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Abstract

We study algorithms that generate layouts of graphs with n vertices in
a square grid with ν points, where adjacent vertices in the graph are also
close in the grid. The problem is motivated by graph drawing and factory
layout planning. In the latter application, vertices represent machines,
and edges join machines that should be placed next to each other. Graphs
admitting a grid layout where all edges have unit length are known as par-
tial grid graphs. Their recognition is NP-hard already in very restricted
cases. However, the moderate number of machines in practical instances
suggests the use of exact algorithms that may even enumerate the pos-
sible layouts to choose from. We start with an elementary nO(

√
n) time

algorithm, but then we argue that even simpler exponential branching
algorithms are more usable for practical sizes n, although being asymp-
totically worse. One algorithm interpolates between obvious O∗(3n) time
and O∗(4ν) time for graphs with many small connected components. It
can be modified in order to accommodate also a limited number of edges
that can exceed unit length. Next we show that connected graphs have
at most 2.9241n grid layouts that can also be efficiently enumerated. An
O∗(2.6458n) time branching algorithm solves the recognition problem, or
yields a succinct enumeration of layouts with some surcharge on the time
bound. In terms of the grid size we get a slightly better O∗(2.6208ν) time
bound. Moreover, if we can identify a subgraph that is rigid, i.e., admits
only one layout up to congruence, then all possible layouts of the entire
graph are extensions of this unique layout, such that the combinatorial
explosion is then confined to the rest of the graph. Therefore we also pro-
pose heuristic methods for finding certain types of large rigid subgraphs.
The formulations of these results is more technical, however, the proposed
method iteratively generates certain rigid subgraphs from smaller ones.
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1 Introduction

Throughout this paper, a grid means any set of grid points, that is, points with
integer Cartesian coordinates in the 2-dimensional plane. Every grid defines a
grid graph where any two points with Euclidean distance 1 are joined by an arc.
We also call such points neighbors, whereas diagonal neighbors have Euclidean
distance

√
2. The discrete plane is the infinite grid consisting of all points with

integer coordinates.
We also deal with general graphs G = (V,E) which are undirected and have

no loops or parallel edges. To avoid confusion, we speak of vertices and edges
of G, but of points and arcs of a grid graph. We assume that the vertices are
distinguishable, informally, they have “names”.

An embedding of a graph into a grid is any injective mapping of its ver-
tex set into the set of grid points,. That is, distinct vertices must be mapped
to distinct points. A layout is an equivalence class of congruent embeddings,
i.e., embeddings that can be transformed into each other by translations, rota-
tions through multiples of 90 degrees, and reflections. Equivalently, a layout is
uniquely determined by the Euclidean distances between all pairs of vertices.
Note carefully that two layouts are considered different if they give some pair
of vertices (specified by their names) different Euclidean distances.

In an embedding or layout, an edge is called short if it has been mapped to
an arc, and long otherwise. In an ideal layout of a graph, all edges are short. A
partial grid graph is a graph that admits an ideal layout in the discrete plane.

Our problem is: Decide whether a given graph G is a partial grid graph,
and if so, construct an ideal layout. We may even want to enumerate all ideal
layouts. Similarly, a graph G and a finite grid may be given, and the problem
is to construct an ideal layout of G that fits in this grid, if possible. Unless
said otherwise, we always denote by n = |V | the number of vertices of the input
graph G = (V,E), whereas ν denotes the number of points in the grid, in cases
when the grid is finite. We can, trivially, assume n ≤ ν.

The decision problem is NP-complete even for trees with certain degree re-
strictions, see [7] and earlier work cited there. Actually, in [7] the complexity is
classified with respect to the vertex degrees that occur in the graph. A polyno-
mial but sophisticated algorithm for a very special case can be found in [20].

The problem is of interest in VLSI layout and graph drawing, however, we
were led to it by facility layout planning [17], which is the task of placing several
“resources” (machines, workplaces, etc.) in a factory hall so as to optimize
workflow and ergonomy. For recent surveys and extensive bibliographies we
refer to [2, 3, 8]. Research on layout planning has hitherto focused on various
optimization methods and heuristics. In the present paper we take a fresh view
and consider graph layouts in the grid as a graph-theoretic abstraction, and we
attack the problem by exact algorithms.

