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Abstract

Let G = (V, E) be a vertex-colored graph, where C is the set of colors
used to color V. The GRAPH MOTIF (or GM) problem takes as input G, a
multiset M of colors built from C, and asks whether there is a subset S C V
such that (i) G[S] is connected and (ii) the multiset of colors obtained
from S equals M. The COLORFUL GRAPH MOTIF (or CGM) problem
is the special case of GM in which M is a set, and the LiST-COLORED
GRAPH MOTIF (or LGM) problem is the extension of GM in which each
vertex v of V may choose its color from a list £(v) C C of colors.

We study the three problems GM, CGM, and LGM, parameterized
by the dual parameter ¢ := |V| — |M|. For general graphs, we show
that, assuming the strong exponential time hypothesis, CGM has no
(2—¢)- |V\O(1)-time algorithm, which implies that a previous algorithm,
running in O(2¢ - |E|) time is optimal [Betzler et al., IEEE/ACM TCBB
2011]. We also prove that LGM is W[1]-hard with respect to £ even if we
restrict ourselves to lists of at most two colors. Finally, we show that if
the input graph is a tree, then GM can be solved in O(3¢ - [V|) time but
admits no polynomial-size problem kernel, while CGM can be solved in

(’)(\/ﬁlZ + |V]) time and admits a polynomial-size problem kernel.
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1 Introduction

The SUBGRAPH ISOMORPHISM problem is the following pattern matching problem
in graphs: given a (typically large) host graph G and a (small) query graph H,
return one (or all) occurrence(s) of H in G, where the term occurrence denotes
here a subset S of V(G) such that G[S], the subgraph of G induced by S, is
isomorphic to H. This type of graph mining problem has different applications,
notably in biology [26]. SUBGRAPH ISOMORPHISM is a structural graph pattern
matching problem, where one looks for similar graph structures between H
and G. In some biological contexts, however, additional information is provided
to the vertices of the graphs, for example their biological function. This can
be modeled by labeling each vertex of the graph, for example by giving it one
or several colors, each corresponding to an identified function. In the presence
of such functional annotation, the structure of a given induced subgraph may
be of less importance than the functions it corresponds to. Thus, a new set
of functional graph pattern matching problems has emerged, starting with the
GRAPH MOTIF problem [21], which was introduced in the context of the analysis
of metabolic networks. In GRAPH MOTIF, the query is a multiset M of colors
that represents the functions of interest, and we search for an occurrence of M
in the host graph, where the previous demand of being isomorphic to the query
is replaced by a connectivity demand.

GrAPH MoTIF (GM)

Input: A multiset M built on a set C of colors, an undirected
graph G = (V| E), and a coloring x : V — C.

Question: Is there a set S C V such that G[S] is connected and
there is a one-to-one mapping f : S — M such that f(v) = x(v) for
all v e §7

Throughout this work, we will assume that each color of C' appears at least
once in M—otherwise, every color in C' that is not in M, together with the
vertices of G that are assigned this color, may be safely removed from the
instance. Many variants of GM have been introduced and studied. In particular,
LisT-COLORED GRAPH MOTIF (or LGM) is a generalization of GM that is
used to identify, in a given protein interaction network, protein complexes that
are similar to a given protein complex from a different species [7]. In LGM, the
graph G is associated with a list-coloring £ : V' — 2€, that is, each vertex v
is associated with a set £(v) of colors, and the question is whether there is a
set S C V such that (i) G[S] is connected and (ii) the one-to-one mapping f
from S to M we look for satisfies Vv € S : f(v) € L(v). The special case of
GM in which M is a set is called COLORFUL GRAPH MOTIF (or CGM). Many
optimization problems related to GM have received interest, including some
that are related to metabolite identification through tandem mass spectrometry
and where the input graph is directed and edge-weighted [25]. All these problem
variants have given rise to an abundant literature. CGM, GM, and LGM
are NP-hard even in very restricted cases [2I], 12 6]. Consequently, many
of the above-mentioned studies have focused on (dis)proving fixed-parameter
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tractability of the problems (see e.g. [27] for an informal survey on the topic).
In such cases, very often the parameter k := |M| = |S| is considered.

In this paper, we study the parameterized complexity of GM, CGM, and
LGM, but our approach differs from the usual viewpoint by focusing on the dual
parameter £ := |V|—|S|, that is, £ is the number of vertices to be deleted from G
to obtain a solution. Although the choice of ¢/ may be disputable because a
priori it may be too large to expect a good behavior in practice, there are several
arguments for choosing such a parameter: First, after some initial data reduction,
the input may be divided into smaller connected components, where ¢ is not
much larger than k. Second, the algorithms for parameter k rely on algebraic
techniques or dynamic programming, and in both cases, the worst-case running
time is equivalent to the actual running time. In contrast, for example for CGM,
the algorithm for parameter ¢ is a search tree algorithm [2], and search tree
algorithms can be substantially accelerated via pruning rules. Finally, there are
subgraph mining problems where the dual parameter ¢ is usually bigger than the
parameter k but nevertheless leads to the current-best algorithms (in terms of
performance on real-world instances), see e.g. [18, 20]. Hence, parameterization
by ¢ may be useful even if ¢ is bigger than k, and thus deserves to be studied.

Related work and our contribution. GM is NP-hard, even when M
is composed of two colors [12]. Concerning the parameterized complexity for
parameter k := | M|, the current-best randomized algorithm has a running time
of 28 . n®W) [3, 24] where n := |V|, and there is evidence that this cannot be
improved to a running time of (2 — €)* - n®® [3]. The current-best running time
for a deterministic algorithm is 5.18% - n®™1) [23]. GM on trees can be solved
in n°() time where c is the number of colors in M [12], but is W[1]-hard with
respect to ¢ [I2]. Other parameters, essentially related to the structure of the
input graph G, have been studied by Ganian [I7], Bonnet and Sikora [6], and
Das et al. [9]. For example, GRAPH MOTIF is fixed-parameter tractable when
parameterized by the size of a vertex cover of the input graph [I7, [6]. Finally,
concerning parameter £, GM has been shown to be W[1]-hard, even when M is
composed of two colors [2].

Since CGM is a special case of GM, any above-mentioned positive result
for GM also holds for CGM. In addition, CGM is NP-hard even for trees of
maximum degree 3 [12], and does not admit a polynomial-size problem kernel
with respect to k even if G has diameter two or if G is a comb graph (a special
type of tree with maximum degree 3) [I]. Finally, CGM can be solved in
O(2¢ - m) time [2], where m := |E|. The LGM problem is an extension of GM
and thus any negative result for GM propagates to LGM. Moreover, LGM is
fixed-parameter tractable with respect to k, and the current-best algorithm runs
in 28 . n©M time [24]. Concerning parameter ¢, LGM has been shown to be
W][1]-hard even when M is a set [2].

As mentioned above, we study GM, LGM, and CGM with respect to the
dual parameter £ := n — k. Since many results in general graphs turn out to
be negative, we also study the special case where the input graph G is a tree.
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Table 1: Overview of new and previous results with respect to the dual param-
eter £ := n — k, where n := |V|, k := |[M|, m := |E| and A := max,ev |L(v)]
denotes the maximum list size in G. The lower bound result for CGM as-
sumes the strong exponential time hypothesis (SETH) [19], the results showing
non-existence of polynomial kernels assume that NP C coNP/poly.

