 5 192 5
7 694 9 1.272 10
8 5.282 18 < 1 sec 10.182 21 < 1 sec
9 46.066 35 9 sec 90.822 48 21 sec

10 456.454 75 7 min 908.160 120 21 min
11 4.999.004 159 12 hours 9.980.160 312 64 hours*
12 59.916.028 355 84 days* 119.761.980 864 —

7 Further non-embeddable examples

In this section, we present further pairs of (unordered) n-vertex trees and sets
of n points for n = 13, 14, 16, 17, 18, 19, 20, which do not admit an L-shaped em-
bedding. The trees Tn are obtained as subtrees of the tree shown in Figure 17,
by taking the subgraph induced by all unlabeled vertices and the vertices with
labels ≤ n. The corresponding point sets are encoded below in staircase no-
tation. Note that all those staircase point sets have rotation and reflection
symmetry and boxes of size at most 3. The fact that those instances do not
allow an L-shaped embedding was established with computer help via a SAT
solver, as described below.

http://oeis.org/A903
http://oeis.org/A602
http://oeis.org/A263685
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Figure 17: The 20-vertex tree T20.

n = 13:

(1,1,2,2,1,2,2,1,1)

(1,1,3,1,1,1,3,1,1)

(2,2,2,1,2,2,2)

(2,3,1,1,1,3,2)

n = 14:

(1,1,2,1,2,2,1,2,1,1)

(2,2,1,2,2,1,2,2)

n = 16:

(1,3,1,1,1,2,1,1,1,3,1)

(1,3,2,1,2,1,2,3,1)

n = 17:

(1,1,3,1,1,3,1,1,3,1,1)

n = 18:

(1,1,2,1,1,1,2,2,1,1,1,2,1,1)

n = 19:

(1,1,3,1,1,1,3,1,1,1,3,1,1)

(1,1,3,1,2,3,2,1,3,1,1)

(1,1,3,2,1,3,1,2,3,1,1)

(2,3,1,1,1,3,1,1,1,3,2)

(2,3,1,2,3,2,1,3,2)

(2,3,2,1,3,1,2,3,2)
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n = 20:

(1,1,2,1,1,1,2,2,2,1,1,1,2,1,1)

(1,1,2,1,2,2,2,2,2,1,2,1,1)

(1,1,2,2,1,2,2,2,1,2,2,1,1)

(2,2,1,1,1,2,2,2,1,1,1,2,2)

(2,2,1,2,2,2,2,2,1,2,2)

(2,2,2,1,2,2,2,1,2,2,2)

7.1 The SAT model

To test if a given tree with vertex set {1, . . . , n} admits an L-shaped embedding
in a given point set {P1, . . . , Pn}, we formulated a Boolean satisfiability problem
that has a solution if and only if the tree admits an embedding in the point set.

Our SAT model has variables xi,j to indicate whether the vertex i is mapped
to the point Pj , and for every edge ab in the tree a variable ya,b to indicate
whether the edge is connected horizontally to a (otherwise it is connected ver-
tically to a). The constraints listed in the following are necessary and sufficient
to guarantee the existence of an L-shaped embedding:

• Injective mapping from vertices to points: Each vertex is mapped to
a point, and no two vertices are mapped to the same point.

• L-shaped edges: For each edge ab of the tree, the vertex a is either con-
nected horizontally or vertically to b. Figure 18(a) gives an illustration.

• No overlapping edge segments: For each pair of incident edges ab and ac,
if b and c are mapped to the right of a, then a cannot be connected hori-
zontally to both b and c. An analogous statement holds if b and c are both
mapped to the left, above, or below a. Figure 18(b) gives an illustration.

• No crossing edge segments: For each pair of edges ab and cd, the vertices
a, b, c, d must not be mapped so that segments cross. More specifically, for
each four points p, q, r, s (to which a, b, c, d may map), there are at most four
cases that have to be forbidden in the mapping, depending on the relative
position of p, q, r, s. Figures 18(c) and 18(d) give an illustration.

a

b

(a)

a

b
c

(b)

a

b

c

d

(c)

a

b = c

d

(d)

Figure 18: Illustration of the constraints of the SAT model.

The resulting CNF formula thus has Θ(n2) variables and Θ(n4) clauses.
Our Python program that creates a SAT instance for a given pair of tree and
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staircase point set is available as supplementary material to this paper or on the
websites [10]. We used the SAT solver PicoSAT [4], which allows enumeration
of all solutions. We also made use of pycosat, which provides Python bindings
to PicoSAT.

8 Open problems

We currently do not know of any infinite family of (unordered) trees which do
not always admit an L-shaped embedding. However, we conjecture that the
instance in Figure 4 is such a family when considering the tree as unordered.
Moreover, since all non-embeddable examples that we know are trees with path-
width 2 (lobsters), it would be interesting to know whether trees with path-
width 1 (caterpillars) always admit an L-shaped embedding. So far all known
non-embeddable trees have maximum degree 4, so the question for trees with
maximum degree 3 remains open [5, 6, 7].

A more general class of embeddings are orthogeodesic embeddings, where the
edges are drawn with minimal `1-length and consist of segments along the grid
induced by the point set [2, 5, 8, 13]. The best known bounds are due to Bárány
et al. [2] who showed that every n-vertex tree with maximum degree 4 admits an
orthogeodesic embedding in every point set of size b11n/8c. Unfortunately, the
tree T13, which we proved not to admit an L-shaped embedding on the point
S13, does admit an orthogeodesic embedding on S13 (see Figure 19), so the
question whether n points are always sufficient to guarantee an orthogeodesic
embedding of any n-vertex tree [2, 5] also remains open.

Y

X1

X3

X2

Figure 19: An orthogeodesic embedding of the tree T13 in the point set S13. The
only edge with two turns (not L-shaped) is drawn dotted.
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