We may represent machines as vertices of a graph and the floor plan of the
factory hall as a grid. Two vertices are joined by an edge if the machines should
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be placed close to each other, e.g., because they carry out consecutive steps in
some production process, or the same worker must operate both machines.

It is natural to discretize the floor, with an appropriately chosen unit length,
and place machines only on grid points. In reality their positions may still be
adjusted, starting from such a discrete solution. The two directions parallel
to the walls are also the preferred moving directions for workers and materi-
als, whereas layouts with sinuous ways between machines may be perceived as
confusing. (One might also consider hexagonal grids, but the algorithmic prob-
lems and ideas would be similar, just with different details.) An issue is that
resources, i.e., machines with their surrounding work spaces, can have different
sizes and shapes. However, shapes are often limited to simple polygons with
axis-parallel sides, and we may allow rotations only through multiples of 90
degrees. Then, large resources are represented as subgraphs with prescribed
pairwise distances of their vertices. Thus we are still in the realm of graph
layouts in grids.

A related problem which is not addressed here is to place departments (rather
than machines) that have prescribed areas but flexible shapes, where certain
departments must be neighbored. In our problem, resources have fixed shapes,
and the the worst case for the number of layouts appears when every resource
occupies just one grid point.

In the envisioned application. the edge set of the graph is user-defined,
in that an expert decides which pairs of machines are most important to be
neighbors on the floor. Then, an algorithm presents some (or all) possible
layouts. They are further examined by ergonomic or even esthetic criteria. The
user may also interactively change the edge set, in particular, remove some edges
if the instance was over-constrained, and run the algorithm repeatedly.

We do not explicitly consider “negative” edges joining machines that should
be far apart (e.g., due to emissions). However, if an algorithm enumerates all
suitable layouts, one can afterwards choose one that also maximizes the lengths
of such edges.

2 Related Work and Overview of Contributions

Since grid graphs are planar graphs, the problem of finding an ideal layout in
a grid is a special case of the Planar Subgraph Isomorphism problem. The
result from [16, Theorem 5.14] implies an algorithm for finding an ideal layout
of a connected graph, that runs in O(nt+1 · ν) time, where t is the treewidth
of the grid. (We do not explain the notion of treewidth here, because we will
not use it, and this information is only some context to put our own results
into.) The mentioned result assumes a fixed maximum degree of the graph,
which is satisfied here, since graphs of degree larger than 4 cannot have an ideal
layout. The treewidth of planar graphs of ν vertices is bounded by O(

√
ν). (For

instance, 3.182
√
ν is shown in [10], and

√
ν×
√
ν grids have treewidth

√
ν.) This

yields a subexponential time bound of nO(
√
ν) ·O(ν).

The situation is different if the grid is not given. Of course, since the graph
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is finite, we may first restrict the discrete plane to some finite grid. But the
catch is that we may need ν = Θ(n2) points, since the “shape” of the layout
is not known in advance. (Finding a layout is the very problem to be solved.)
At least, we do not see an easy way to overcome this issue, except in special
cases like graphs with small diameter. Hence the above results do not seem to
imply a subexponential algorithm. Still we can design one from scratch, using
dynamic programming on a tree of recursive partitionings of the graph along
small, balanced, and geometrically simple separators, guessing where in the
grid these separators land. While the overall method is pretty much standard,
a difficulty is to devise such separators without knowing the layout. In Section 3
we resolve this problem by using a more complicated H-shaped separator and
achieve a time bound of O∗(210.25

√
n · n17.1

√
n+3 log2 n+2).

Recent work [18] provides a subexponential algorithm for the much more
general problem of finding and counting patterns in arbitrary planar graphs,
however, the algorithm is far more complicated, and the time bound has ad-
ditional logarithmic factors in the exponent. The result from [5, Theorem 7]
yields an algorithm for finding an ideal layout of a graph that is not neces-
sarily connected, in a finite grid. It runs, essentially, in 2O(

√
ν+n/ logn) · nO(1)

time. The result holds for the Subgraph Isomorphism problem in general, just
assuming that the graphs to be embedded have some excluded minor, which is
satisfied for planar graphs. The

√
ν term comes again from the treewidth of the

host graph (here: a grid). Moreover, the time cannot be improved under the
Exponential Time Hypothesis [5, Theorem 15].