General graphs Trees

LGM W{1]-hard [2] ?

LGM, A =2 W(1]-hard (Cor. ?

GM W/1]-hard [2] O(3" - n) (Thm. 1)
no poly. kernel (Thm. @)

CGM 02t -m) [, 02" +n) (Thm.[§),

no (2 —€)*-n°® algo. (Thm.
no poly. kernel (Thm. (2¢ + 1)-vert. kernel (Thm. E)

Our results are summarized in Table [} In a nutshell, we strengthen previous
hardness results for the general case and show that the O(2¢ - m)-time algorithm
for CGM is essentially optimal. Then, we show that for GM on trees and
for some special cases of LGM on trees, a fixed-parameter algorithm can be
achieved. Finally, we show that for CGM on trees, a polynomial-size problem
kernel and better running times than for general graphs can be achieved.

Preliminaries. For an integer n, we use [n] := {1,...,n} to denote the
set of the integers from 1 through n. Throughout the paper, the input graph
for our three problems is G = (V, E), and we let n := |V| and m := |E| denote
its number of vertices and edges, respectively. For a vertex set S C V, we
let G[S] := (S, {{u,v} € E | u,v € S}) denote the subgraph of G induced by S.
The set S of vertices sought for in the three problems is called an occurrence
of M. If G is vertex-colored, we call a vertex set S colorful if |S| = |M| and all
vertices in S have pairwise different colors. A vertex v is called unique if it is
assigned a color ¢ that is assigned to no other vertex in V'; the color c is also
called unique in this case. For a multiset M and an element ¢ of M, we use M(c)
to denote the multiplicity of ¢ in M.

To analyze the structure of the coloring constraints for instances of LGM,
we consider the following auxiliary graph.

Definition 1 Let (M, G, L) be an instance of LGM. The vertez-color graph H
of (M, G, L) is the bipartite graph with vertex set V.U C and edge set {{v,c} |
veV,ece L(v)}.

Observe that GM instances are LGM instances where each vertex from V has
degree one in the vertex-color graph H. In other words, H is a disjoint union
of stars whose non-leaves are vertices from C. Moreover, an LGM instance
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where H is a disjoint union of bicliques can be easily replaced by an equiva-
lent GM instance: For each biclique K in H, replace the color set K N C by one
color with multiplicity » . rne M(c) in M and assign this color to all vertices
in KNV.

We briefly recall the relevant notions of parameterized algorithmics [8] [IT].
Parameterized algorithmics aims at analyzing the impact of structural input
properties on the difficulty of computational problems. Formally, a parameterized
problem L is a subset of ¥* x N where the second component is the parameter. A
parameterized problem L is fixed-parameter tractable if every input instance (I, k)
can be solved in f(k) - [I|°™M) time where f is a computable function depending
only on k. The class of fixed-parameter tractable problems is called FPT.

A reduction to a problem kernel, or kernelization, is an algorithm that takes as
input an instance (I, k) of a parameterized problem and produces in polynomial
time an instance (I, k") such that

e (I,k) is a yes-instance if and only if (I’, k') is a yes-instance and
o |I'| + k' < g(k) where g is a computable function depending only on k.

The instance (I’, k') is called problem kernel and g is called the size of the problem
kernel. If g is a polynomial function, then the problem admits a polynomial-size
problem kernelization.

The class W[1] is a class of parameterized problems that contains all fixed-
parameter tractable problems, that is, FPT C WJ1]. The basic assumption of
parameterized complexity theory is FPT # WJ1] [8, I1I]. Consequently, if a
parameterized problem is W[1]-hard, then we assume that it cannot be solved
in f(k)-n®® time [8, [I1]. The strong exponential time hypothesis (SETH)
assumes that, for any € > 0, CNF-SAT cannot be solved in time (2 — €)™ - |®|©(1)
where @ is the input formula and n is the number of variables [19].

This work is structured as follows. In Section [2] we present lower bounds
for LGM and CGM on general graphs. These negative results motivate our
study of the case when G is a tree; our results for GM on trees and CGM on
trees will be presented in Section [3] and Section [ respectively. We conclude
with an outlook of future work in Section Bl

2 Parameterization by Dual in General Graphs:
Tight Lower Bounds

CGM can be solved in O(2°-m) time [2]. We show that this running time bound
is essentially optimal.

Theorem 1 COLORFUL GRAPH MOTIF cannot be solved in (2 —€)¢-n®M) time
unless the strong exponential time hypothesis (SETH) fails.

Proof: We present a polynomial-time reduction from CNF-SAT:
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Figure 1: The construction for the input formula ® = (z2 VZ3) A (21 VT2 V x3).

Input: A boolean formula ® in conjunctive normal form with
clauses C1, ... ,C, over variable set X = {x1,...,2,}.

Question: Is there an assignment S : X — {true,false} that
satisfies @7

The reduction works as follows; for an example see Figure First, for each
variable z; € X introduce two variable vertices v! and vif and color each of them
with color x;X. The idea is that (with the final occurrence) we must select exactly
one vertex for this color. This selection will correspond to a truth assignment
to X. Now, introduce for each clause C; a clause vertex u;, color u; with a unique
color Xic and make u; adjacent to vertex v§ if ; occurs non-negated in C; and

to vertex v; if 2; occurs negated in C;. Finally, introduce one further vertex v*
with a unique color x*, make v* adjacent to all variable vertices and let M be
the set containing each of the introduced colors exactly once. Note that there
are exactly | X| colors that appear twice in G and that all other colors appear
exactly once. Hence, £ = | X|. We next show the correctness of the reduction.
Let I = (M, G, x) denote the constructed instance of CGM.

First, assume that @ is satisfiable and let 8 be a satisfying assignment of X.
For the CGM instance I consider the vertex set S C V that contains all clause
vertices, vertex v*, and for each variable z; the vertex v! if 38 sets z; to true
and the vertex v/ otherwise. Clearly, |S| = |M| and no two vertices of S have
the same color. To show that I is a yes-instance of CGM it remains to show
that G[S] is connected. First, the subgraph induced by the variable vertices
in S plus v* is a star and thus it is connected. Second, since f is a satisfying
assignment each clause vertex in S has at least one neighbor in S (which is by
construction a variable vertex). Hence, G[S] is connected.

Conversely, assume that I is a yes-instance of CGM, and let S be a colorful
vertex set with |S| = |M| such that G[S] is connected. Since S is colorful, the
variable vertices in S correspond to a truth assignment g of X. This assignment
satisfies ®: Indeed, since G[S] is connected, there is a path in G[S] between each
clause vertex u; and v*, and thus S contains some neighbor of u;. If this neighbor

is 11;-, then by construction § assigns true to x;. Otherwise, the neighbor is vjf
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and 3 assigns false to z;. In both cases, C; is satisfied.