However, for our purposes, these subexponential algorithms (including our
own) do not appear to be practical, for two main reasons: They are not well
suited for the enumeration of alternative layouts, and the big machinery of recur-
sive decomposition apparently makes them slower than even simple branching
algorithms on relevant instance sizes, due to large constants in the exponents of
their time bounds. Therefore we complement them with exponential branching
algorithms that are asymptotically slower but conceptually simpler, easier to
implement, and should run faster for realistic input sizes. They might even be
valuable for other applications with large graphs, as a hybrid approach may do
only a few steps of recursive partitioning and then switch to branching algo-
rithms to deal with the small subgraphs in the partitionings.

Note that the sheer number of layouts of connected graphs can be exponential
in the worst case, and even higher for disconnected graphs. Despite this fact, in
Section 4 we give an O∗(νc ·3g ·4h) time algorithm to enumerate all ideal layouts
of a graph in a finite grid, where c is a user-defined integer parameter, g is the
total number of vertices in the c largest connected components, and g + h = ν.
We can also efficiently cope with graphs whose layouts require a limited number
` of long edges, as shown in Section 5. We incur an extra time factor of nO(`).

While Sections 4 and 5 care about disconnected graphs, the following two
sections focus on improved branching for the enumeration of layouts of the con-
nected components, or of connected graphs. In Section 6 we improve upon the
obvious branching number 3: We show that connected graphs have at most
2.9241n grid layouts, and we enumerate them within the corresponding time
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bound. An O∗(2.6458n) time branching algorithm solves the recognition prob-
lem, or alternatively, it can be used to obtain a succinct enumeration of layouts
in O∗(2.7822n) time. Note that these time bounds are expressed in terms of the
graph size, taking advantage of connectivity of the graph. In the short Section 7,
however, we go back to finite grids again, to show that also limited space can
support branching. We get a slightly better O∗(2.6208ν) time bound, which
might be interesting when a connected graph must be embedded in a barely
larger grid. Practically more relevant than the marginally smaller branching
number is the fact that the used branching rules are much simpler.

But perhaps the biggest practical advantage of the simple approach to suc-
cessively add vertices and branch on their grid positions is that it facilitates the
early recognition of subgraphs that admit only a few ideal layouts, far below
the exponential worst-case number. In order to exploit such opportunities, it
is sensible to try and efficiently find increasing subgraphs of G with only few
ideal layouts. In the best case, these are nested sequences of rigid subgraphs,
i.e., such with only one ideal layout. Once we have built up some large rigid
subgraphs of G and computed their unique layouts, it only remains to extend
them by the remaining vertices of G. That is, the combinatorial explosion in
the NP-hard layout enumeration problem is then confined to the rest of G.

This leads to the second part of the paper. From Section 8 on we present
an efficient algorithm for detecting a rather general type of rigid subgraphs. (In
the following we spare the exact technical formulations of most results, in order
to avoid an overly long introduction.) A structural result in Section 8 might
be of independent interest: Trees, except the trivial one-edge graph, are never
rigid. This speeds up the search for rigid graphs. We list all rigid graphs up to
eight vertices and observe that they can be constructed in a specific way. This
suggests one main idea, followed in Section 9. There we show that a rigid graph
H extended by a path of new vertices that connects two vertices of H remains
rigid if this new path is the unique shortest path between its endpoints in the
grid without the embedded graph H. Since unique shortest paths can be found
in polynomial time, this extension procedure for rigid graphs is efficient. Next,
this gives rise to a more general framework presented in Section 10, where we
suppose that some fast procedure is available, that extends a rigid subgraph of G
to a larger rigid subgraph or reports that it cannot find a larger one. We derive
a general time bound for generating all rigid subgraphs of G that are reachable
by such extensions. In Section 11 we make this mechanism more powerful, in
that we capture a larger class of rigid graphs without increasing the overall
time bound. Specifically, besides extensions we also use pairwise unions of rigid
graphs. The time analysis uses a potential function argument.

Rigidity of graphs with given edge lengths, with respect to embeddings in
the plane or higher-dimensional Euclidean space has been studied intensively
(see, e.g., [1, 4, 9, 14, 15, 19]), but analogous concepts for embeddings into grids
are novel, to our best knowledge. We remark that also [9] deals with a different
type of problem, despite the title.

Section 12 concludes the paper with some discussion of a few aspects and
possible directions of further research.
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Terminology remarks. We use the O∗ notation that suppresses polynomial
factors, which allows us to focus on the superpolynomial parts and to skip some
less interesting data structure details. A problem instance is a pair of a graph
and a grid (in which we want to embed the graph). The word component refers
to a connected component of a graph, that is, we omit the word “connected” for
brevity. We say that a vertex is decided if we have already mapped it irrevocably
to some grid point, during the construction of a layout.

3 A Subexponential Algorithm

Theorem 1 We can recognize in O∗(210.25
√
n ·n17.1

√
n+3 log2 n+2) time whether

a given graph G has an ideal layout in the discrete plane.

Proof: We can assume G to be connected, and otherwise solve the problem on
each connected component. For a connected graph G, the problem is equivalent
to finding an embedding into the n× n grid.

In the following, a row (column) means a horizontal (vertical) line of grid
points. Suppose that some embedding of G is already given. We introduce
the following concepts for analysis purposes. We consider all columns from the
leftmost to the rightmost column that contain any vertices, and we add one
more column (not containing vertices) to the left and to the right. A column
with at most

√
n vertices is called sparse. (In particular, the two extra columns

are sparse.) A column with more than
√
n vertices is called dense. Two sparse

columns are called consecutive if only dense columns are between them. Now
let (L,R) be the leftmost pair of consecutive sparse columns. If more than n/2
vertices are to the right of R, then let L := R, and let R be the next sparse
column. This new pair (L,R) is still a consecutive pair, with at most n/2
vertices to the left of L. By induction we conclude that two consecutive sparse
columns L and R exist, with at most n/2 vertices to the left of L and to the
right of R, respectively.

Consider the stripe between L and R. By s similar argument as before, there
exists a row M within this stripe, such that at most n/2 vertices are above and
below M , respectively. Moreover, M has a length at most

√
n, since otherwise

there would be more than n vertices in the stripe, as it consists of dense columns
only.

Altogether, there exist three lines forming an “H”, each containing at most√
n vertices, that together partition the grid into four subgrids none of which

hosts more than n/2 vertices. We call it a H-shaped separator. This gives rise
to an algorithm as described below.

We generate all possible H-shaped separators and place a set S of vertices
there. We decide on the position of the separator in the n × n grid (including
the length of M) and on the vertices placed on the separator. There are at
most n3 ways to place the separator in the grid. On each of L and R we can
place vertices in at most n2

√
n ways, since we can choose both a vertex and a

grid point, at most
√
n times. Row M can be populated with vertices in at
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most n
√
n ways. Together we have at most n5

√
n+3 ways to place a vertex set S

on a separator. For each of them we also decide in which of the four subgrids
we place every component of G − S. This step will be detailed in the next
paragraph. Then, we further divide the subgrids and the allocated subgraphs
recursively and independently.

Let G′ denote the subgraph allocated to any subgrid, prior to the recursive
partitioning step, with a separator S. Every component of G′ − S must be
placed entirely in one of the four resulting smaller subgrids. We distinguish two
types of components of G′.

(i) Every component C of G′ not intersected by S is still a component of
G′ − S, and since the entire graph G was connected, C contains at least one
decided vertex, placed at the border of the current subgrid. In particular, it is
clear to which smaller subgrid C belongs.

(ii) Let U be the union of all components of G′ that intersect S. Consider
any component C of U−S. Observe that some vertex c ∈ C is adjacent to some
vertex s ∈ S. Hence there exist at most 6

√
n such components C, namely at

most two for every vertex in S. But whenever two components are adjacent to
the same s ∈ S, they must end up on opposite sides of the line of the H-shaped
separator that contains s. It follows that the subgrids for all components C in
U can be chosen in at most 23

√
n ways. Once we have chosen the subgrid C

belongs to, c becomes a decided vertex.
For every recursion step we conclude as above that we can divide any sub-

grid in at most 23
√
k · n5

√
k+3 ways, where k denotes the number of vertices in

the considered subgrid. (The base n can be improved, but this would terribly
complicate the calculations and improve the final bound only marginally.)

We obtain a partitioning tree, with layers of tree nodes that have, alternat-
ingly, “many” children (the partitionings by separators) and up to four children
(the resulting smaller instances). Finally we do dynamic programming bottom-
up in this tree, where the tree nodes alternatingly serve as AND and OR gates:
When all sub-instances, separated by some set S, have a layout, then we can
combine them to some layout of the instance.