Thus, the two instances are equivalent. Now observe that since ¢ = | X| =1r
and n = 2r+q+1, any (2—¢)*-n®M-time algorithm implies a (2—€)"- (r+¢)°M)-
time algorithm for CNF-SAT. This directly contradicts the SETH. (]

The above reduction also makes the existence of a polynomial-size problem
kernel for parameter ¢ unlikely. This is implied by the following two facts. First,
CNF-SAT parameterized by the number of variables does not admit a polynomial-
size problem kernel unless NP C coNP /poly [I0]. Second, the reduction presented
in the proof of Theorem (1| is a polynomial parameter transformation [3] from
CNF-SAT parameterized by the number of variables to CGM parameterized
by ¢. More precisely, given an input CNF-SAT formula ® on variable set X,
the reduction produces an instance I = (M, G, x) of CGM with ¢ = |X|. Now,
any polynomial-size problem kernelization applied to I produces in polynomial
time an equivalent CGM instance I’ of size (1) = | X|°(), Since CNF-SAT
is NP-hard, we can now transform this CGM instance in polynomial time
into an equivalent CNF-SAT instance that has size ¢©(1) = | X|9(). Hence, a
polynomial-size problem kernel for CGM parameterized by £ implies a polynomial-
size problem kernel for CNF-SAT parameterized by |X|. This implies NP C
coNP /poly [I0] (which in turn implies a collapse of the polynomial hierarchy).

Theorem 2 COLORFUL GRAPH MOTIF parameterized by { does not admit a
polynomial-size problem kernel unless NP C coNP /poly.

We have thus resolved the parameterized complexity of CGM parameterized
by ¢ on general graphs and now turn to the more general LGM problem, which
is W[1]-hard with respect to ¢ [2]. Here, it would be desirable to obtain fixed-
parameter algorithms for parameter ¢ at least for some restricted inputs. In
other words, we would like to further exploit the structure of real-world instances
to obtain tractability results. A very natural approach is to consider the size
and structure of the list-colorings £(v) as additional parameter. Unfortunately,
the problem remains W([1]-hard even for the following very restricted case of
list-colorings. Recall that the vertex-color graph is the bipartite graph with
vertex set V' U C in which v € V and ¢ € C are adjacent if and only if ¢ € L(v).

Theorem 3 LisT-COLORED GRAPH MOTIF is W/[I]-hard with respect to £ even
if the vertex-color graph is a disjoint union of paths.

Proof: We reduce from the MULTICOLORED INDEPENDENT SET problem:

Input: An undirected graph H = (W, F') and a vertex-labeling A :
W —{1,...,k}.

Question: Is there a vertex set S C W such that |S| = k, the
vertices in S have pairwise different labels, and H[S] has no edges?

MULTICOLORED INDEPENDENT SET has been shown to be W[1]-hard when
parameterized by k [13]. We refer to the colors of the MULTICOLORED IN-
DEPENDENT SET instance as labels to avoid confusion with the colors of the
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Uip.fr Yagr Y{ah} V{fir} Y{gs} UV{rr} V{gs}

a o ol

q s o
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Figure 2: An example of the construction for the reduction from MULTICOLORED
INDEPENDENT SET. Left: An instance of MULTICOLORED INDEPENDENT SET
where f, g, and h have label 1, p and ¢ have label 2, and r and s have label 3.
Right: The constructed graph instance. The graph G with the coloring for those
vertices that receive their own private color is shown on top, the vertex-color
graph for vertices from V} is shown below.

LGM instance. Assume without loss of generality that each label class in H
contains the same number z of vertices (this can be achieved by padding smaller
classes with additional vertices) and that there is an arbitrary but fixed ordering
of the vertices of H.

The reduction works as follows; see Figure [2] for an example. We first
describe the input graph G of the LGM instance. We let V =V, U V; U {v*},
where Vo = W and V4 = {vc|e € F}. Now construct the edge set E of G as
follows. First, make vertex v* adjacent to all vertices of V. Then, for each
edge {u,w} of H make vertex vy, ,} adjacent to u and w. This completes the
construction of G. Now let us describe the coloring of the vertices. We start
with the colors given to Vyj = W. For each label i from A do the following:
create x — 1 colors ci,...,ct ;. Now, with respect to the above-mentioned
ordering, color the first vertex of label class i with color cf, color any jth
vertex, 2 < j < x — 1, with the list {cé-_l, c}"—}7 and finally color the zth vertex
with color ¢f,_;. Next, color each vertex from V; U{v*} with a unique color. Let £
denote the list-coloring of V(G) that we just described. We define the motif M
as the set containing each color present in £. Clearly, the reduction works in
polynomial time. Note that |V| = kz + |E|+ 1 and [M| =k(z — 1)+ |E| +1
and thus ¢ = |[V| — |M| = k. To prove our claim, it thus remains to show the
correctness of the reduction:

(H,k) is a yes-instance of MULTICOLORED INDEPENDENT SET &
(M,G, L) is a yes-instance of LGM.

(=) Let S be a size-k independent set with pairwise different vertex labels
in H. Consider the set Y := V' \ S in G. First, note that G[Y] is connected:
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vertex v* is adjacent to all vertices in Y NV, and each vertex vy, .} of YNV =W
has at least one neighbor in Y’ NV}, because at most one of the endpoints of {u, w}
is in the independent set S.

It remains to show that we can assign colors to the vertices such that the
union of the vertex colors is M. All vertices with unique colors are contained
in Y and their coloring is clear. All other vertices are in V. Now consider label
class i of V. Exactly one vertex u of label class ¢ is contained in S. Let j be the
number such that u is the jth vertex of the label class i. Then, color the gth
vertex of label class ¢ with color cfl if ¢ < j and with color 0271 if ¢ > j. This
coloring assigns x — 1 different colors to the vertices of each label class. Hence,
there is a coloring of the vertices of Y that is equal to M.

(<) Let Y denote an occurrence of M in G. First, observe that there are
only  — 1 colors for the z vertices of each label class. Hence, Y contains
exactly x — 1 vertices of each label class. Now, let S denote the set containing,
for each label class, the only vertex not contained in Y. Clearly, |S| = k and
the elements of S have pairwise different labels in H. Furthermore, S is an
independent set in H: since G[Y] is connected, for each edge vertex vy, ., at
least one of its neighbors is in Y. Hence, at most one of the endpoints of each
edge {u,w} isin S. O

We immediately obtain the following.

Corollary 1 LisT-COLORED GRAPH MOTIF is W/[I]-hard with respect to £ even
if |IL(v)] <2 for every vertex v in G.

3 Graph Motif on Trees

Motivated by the negative results on general graphs from Section [2] we now
study the special case where the input graph is a tree. For LGM, we were not
able to resolve the parameterized complexity with respect to ¢ for this case.
Hence, we focus on the more restricted GM problem. We show that GM is
fixed-parameter tractable with respect to £ if the input graph is a tree. Recall
that for general graphs, GM is W([1]-hard for £ even if the motif M contains only
two colors [2]. Hence, our result shows that the tree structure significantly helps
when parameterizing by ¢. We then show that the fixed-parameter algorithm for
GM on trees extends to some special cases of LGM in which the vertex-color
graph is also a tree. Finally, we show that a polynomial-size kernel for GM on
trees parameterized by ¢ is unlikely.

3.1 A Dynamic Programming Algorithm

Call a color of M abundant if it occurs more often in G than in M. In other
words, a color is abundant precisely if we have to delete at least one vertex
with this color to obtain a solution S. Let ci,...,c; denote the abundant colors
of M, and let ¢; denote the difference between the number of vertices in V' that
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have color ¢; and the multiplicity M (¢;) of ¢; in M. This implies in particular
that Zlgigj Ei =/.

The algorithm is a dynamic programming algorithm that works on a rooted
representation 7" of G. We obtain T by choosing an arbitrary vertex r € V
and rooting G at r. As usual for dynamic programming on trees, the idea is
to combine partial solutions of subtrees. Our algorithm is somewhat similar
to a previous dynamic programming algorithm for GM on graphs of bounded
treewidth [I2] but the analysis and concrete table setup is different.

In the following, let T, denote the subtree of T rooted at vertex v. For
each subtree, we let occ(Ty,c) denote the number of vertices in T, that have
color ¢. If a solution contains vertices from T, and further vertices, then it
must contain v and all vertices with non-abundant colors in T,. Hence, in
the dynamic programming it is sufficient to consider subtrees described in the
following definition.

Definition 2 We call a connected subtree T' of T, safe if T' contains v and if
every vertex of T, that is colored by a non-abundant color is contained in T".

We fill a family of dynamic programming tables D,,, one table for each v € V.
The entries of D, are defined as follows:

1 if T, has a safe subtree containing for each ¢;, 1 <14 < j,
Dy[A1, ..., \] = exactly occ(Ty, ¢;) — A; vertices of color ¢;,

0 otherwise.

Assume for now that the table has completely been filled out. Then, it can be
directly determined whether G has an occurrence S of M: If S is an occurrence
of M, then let v denote the root of T[S]. Clearly, T[S] is a safe subtree of T,,.
Moreover, every vertex with a non-abundant color is contained in T'[S] and for all
vertices with an abundant color ¢;, the tree T[S] contains occ(Ty, ¢;) — A; vertices
with color ¢; for some A; > 0. Thus, there is some table entry D,[A1,...,Aj]
whose value is 1 and where occ(T,, ¢;) — \; is the multiplicity of ¢; in M for each ¢;.
Conversely, if there is some entry Dy[A1, ..., A;] with value 1 such that T}, contains
all vertices with non-abundant colors and for each ¢;, 1 <i < j, oce(Ty, ¢;) — N;
is exactly the multiplicity of ¢; in M, then there is at least one safe subtree of T,
whose vertex set is an occurrence of M.

By the above, one may solve GM by filling table D, and then checking for
each vertex v whether one of the entries of D,[A1,...,\;] with value 1 implies
the existence of a solution. For the running time bound, the main observation
that we exploit is that if a safe rooted subtree of T, contains all the vertices
of T,, that are in a solution S, then it contains at least occ(T,, ¢;) — ¢; vertices
with color ¢;. Consequently, the relevant range of values for A; is in [0, ¢;] and
thus bounded in the parameter value /.

We now describe how to fill in table D. To initialize D, consider each leaf v
of the tree T. By the definition of D, an entry can have value 1 only if there is a
corresponding safe tree which needs to contain v. Thus,

D1,[)\1,...,)\j]=1<:>)\1:...:)\j:O.
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Now, to compute the entries of D for a non-leaf vertex v, we combine the entries
of the children of v. To this end, fix an arbitrary ordering of the children of v
and denote them by u1, ..., Uqeg(v). Now, let T denote the subtree rooted at v
containing the vertices of each T}, 1 < ¢ <4, and no vertices from each T, , g > 1.
For increasing i, we compute solutions for 77/, eventually computing the solutions
for Tf,i cg(v) _ T,. To compute these solutions, we define an auxiliary table D?.
The table entries are defined just as for D, that is,

1 if T¢ has a safe subtree containing for each ¢;, 1 <1i < j,
DilMi, ..., \] = exactly occ(Ty, ¢;) — A; vertices of color ¢;,

0 otherwise.

Observe that, since TS es(v) _ Ty, we have Df}eg“) = D, and thus by comput-
ing D38 we also compute D,,. Now, D} can be computed in a straightforward

fashion from the entries of D,,, .

1 if Dy (M, 7] =1
DX A = 1 if oce(Ty,, i) = A; for every 4, 1 <i <g,
i A and T, contains only abundant colors,

0 otherwise.

The first case corresponds to the case that the safe subtree 7" of T} contains
at least one vertex of T,,, the second case corresponds to the case that 7"
contains only v.

To compute D! for i > 1, we combine entries of D!~ with D,,.

1 if T, contains only abundant colors and
Dim A —oce(Tu;, 1)y - -y Aj — 0ce(Tu,, ¢5)] = 1,
DilAi,...,\] =<1 ifthereis (\,..., A%) such that
D N N = Dy M= A N = N =1,

0 otherwise.

The first case corresponds to the situation in which no vertex of T, is part of
the safe subtree, in the second case the safe subtree contains some vertices of Ty,
and some vertices of T/~ 1.

This completes the description of the dynamic programming recurrences.
The correctness follows from the fact that the recurrence considers all possible
cases to “distribute” the vertex deletions. It remains to bound the running time.

Theorem 4 GRAPH MOTIF can be solved in O(3° - n) time if G is a tree.

Proof: As described above, the relevant values of each \; are in [0, ¢;]. Thus, for
each subtable D! and D, the number of entries to compute is H1<Z—<j (¢; +1).
The dominating term in the overall running time is the computation of the second
term in the recurrence for D} [A1, ..., ;] where we consider all (A}, ..., ;) such
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that DI '[N, ..., N = Dy, [A — A, ..., Aj — Aj] = 1. The number of possible
choices can be computed as follows. For each A;, the values of A} range between 0
and \;. Overall, this gives

f+1

£;
Si+1=i=ti+2) (4 +1)/2
§=0 j=1

possibilities for choosing A; and ;. We now bound this product in ¢. Thus, we
aim to find the vector (¢1,...,¢;) that maximizes [[,.,.;(¢; +2) - (6; +1)/2
under the constraint 3, ., £; = £. We claim that this is the vector with ¢; =
o=l =1 o

To this end, consider a vector V = (¢1,...,¢;) whose maximum entry is at
least 2. Without loss of generality, assume thus ¢; > 1. Now consider V' =
(€1,...,4;—1,1) and observe that (3, ., ; £;) + (¢; —1)+1 =, that is, V" also
satisfies the summation constraint. Moreover,

ngigg‘((fz‘ + 2) ’ (gi + 1)/2)
(Ili<ic; (6 +2) - (i +1)/2) - (6 +1)(4;)/2) - 3
:(£j+2)(€j+1)/2 _ ;42 1 205 =2 <1
3(0; +1)(¢;)/2 3¢ 3¢, ’

where the inequality follows from ¢; > 1. Since V' has more entries with value 1,
we conclude that the maximum value is reached when all entries assume value 1.
Consequently, the worst case number of recurrences that need to be evaluated
for filling a subtable D? or D, is O(3%). The overall number of subtables to fill
is O(3_,cy deg(v)) = O(n). This implies the overall running time bound. O

3.2 An Extension to Subcases of List-Colored Graph Mo-
tif on Trees

The fixed-parameter tractability of GM on trees can be extended to give fixed-
parameter tractability for LGM when the input graph G is a tree and the
vertex-color graph H is a forest with bounded degree.

The first step in our algorithm is to apply the following two data reduction
rules which are obviously correct.

Rule 1 If there is a color vertex c in the vertez-color graph H such that degy (c) <
M(c), then return “no”.

Rule 2 If there is a color vertex c in the vertex-color graph H such that degy (c) =
M(c), then set L(u) = {c} for all neighbors u of ¢ in H.

With these reduction rules at hand, we can show that the following special
case of LGM is fixed-parameter tractable with respect to /.