It remains to bound the number of leaves of the partitioning. Since the
maximum number k of vertices of the subgraphs decreases at least by a fac-
tor 2 upon every splitting, we have at most log2 n recursion levels, and the
exponents of both 2 and n (containing

√
k) form a geometric series with quo-

tient
√

1/2 = 1/
√

2, which has the sum 2 +
√

2. Together this yields a fac-

tor 23(2+
√
2)
√
n · n5(2+

√
2)
√
n+3 log2 n. Since each subgrid is split into 4 smaller

ones, the corresponding tree nodes contribute another factor no larger than
4log2 n = n2. Numerical calculation finally yields the bound. �

4 Enumerating Layouts of Disconnected Graphs

We begin with a trivial branching algorithm that enumerates all layouts of a
connected graph in O∗(3n) time: Initially, place some vertex on some grid point.
Then, successively add some vertex that is adjacent to some decided vertex, and
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place it on a grid point, in all (at most 3) possible ways. It is also easy to see that
the number of different layouts of a connected graph can, in fact, be exponential.
(As an example, consider paths of n vertices.) We stress that the bounds depend
on the vertex number n, but not on the grid size ν, and this basic algorithm
can be run in the discrete plane.

For disconnected graphs, the number of layouts can be superexponential,
even in a finite grid: In the extreme case, if the graph consists of n isolated
vertices and ν = n, there are n! different layouts. However, it would be silly to
explicitly list them, as it is clear that isomorphic components can be permuted
arbitrarily. A more interesting question is whether we can enumerate, in single
exponential time in ν, all “essentially different” layouts in a finite grid, i.e., up
to automorphisms (which can be permutations of isomorphic components and
automorphisms within the components). We give an affirmative answer, with a
worst-case base as small as 4. In order to take advantage of the even smaller
base 3 for connected graphs, we give a refined result where large and small
components are treated differently. In the following theorem, the number c is a
free parameter, and the best choice of c depends on the sizes of the components.

Theorem 2 Given a grid, a graph G, and an integer c, let g denote the total
number of vertices in the c largest components of G (where ties are broken
arbitrarily), and h := ν−g. We can, in O∗(νc ·3g ·4h) time, enumerate all ideal
layouts of G that fit in the grid, up to automorphisms of G.

Proof: We first generate all ideal layouts of the c largest components of G (in
the discrete plane, not yet caring about their placements in the given grid).
This costs O∗(3g) time altogether.

For each of the c largest components we select an ideal layout and place it
on the grid. This results in at most νc · 3g valid partial solutions. Each of them
leaves a grid of h yet unused points, that must host the small components (i.e.,
all components except the c largest).

Since a grid has maximum degree 4, a grid graph with h points has at most
2h arcs. For every arc we decide whether it shall be used to map some edge of
G on it, or not. We have at most 22h = 4h choices that we call prepared grids.

For each of the, at most νc · 3g · 4h, prepared grids we finish up as follows.
We temporarily delete the unused arcs and determine the components of the
remaining partial grid graph P with h points. For every pair of a small com-
ponent of G and a component of P we test for graph isomorphism (and in the
positive case, establish a corresponding bijective mapping of points and ver-
tices). Since partial grid graphs are planar, this can be done in polynomial time
altogether [13]. This also partitions the set of components, both in G and in P ,
into isomorphism classes.

Finally, a solution exists if and only if, for every class of isomorphic small
components of G, there exist at least as many isomorphic components of P .
In this case, every injective mapping of the former into the latter isomorphism
classes yields a solution, and the isomorphisms also yield, for every small com-
ponent of G, a layout which is congruent to the component of P it is mapped
to. �
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We mention a variant of the algorithm from Theorem 2 that does not need
a planar isomorphism test as an external routine. In the beginning we may
generate all ideal layouts of all components of G in O∗(3n) time. Furthermore,
we observe that every small component has at most n/c vertices. Thus, the list
of ideal layouts of all small components has a total length O∗(3n/c). For every
component of any prepared grid we may therefore find all congruent layouts of
small components of G directly in O∗(3n/c) time, by traversing this list. This is
no longer polynomial but, for instance, for c :=

√
n, the factors nc = 2

√
n log2 n

and 3n/c = 3
√
n are subexponential, such that the exponential part of the time

bound is still 3g · 4h. Another difference to the original algorithm is that the
automorphisms of every small component are now explicitly listed (via the con-
gruent layouts of that component), however, their number is subexponentially
bounded, as opposed to the permutations of isomorphic components.