Lemma 1 LGM can be solved in O(3¢-n) time if G is a tree and the vertez-color
graph H is a forest in which degy(c) — M(c) < 1 for every color vertez c.
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Proof: We describe a reduction of this special case of LGM on trees to GM on
trees. In the following, we assume without loss of generality that every color in
the instance has multiplicity at least one in M. First, apply Reduction Rules ]|
and 2| exhaustively. This can be done in O(n) time: First, we compute the
vertex-color graph explicitly by traversing £(v) for each v € V. In general, the
size of these lists may exceed O(n) but, due to the following claim, we can
immediately reject instances in which the sum of the list sizes is too big.

Claim: If the vertex-color graph H is a forest, then ) ., |L(v)| < 3n in
any yes-instance. We show that H cannot have 3n edges. Since every entry
of L(v) corresponds to an edge of H the claim follows. First, observe that in a
yes-instance any of the n vertices from V' has at most one leaf-neighbor from C
in H. Thus, H contains at most n color vertices that are leaves. Moreover, if H
contains x > n non-leaf color vertices, then H contains a cycle: Consider the
graph H’ obtained from H by deleting all leaf-vertices that are color-vertices.
The remaining color vertices have degree at least two in H’. Thus, H' has
2z > x + n edges and z + n vertices and contains a cycle. Consequently, H
has less than 3n vertices and thus if it it has 3n edges, then it contains a cycle,
contradicting the assumption that H is a forest.

After building the vertex-color graph, we compute in O(n) time the difference
between M (c) and degy(c) once for all ¢ € C' and update this value whenever
we delete an edge. Due to Reduction Rule [I} we have M(c) < degy(c) for every
color vertex ¢ in H. Moreover, since the reduction rules do not increase the
degree of a vertex, we have M(c) > degy(c) — 1. Finally, if M(c) = degy(c),
then the connected component of ¢ in H consists of ¢ and deg (c) leaf neighbors
of c¢. By the above, the vertex-color graph H contains the two types of connected
components considered below. For both of them, we show that the constraints
of £ can be replaced by simple coloring constraints. Consider a connected
component H' of H.

Case 1: H' is a star with a central color vertex ¢ such that M(c) = degy(c)
in M. Replace ¢ by degy(c) new colors and assign a different color to each
neighbor of ¢ in H. This is equivalent as all neighbors of ¢ in H are contained in
any occurrence of M.

Case 2: H' is a tree in which each color vertez ¢ fulfills M(c) = degy(c) — 1.
Let C’ denote the set of color vertices in H' and V' denote the other vertices
of H' that do not correspond to colors. Replace C’ by one new color ¢* and
set the multiplicity of ¢* to |V’| — 1. To show correctness of this replacement,
we show that for every v € V', there is an assignment [’ : V' \ {v} — C’
such that f/(u) € L£(u) for each v € V' \ {v} and each color ¢ € C’ is assigned
exactly M (c) = degy(c)—1 vertices by f’. To see the existence of this assignment
consider the version of H' that is rooted at v. For each color vertex ¢ in H’,
let V! denote the children of ¢ in this rooted tree. For each vertex u € V/
set f'(u) := ¢. With this assignment, there are exactly degy(c) — 1 vertices
that are assigned to ¢ and every vertex u € V' \ {v'} is assigned to some color ¢
of C’, namely to its predecessor in H’. The construction of f’ also shows that
ezactly one vertex of V' is not contained in any occurrence of M: deleting two
or more vertices of V’ implies that some color ¢ of C’ is assigned to less than
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M (c) vertices and deleting no vertex of V/ implies that implies that some color ¢
of C’ is assigned to more than M(c) vertices.

Applying these replacements exhaustively yields an equivalent instance of GM
on trees which can be solved in the claimed running time due to Theorem [d] O

We now show how to use the running time bound of Lemma [I] to obtain
a fixed-parameter algorithm for the dual parameter ¢ for the special case of
LGM when the color-vertex graph is a forest and when M (C) := max.cc M(c),
the largest multiplicity in M, is bounded. The first step of the algorithm is
to apply Reduction Rules [I] and |2| exhaustively. Afterwards, we branch on
colors ¢ where degy(¢) exceeds M (c) by at least two. We call such a color vertex
2-abundant in the following.

Branching Rule 1 If the vertex-color graph H contains a connected compo-
nent H' with at least one 2-abundant color vertex, then do the following.

e Root H' arbitrarily.

e Choose some 2-abundant vertex ¢ of H' such that the subtree of H' rooted
at ¢ has no further 2-abundant vertex.

e Choose a set V. of M(c)+ 1 arbitrary children of c.

e For each u € V. branch into the case that ¢ is removed from L(u).

Proof of correctness: First, observe that such a 2-abundant color vertex ¢
always exists and that it can be found in linear time by a bottom-up traversal of
the rooted tree. Second, observe that since M (c) < degg(c)+2, the vertex ¢ has
at least M (c) + 1 children. Hence, if the original instance contains an occurrence
of M, then there is some child u of ¢ in H’ which does not receive the color ¢ in
this occurrence. Thus, if the original instance is a yes-instance, then the branch
in which we remove ¢ from L(u) is a yes-instance. Conversely, any occurrence
of M in an instance created by the branching rule is an occurrence of M in the
original instance. O

If Branching Rule [1] does not apply, then we can solve the instance in O(3° - n)
time by Lemma |1} It thus remains to ensure that the rule cannot be applied
too often. To this end, we apply one further reduction rule. To formulate the
rule we need the following definition: we call a connected component H' of the
vertex-color graph H costly if H' either consists of just one vertex v € V or H' is
a tree such that all color vertices ¢ in H’ have multiplicity exactly deg(c) — 1
in M.

Rule 3 If G contains at least £ + 1 costly components, then return “no”.

Proof of correctness: For each costly component at least one vertex is not
contained in any occurrence of M. This is obvious for those components consisting
only of one vertex v from V. For the other costly components, this follows from
Case 2 in the proof of Lemmal I} O
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Now observe that in each instance created by an application of Branching Rule
the number of costly components is increased by exactly one: By the choice
of ¢ as a vertex without 2-abundant descendants in the rooted tree, the new
connected component that is created by removing ¢ from L£(u) is either an
isolated vertex or all color vertices have multiplicity exactly degy(c) — 1. In
both cases, the new component is costly. Hence, after at most £ + 1 branching
steps, Reduction Rule [3] directly reports that we have a no-instance. Since we
branch into at most M (C) + 1 cases in each application of Branching Rule [1} we
thus create O((M(C) + 1)**1)) instances that either adhere to the conditions of
Lemma [l] or are rejected due to Reduction Rules [l or [3| and can thus be solved
in O(3%-n) time. Altogether, we obtain the following running time.

Theorem 5 If G is a tree and the color vertex graph H is a forest, then LGM
can be solved in O((M(C) + 1)+ . 3¢ n) time.

When M is a set, the largest multiplicity is one, giving the following running
time.

Corollary 2 If G is a tree, H is a forest, and M is a set, then LGM can be
solved in O(6° - n) time.

By observing that Branching Rule 1| branches into at most degy;(c) — 1 branches,
we also obtain the following running time bound in terms of the maximum degree
of color vertices in H.