5 Inserting Long Edges

Assume that the input graph G is not exactly a partial grid graph but admits
a layout with at most ` long edges. In this supplementary section we show that
the enumeration result from Section 4 can be extended to this case, at cost of
an additional factor nO(`) in the time bound. Hence, as long as ` = O(n/ log n),
the time bound from Section 4 even remains single exponential. A possible way
is the following.

A partial grid graph with n vertices has at most 2n edges, due to the max-
imum degree 4. A graph capable of a layout with at most ` long edges has
therefore at most 2n + ` edges. In G we may select ` edges that we allow to
become long, in at most (2n + `)`/`! = nO(`) ways. For each of these choices,
let G′ be the graph after deletion of these selected edges.

We proceed with G′ as in Theorem 2, with a minor modification: We must
separately treat the components of G′ that are incident to long edges, as their
positions determine the placements of the long edges. But there exist at most
2` such components, and we may first decide on their positions in the grid
(similarly as we did for the c largest components in Theorem 2). This only
incurs another nO(`) factor.

Some further remarks are in order:
After enumerating the layouts we may want to pick some that minimize some

given monotone function of the edge lengths. Since the vertices incident to long
edges become decided vertices, this also works with our succinct enumerations
up to automorphisms.

If a bound ` is not given in advance, and we wish to minimize `, we may
run the algorithm for ` = 0, 1, 2, . . . until success. The last round dominates the
time complexity.

The nO(`) factor is very generous, as the worst case of getting 2` components
for every choice of long edges is unlikely. Moreover, further heuristics can easily
restrict the family of subsets of the ` candidate edges: Forbidden subgraphs of
partial grid graphs include odd cycles (as they are not bipartite) and graphs with
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too many vertices within some radius (as they cannot fit in a grid). Breadth-
first search around every vertex can quickly identify small forbidden subgraphs,
and clearly, at least one edge of every forbidden subgraph must be long.

6 Improved Branching for Connected Graphs

As we argued earlier, a connected graph has, up to translations and rotations,
at most 3n ideal layouts that can be enumerated in O∗(3n) time, but it is
worthwhile to reduce the base 3, and hence the 3g factor in Theorem 2.

Theorem 3 A connected partial grid graph G with n ≥ 6 vertices has at most
3
√

25
n
< 2.9241n ideal layouts, up to translations and rotations.

Proof: We say that a path P = (vp, . . . , v1, v0) of length p ≥ 1 is pendant if
v0 has degree 1, each vertex vi, 0 < i < p, has degree 2, and vp has a degree
either equal to 1 or larger than 2. Let P ′ = (vp−1, . . . , v1, v0). Note that G−P ′
remains connected. Independently of that, G has always some vertex v such
that G− v remains connected.

If G has minimum degree 2, then let v be such a vertex. Since v has at least
2 neighbors, to every ideal layout of G− v we can add v in at most 2 ways.

If G has minimum degree 1, then let P be some pendant path. If p ≤ 3,
then vp has at least 2 neighbors in G− P ′ (since n ≥ 6). Thus, given any ideal
layout of G− P ′, we can add vp−1 in at most 2 ways. Consequently, P ′ can be
appended to G − P ′ in at most 2 · 3p−1 ways, for p = 1, 2, 3. Note that 2,

√
6,

3
√

18 are all smaller than 3
√

25.
If p ≥ 4, then, given any ideal layout of G − {v2, v1, v0}, we can append

(v2, v1, v0) in at most 25 ways: v2 is a neighbor of v3 which has already another
neighbor v4, thus we can append the mentioned 3 vertices in 33 ways, but in 2
of them, v0 would collide with v4.

From these cases, induction on n yields the assertion. �

Theorem 3 can be turned into an O∗(2.9241n)-time algorithm, which can also
replace the basic O∗(3n)-time algorithm in Theorem 2. However, the base can be
further improved significantly by doing branching steps only until polynomial-
time solvable residual problem instances remain. This requires some refined,
yet simple and local branching rules. To avoid a lengthy and artificial theo-
rem statement, the following result is formulated for the recognition problem
only, but the proof provides more, and we will comment on the implications
afterwards.

Theorem 4 We can recognize in O∗(
√

7
n
) = O∗(2.6458n) time whether a given

connected graph G has an ideal layout in the discrete plane.

In the remainder of this section we prove Theorem 4. In the algorithm
description, the phrase “branch on” means to do the indicated step in all possible
ways and to generate the resulting residual problem instances.
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Branching algorithm.

First we map one edge to an arc. Its two vertices are marked as placed.
Vertices are marked as active if they are placed on the grid and may be adjacent
to further, not yet placed vertices. We iterate the following steps until no active
vertices exist any more. Since G is connected, all vertices of G are then placed.

We arbitrarily pick some active vertex u and some vertex v being adjacent
to u but not yet placed. The following cases can appear.

(1) If v (as specified above) does not exist, we mark u as passive. Henceforth
we assume that some v exists.

(2) If v is adjacent to yet another placed vertex besides u, we branch on the
grid point of v, and we mark v as placed and active. Henceforth we assume
that u is the only placed vertex adjacent to v.

(3) If v is adjacent to at least 2 not yet placed vertices w and w′, we branch on
the grid points of v, w,w′, and we mark all these vertices as placed. We
mark v as passive and the other newly placed vertices as active.

(4) If v is adjacent to exactly one not yet placed vertex w, we branch on the
grid point of w (rather than v). If w gets Euclidean distance 2 from u, then
obviously v must be placed between u and w. If w becomes a diagonal
neighbor of u, we mark v as undecided and leave it open on which of the
2 possible points we will place v. In either case we mark v as passive and
w as active, and we mark them both as placed (even if v is undecided).

(5) If v is adjacent to no further vertex (v has degree 1), we mark v as placed,
undecided, and passive.

Analysis of the branching number.

We examine all possible cases regarding the active vertex u and its selected
neighbor v processed in a branching step. Sometimes we work with coordinates,
where (0, 0) denotes the point of u. A placed vertex is decided if it is not
labeled undecided. In particular, u is always decided (since undecided vertices
are always passive), Note that at least one neighbor or diagonal neighbor of the
point of u is already occupied by another decided vertex. In cases (3) and (4)
we distinguish between these two subcases. No branching happens in cases (1)
and (5).

(2) In this case v can be placed on at most 2 possible points, which yields a
branching number at most 2.

(3.1) Some neighbor of (0, 0) is occupied, say (−1, 0). Then we can place v at
one of (1, 0), (0,−1), (0, 1), and place w and w′ in 3 · 2 = 6 ways. These
are together 18 ways. Hence the branching number is at most 3

√
18 <

√
7

(since 182 = 324 < 343 = 73).



444 P. Damaschke Enumerating Grid Layouts of Graphs

(3.2) Some diagonal neighbor of (0, 0) is occupied, say (−1,−1). If we place v
at (−1, 0) or (0,−1), then we can place w and w′ in only 2 ways. If we
place v at (1, 0) or (0, 1), then we can place w and w′ in 6 ways. These
are together only 16 ways.

(4.1) Some neighbor of (0, 0) is occupied, say (−1, 0). Then w cannot be placed
on (−2, 0).

(4.2) Some diagonal neighbor of (0, 0) is occupied, say (−1,−1). Then, trivially,
we cannot occupy it by w, too.

Thus, in case (4) we can place w on at most 7 points. Hence 2 new vertices,
v and w. are placed in at most 7 ways. This yields a branching number at
most

√
7 here, too. It is correct to include v already in the calculation of the

branching number, even if v is undecided, provided that we can decide the points
of all undecided vertices afterwards in polynomial time. We study this matter
below.

From now on we consider any output generated by the branching algorithm.
That is, decided vertices are already mapped to specific grid points, whereas
undecided vertices are not.

Undecided vertices of degree 2.
Consider any undecided vertex v of degree 2, and let u and w be its adjacent

vertices, according to the notation used above. Then u and w are decided ver-
tices whose grid points are diagonal neighbors. Let dv denote the other diagonal
of the square (4-cycle) of the grid that comprises u and w. The candidate points
for v are the two end points of dv. Whenever one end point of dv is already
occupied by some vertex, we place v at the other end point and mark v as de-
cided. This step is iterated exhaustively. For placing the remaining undecided
vertices of degree 2, we use an auxiliary graph:

Definition 5 For the given graph G and for the considered layout of the decided
vertices, we define a graph D as follows. Its edges are the diagonals dv, for all
undecided vertex v of degree 2, and its vertices are the end points of all the
diagonals dv.