Corollary 3 If G is a tree, and H is a forest whose color vertices have degree
at most A¢, then LGM can be solved in O((Ac — 1) .38 n) time.

3.3 A Kernelization Lower Bound

We now show that GM does not admit a polynomial-size problem kernel with
respect to £, even if G is a tree. The proof is based on a cross-composition [4]
from the MULTICOLORED CLIQUE problem.

MULTICOLORED CLIQUE

Input: An undirected graph H = (W, F') and a vertex-labeling X :
W —{1,...,k}.

Question: Is there a vertex set S C W such that |S| = k, the
vertices in S have pairwise different labels, and H[S] is a clique?

We refer to the colors of the MULTICOLORED CLIQUE instance as labels
to avoid confusion with the colors of the GM instance. Informally, cross-
compositions are reductions that combine many instances of one problem into
one instance of another problem. The existence of a cross-composition from an
NP-hard problem to a parameterized problem @ implies that ) does not admit
a polynomial-size problem kernel (unless NP C coNP /poly) [4].
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Definition 3 ([4]) Let L C ¥* be a language, let R be a polynomial equivalence
relation on X*, and let Q C X* X N be a parameterized problem. An or-cross-
composition of L into @ (with respect to R) is an algorithm that, given t instances
T1,%2,...,x¢ € X" of L belonging to the same equivalence class of R, takes time
polynomial in 27;:1 |x;| and outputs an instance (y, k) € ¥* x N of Q such that

e the parameter value k is polynomially bounded in max'_, |z;| + logt, and

e the instance (y, k) is a yes-instance for Q if and only if at least one instance
x; 1S a yes-instance for L.

We present an or-cross composition of MULTICOLORED CLIQUE into GM
on trees parameterized by ¢. The polynomial equivalence relation R will be
simply to assume that all the MULTICOLORED CLIQUE instances have the same
number of vertices n. The main trick is to encode vertex identities in the graph
of the MULTICOLORED CLIQUE instance by numbers of colored vertices in the
GM instance; this approach was also followed in previous works on GM [12] [6].

Given t instances (Hy = (W1, F1), A1), ..., (Hy = (W4, Fy), At) of MULTICOL-
ORED CLIQUE such that |W;| = n for all ¢ € [t], we reduce to an instance of GM
where the input graph is a tree as follows. Herein, we assume without loss of
generality that t = 2° for some integer s.

The first construction step is to add one vertex r that connects the different
parts of the instance and which will be contained in every occurrence of the
motif. The vertex r thus receives a unique color that may not be deleted. To
this vertex r we attach subtrees corresponding to edges of the input instances.
Deleting vertices of such a subtree then corresponds to selecting the endpoints
of the corresponding edge.

Instance selection gadget. The technical difficulty in the construction is
to ensure that the solution of GM deletes only vertices in subtrees corresponding
to edges of the same graph. To achieve this, we introduce k- (k—1)-logt instance
selection colors ¢[p, ¢, 7] where p € [k], ¢ € [k] \ {p}, and 7 € [log], and demand
that the solution deletes exactly one vertex of each instance selection color. To
ensure that exactly one instance is selected, we use two further colors t* and ¢~.

For each MULTICOLORED CLIQUE instance (H;,\;), attach an instance
selection path P; to r that is constructed based on the number . Let b() denote
the binary expansion of ¢ and let b, (i), 7 € [logt], denote the 7th digit of b(4).
Construct a path P; containing first a vertex with color ¥, then in arbitrary
order exactly one vertex of each color in the color set I; := {¢[p,q, 7] : b (i) = 1},
and then a vertex with color :~. Attach the path P; to r by making the vertex
with color +* a neighbor of 7.

The idea of the construction is that exactly one instance selection path P;
is completely deleted and that this will force any solution to delete paths that
“complement” P; (that is, paths which contain all ¢[p, ¢, 7] such that b, (i) = 0)
in the rest of the graph.
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Edge selection gadget. To force deletion of subtrees corresponding to
exactly (g) edges with different labels, we introduce 2k(k — 1) label selection
colors A[p, ¢|* and A[p,¢q]~ where p € [k] and ¢ € [k] \ {p}. These colors will
ensure that, for each pair of labels p and ¢, the solution deletes exactly one
path corresponding to the ordered pair (p, ¢) and one path corresponding to the
pair (¢, p).

There are two further sets of colors. One set is used for ensuring vertex
consistency of the chosen edges, that is, to make sure that all the selected edges
with label pair (p,-) correspond to the same vertex with label p. More precisely,
we introduce a color w(p, g] for each p € [k] and each ¢ € [k] \ {p}, except for the
biggest ¢ € [k]\{p}. The final color set is used to check that the edges selected for
label pair (p, ¢) and for label pair (g, p) are the same. To this end, we introduce
color €[p, q] for each p € [k] and each ¢ € [k] such that ¢ > p. To perform the
checks of vertex and edge consistency, we encode the identities of vertices and
edges into path lengths. More precisely, we assign each vertex v € W; a unique
(with respect to the vertices of W;) number #(v) € [n].

Now, for each label pair (p,¢) and each instance i, attach one path P;(u,v)
to r for each edge {u,v} where u has color p and v has color ¢ # p. The
path P;(u,v)

e starts with a vertex with color A[p, ¢]* that is made adjacent to r,
e then contains exactly one vertex of each color in {¢[p, q,7] : ¢t[p,q, 7] & L},

e then contains #(u) vertices of color €[p, ¢] if p < g and n — #(v) vertices
of color €[g, p] if p > ¢,

e then, if ¢ is not the biggest label in [k] \ p, contains #(u) vertices with
color wlp, q],

e then, if ¢ is not the smallest label in [£] \ p, contains n — #(u) vertices
with color w[p, ¢'], where ¢’ is the next-smaller label in [k] \ p (if p = ¢ — 1,
then ¢’ = ¢ — 2; otherwise ¢/ = ¢ — 1), and

e ends with a vertex with color Alp, q|~.

Let C denote the multiset containing all the vertex colors of all vertices added
during the construction with their respective multiplicities. In the correctness
proof it will be easier to argue about the colors that are not contained in M.
Hence, the construction is completed by setting the multiset D of colors to
“delete” to contain each color exactly once except

e the color of  which is not contained in D,

e the vertex consistency colors w[p, q] each of which is contained with multi-
plicity n, and

e the edge selection colors ¢[p, g] each of which is contained with multiplic-
ity n.
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The motif M is defined as M :=C\ D. It remains to show the correctness.

Theorem 6 GRAPH MOTIF does not admit a polynomial-size problem kernel
with respect to € even if G is a tree, unless NP C coNP /poly.

Proof: To complete the proof we need to show that the construction fulfills
the properties of cross-compositions. First, the construction clearly runs in
polynomial time. Second, the number of introduced colors is polynomially
bounded in k + logt and thus the value of ¢ = |D| is polynomially bounded
in n 4+ logt. Thus, it remains to show that the composition is an or-cross
composition, that is:

At least one (H;, A;) is a yes-instance of MULTICOLORED CLIQUE <
(M,G, L) is a yes-instance of GM.

(=) Let S € W; be a vertex set of size k such that H;[S] is a clique and the
vertices in S have pairwise different labels. Consider the induced subgraph G’
of G obtained by completely deleting the path P; and, for each {u,v} € H;[S],
the paths P;(u,v) and P;(v,u). Since only complete paths are deleted and since
each path in G is attached to r, the graph G’ is connected. It remains to show
that the multiset of deleted colors is D. First, : and ¢~ are deleted once and
contained once in D. Second, each instance selection color ¢[p, ¢, 7] is deleted
once as required by D: If ¢[p, ¢, 7] is contained in P;, then it is not contained in
any P;(u,v). Conversely, if ¢[p, ¢, 7] is not contained in P; then it is contained in
each P;(u,v) where u has color p and v has color ¢q. Third, exactly n vertices
of each vertex consistency color w[p, g] are deleted: these vertices are contained
only in two paths P;(u,v), namely if u has label p and v has either label ¢ or
label ¢ + 1. Since all the deleted paths with label pair (p,-) correspond to the
same vertex u, the number of vertices with color w[p, q] is #(v) if v has label ¢
and n—#(v) if v has label p. Hence, exactly n vertices with this color are deleted,
as required by D. Finally, we show that exactly n vertices of each edge selection
color €[p, q], p < ¢, are deleted: Let u and v be the vertices of S with label p
and g, respectively. Then, the deleted path P;(u,v) contains #(u) vertices with
color €[p, q] and the deleted path P;(v,u) contains n — #(u) vertices with this
color. Altogether, the multiset of colors in G’ is exactly C\ D = M.

(<) Let G’ be a connected subgraph of G whose multiset of vertex colors is
exactly M. Let Vp := V(G) \ V(G’) denote the set of deleted vertices, that is,
vertices not in G’. The color multiset of the vertex colors of Vp is exactly D.
Thus, exactly one vertex with color +* and one vertex with color ;= are deleted.
Consequently exactly one path P; is completely deleted from G’: deleting ¢+ in
some P; implies that the .~ in P; is also deleted. Thus, no further vertices from
any Pj, j # i, may be deleted.

Moreover, since each label selection color A[p, q]* or A[p,q]™ is contained
exactly once in D, the set Vp also contains exactly one path P;(u,v) where u
has label p and v has label q. Moreover, we have j = i by the assignment
of the instance selection colors: If j # i, then there is some 7 € [logt] such
that b, (i) # b (j). Then, however ¢[p, ¢, 7] is either not contained in the colors
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of Vp or it is contained twice in the colors of Vp. In either case, the set of
deleted colors is different from D.

Thus, all the deleted paths in the edge selection gadgets correspond to the
same instance i. Now consider the paths for label pairs (p,-). These label
pairs correspond to the same vertex: Otherwise, there is some P;(u,v) and
some P;(u’,v") such that u # u’, v has label ¢, and v' has label ¢ + 1. Then,
however, the number of vertices with color w(p, ¢] does not equal n since P;(u,v)
contains #(u) vertices of this color, P;(u’,v") contains n — #(u’) vertices of this
color and #(u) # #(u'). Hence, the deleted paths correspond to a vertex set S
with k different labels in some H;. It remains to show that the graph H;[S] is a
clique.

Consider an arbitrary pair of labels p and ¢ where p < q. Moreover, let u € S
and v € S have label p and ¢, respectively. Let P;(u,v’) be the path for u
that is deleted with this color pair and let P;(v,u’) be the path for v that is
deleted for this color pair. Then, P;(u,v") contains exactly #(u) vertices with
color €[p, g, P;i(v,u’) contains exactly n — #(u’) vertices of this color. Since D
contains exactly n vertices of this color, this implies u = u’. By construction,
this implies that u and v are neighbors in H;. O

4 Colorful Graph Motif on Trees

For the combination of vertex-colored trees as input graphs and motifs that
are sets, the problem becomes considerably easier. First, we show that in this
case CGM admits a linear-vertex problem kernel that can be computed in linear
time. The problem kernelization is based on two simple observations. Recall that
we call a vertex v unique if x(v) occurs exactly once in G. Moreover, observe that
in the case of CGM, the non-unique vertices are exactly those that are colored
by abundant colors. The first observation is that the number of non-unique
vertices is bounded by the dual parameter in CGM.

Lemma 2 Let (M,G,x) be an instance of COLORFUL GRAPH MOTIF. Then
at most 2¢ vertices in G are non-unique.

Proof: Let C* denote the set of abundant colors, and let occ(c) denote the
number of occurrences of a color ¢ in G. Then, nt := 37 . occ(c) is the
number of non-unique vertices. Let n~ denote the number of unique vertices
in G. By definition, no color is repeated in M, thus |M| = ¢* + n~. Moreover,
|[V] =n* 4+ n~. Hence, the number ¢ = |V| — | M| of vertices to delete satisfies
¢ =n" — cT. By definition of non-unique vertices we have n* > 2¢T, and thus
we conclude that £ > n™t /2. O

Second, if the instance contains two unique vertices, then the uniquely determined
path between these vertices is contained in every occurrence of the motif. The
kernelization accordingly removes all the vertices that lie on these paths. More
precisely, these vertices are “contracted” into the root r. Afterwards, in a second
phase some further vertices are removed because their colors have been used
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r r r
u v
Figure 3: The two phases of the kernelization. Left: the input instance,
where r, u, and v have unique colors; the pendant non-unique subtrees are
highlighted by the gray background. Middle: after Phase I, all vertices on
paths between unique vertices are contracted into r. Right: in Phase II, all

vertices with a color that was removed in Phase I are removed together with
their descendants.

during the contraction. Eventually, this results in an instance which has at most
one unique vertex and thus, by Lemma 2] bounded size. For an example of the
kernelization, see Figure 3| Below, we give a more detailed description.

Theorem 7 COLORFUL GRAPH MOTIF on trees admits a problem kernel with
at most 20 + 1 vertices that can be computed in O(n) time.

Proof: We first describe the kernelization algorithm, then we show its correctness
and finally bound its running time. By Lemma [2] the size bound holds if the
instance has no unique vertex. Thus, we assume that there is a unique vertex in
the following.

Given an instance (M,G,x) of CGM, first root the input tree G at an
arbitrary unique vertex r. Now call a subtree with root v pendant if it contains
all descendants of v in G. Then, compute in a bottom-up fashion maximal
pendant subtrees such that no vertex in this subtree is unique. Call these
subtrees the pendant non-unique subtrees. By Lemma [2] the total number of
vertices in pendant non-unique subtrees is at most 2¢. Now the algorithm
removes vertices in two phases.

Phase I. Remove from G all vertices except r that are not contained in a
pendant non-unique subtree. Remove all colors of removed vertices from M. If
there is a color ¢ such that two vertices with color ¢ are removed in this step,
then return “no”. Make r adjacent to the root of each pendant non-unique
subtree.

Phase II. In the first step of this phase, for each color ¢ where at least one
vertex has been removed in Phase I, remove all vertices from G that have color c.
In the second step of this phase, remove all descendants of these vertices. Finally,
let M’ denote the set of colors that are contained in the remaining instance. This
completes the kernelization algorithm; the resulting instance has at most 2¢ + 1
vertices since all vertices except r are unique. To show correctness, we first
observe the following.

Claim: every occurrence of M in G contains no vertex v that is removed
during Phase II of the kernelization. This can be seen as follows. First, every
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occurrence of M in G contains all vertices removed during Phase I: these vertices
are either unique or lie on the uniquely determined path between two unique
vertices. Now consider a vertex v removed during Phase II. If v is removed in
the first step of Phase II, then v has the same color ¢ as a vertex u removed
during Phase I. Consequently, v is not contained in an occurrence of M: By the
above, the occurrence contains v and it contains no other vertex with color c.
Otherwise, v is removed in the second step of Phase II, because v is not connected
to r. Since every occurrence of M contains r, it thus cannot contain v.

We now show the correctness of the kernelization, that is, the equivalence
of the original instance (M, G, x) and the resulting instance (M’, G’, x’). First,
assume that (M, G, x) is a yes-instance. Let Sp be an occurrence of M in G,
and let T' denote G[St]; by the above claim, T contains only vertices that are
removed during Phase I or that are contained in G’. Consider the subtree T’
of G that contains all vertices of T" that are not removed during the kernelization.
We show that 7" is connected in G’ and contains all colors of M’. Connectivity
can be seen as follows. First, observe that T and T’ contain r. Second, any
vertex v # r of T" is contained in some pendant non-unique subtree of G. Thus, v
is in T connected to r via a path that first visits only vertices of T”, including
the root of the pendant non-unique subtree. The root of the pendant non-unique
subtree is in G’ adjacent to r. Thus, each vertex v # r has in 7" a path to r
which implies that 7" is connected. It remains to prove that 7" contains all
colors of M’. Consider a color ¢ € M’. Since ¢ € M’, none of the vertices with
color ¢ are removed in Phase I of the kernelization. Moreover, since no vertex
of T is removed in Phase II of the kernelization, we have that the vertex of T’
with color ¢ is contained in T”. Thus, 7" contains each color of M’. Finally, T"
contains each color at most once since 1" does.

Now assume that (M’,G’, x’) is a yes-instance and let S/ be an occurrence
of M" in G'. Let T denote G[St/ U V;], where V7 is the set of vertices removed
during Phase I of the kernelization. We show that T is connected and contains
every color of G exactly once. To see that T is connected observe the following:
Clearly, G[{r} U V;] is connected. Moreover, each vertex v # r of 7" has in 7" a
path to r. This path contains a subpath from v to the root r’ of the pendant
non-unique subtree containing v. In G, r’ is adjacent to some vertex of {r} U V7.
Therefore, v’ is connected to r in T" and thus 7' is connected. It remains to show
that T contains every color of G exactly once. Clearly, 7" contains at least one
vertex of each color ¢ € M'. Moreover, it also contains at least one vertex of each
color ¢ € M \ M’ since it contains all vertices of V;. Besides, it contains each
color only once: The vertices of T have pairwise different colors and different
colors than those of the vertices of V;. Finally, the vertices of V; have different
pairwise colors since the kernelization did not return “no”.

The running time can be seen as follows. Determining the pendant non-
unique subtrees can be done by a standard bottom-up procedure in linear time.
Removing all vertices during Phase I can also be achieved in linear time. After
removing a vertex with color ¢ in Phase I, we label ¢ as occupied. When we
remove a vertex with an occupied color during Phase I, we immediately return
“no”. After the removal of vertices during Phase I, we can construct M’ from M
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in linear time by removing each occupied color. Finally, we can in linear time
add an edge between r and every root of a pendant non-unique subtree and then
remove all remaining vertices that have an occupied color. The final graph G’
is obtained by performing a depth-first search from r, in order to include only
those vertices still reachable from 7. O

Now, let us turn to developing fast(er) FPT algorithms for CGM. It can be
seen that it is possible to solve CGM in trees in time 1.62¢-n®M) by “branching
on colors with the most occurrences” until every color appears at most twice.
More precisely, for a color ¢ that appears at least three times and some vertex v
with color ¢, we can branch into the two cases to either delete v or to delete
the at least two other vertices that have color c¢. The branching Vectotﬂ for this
branching rule is (1,2) or better. Now, if every color appears at most twice, then
CGM on trees can be solved in polynomial time [12] Lemma 2]. By a different
branching approach, the above running time can be further improved.

Branching Rule 2 If there are at least two vertices u and v that are both not
leaves of the tree G and the same color ¢, then branch into the case to delete
from G either

e u and all vertices w such that the path from v to w contains u, or

e v and all vertices w such that the path from w to w contains v.

Proof of correctness: In each case, a subtree is deleted. No occurrence may
contain vertices of both subtrees, since then it contains u and v which have the
same color. O

If the rule does not apply, then one can solve the problem in linear time; here,
let occ(c) denote the number of occurrences of a color ¢ in G.

Lemma 3 Let (M,G,x) be an instance of COLORFUL GRAPH MOTIF such
that G is a tree and for each color ¢ with occ(c) > 1 at least occ(c) —1 occurrences
of ¢ are leaves of G, then (M,G,x) can be solved in O(n) time.

Proof: For each color ¢ with occ(c) > 1, the algorithm simply deletes occ(c) — 1
leaves with color c¢. This can be done in linear time by visiting all leaves via
depth-first search, checking for each leaf in O(1) time whether occ(c) > 1 and
deleting the leaf in O(1) time if this is the case. The resulting graph contains each
color exactly once, and it is connected since a tree cannot be made disconnected
by deleting leaves. O

Altogether, we arrive at the following running time.

¢
Theorem 8 COLORFUL GRAPH MOTIF can be solved in O(v/2 +n) time if G
18 a tree.

2For an introduction to the analysis of branching vectors, refer to [8} [[6].
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Proof: The algorithm is as follows. First, reduce the input instance in O(n)
time to an equivalent one with O(¢) vertices using the kernelization of Theorem
Now, apply Branching Rule [2] If this rule is no longer applicable, then solve the
instance in O(¢) time (by applying the algorithm behind Lemma . Since the
graph has O(¢) vertices, applicability of Branching Rule |2 can be tested in O(¢)
time. Thus, the overall running time is O(¢) times the number of search tree nodes.
Since each application of Branching Rule [2| creates two branches and reduces ¢

by at least two in each branch, the search tree has size O(2¢/2) = (’)(\/iz). The

‘
resulting running time is O(v/2 - £ 4 n). Furthermore, the factor of £ in the
running time can be removed by interleaving search tree and kernelization [22],
that is, by applying the kernelization algorithm of Theorem [7]in each search tree
node. O

5 Conclusion

In this paper, we focused on the GRAPH MOTIF, Li1ST-COLORED GRAPH MOTIF
and COLORFUL GRAPH MOTIF problems, and in particular their behavior in
terms of parameterized complexity, when the parameter is £ = |V| — |M]|, that
is, the number of vertices of G that are not kept in a solution. We left open the
parameterized complexity for parameter ¢ for LiST-COLORED GRAPH MOTIF
on trees, even when the vertex-color graph is a forest.

As mentioned in the introduction, parameterization by £ may be interesting
not only from a theoretic, but also from an applied point of view. Unfortunately,
for the practically relevant case of LiST-COLORED GRAPH MOTIF we have
obtained W/[1]-hardness even for very restricted color lists £. Moreover, as
noted by Fertin et al. [I4], a reduction of Rauf et al. [25] shows that the variant
of COLORFUL GRAPH MOTIF where G is directed and has edge weights is W/[1]-
hard with respect to £. However, the combination of £ with further structural
parameters related to the colors of C' led to tractability results [14] [15]. Tt would
be interesting to identify such color-related structure also for LisT-COLORED
GRAPH MOTIF.
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