Let p and q denote the end points of any diagonal dv. When we decide to
place v at p (q), we turn the undirected edge pq of D into a directed edge −→pq
(−→qp), in other words, we orient the edge dv of D away from the point of v.

Thus, the possible placements of the undecided vertices of degree 2 corre-
spond exactly to the orientations of the edges of D where every vertex has at
most one outgoing directed edge. We call them unique-exit orientations.

A connected graph is unicylic if it has exactly one cycle, or equivalently, it is
a cycle, possibly with trees attached. For brevity, a tree component or unicyclic
component of a graph is a component being a tree or unicyclic, respectively.

Lemma 1 A graph D has a unique-exit orientation if and only if every compo-
nent of D is a tree or unicyclic. Furthermore, all unique-exit orientations are
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obtained as follows. In every tree component, pick an arbitrary root and direct
all edges towards the root. In every unicyclic component, choose any of the two
orientations of the cycle and direct its edges accordingly, and direct all edges of
the attached trees towards the cycle.

Proof: The described orientations are obviously unique-exit. Conversely, con-
sider an arbitrary unique-exit orientation.

Let r be any vertex without outgoing edge, and let R be the subgraph
containing r and all adjacent vertices. All edges incident to r are directed
towards r, hence no further edges exist between the vertices of R. In particular,
R is a tree where all edges are directed towards r, and r is the only vertex
without an outgoing edge. Next, consider any such tree R and add another
edge

−→
st from D, with s ∈ R or t ∈ R. The case s ∈ R is impossible, since s 6= r,

and s has already an outgoing edge. Hence only t ∈ R, and no other edge −→su
or −→us with u ∈ R can exist. By an inductive argument, the component of D
containing r must be such a tree.

Finally consider any component where every vertex has exactly one outgoing
edge. Starting in any vertex and following a directed path we find a directed
cycle C. Let r be any vertex on C. Since r has an outgoing edge in C, all
other incident edges are directed towards r. In particular, C has no chords (i.e.,
additional edges joining non-consecutive vertices). By the same argument as
above, all further edges must form trees attached to C. �

Undecided vertices of degree 1.
Let p be any grid point that is neither occupied by a decided vertex nor

contained in D. We consider any such p as a tree component consisting of just
p and without edges. This allows a convenient formulation of the remaining
problem of placing the undecided vertices v of degree 1. Recall that every such
v is adjacent to exactly one vertex u of G, u is decided, and the candidate points
for v are the free neighbors of the point of u.

We define another auxiliary graph B which is bipartite: The vertices on its
two sides represent the undecided vertices v of degree 1, and the tree components
T , respectively. Any v and T are adjacent in B if and only if T contains some
candidate point where v may be placed.

Every tree component T can be used by at most one vertex v. This is trivial
if T is a single point, and for other T this follows from Lemma 1 as said above.
That is, the possible placements of the undecided vertices of degree 1 correspond
exactly to the matchings in B that cover all vertices v. As is well known, the
bipartite maximum matching problem can be solved in polynomial time [12].
(We can also use the plain Ford-Fulkerson algorithm which runs here in O(n2)
time, since the degrees of vertices on one side of B are bounded by 3, such that
B has only O(n) edges.)

Overall algorithm.
To be explicit, we summarize the resulting overall algorithm. First run the

branching algorithm, leaving some vertices undecided in every branch. For every
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placement of the decided vertices continue as follows. Construct the graph D.
In every unicyclic component C, choose (arbitrarily) one unique-exit orientation
and place the undecided vertices of G therein according to Definition 5. Next,
find some maximum matching in the graph B. Place every undecided vertex v
in the tree component T assigned by that matching, orient T towards the point
of v, and place the remaining undecided vertices according to Definition 5.

We see that also this algorithm is enumeration-based: It enumerates in
O∗(2.6458n) time certain partial layouts, and for placing the remaining un-
decided vertices, the components of the auxiliary graph D are treated indepen-
dently. If the input graph G happens to have minimum degree 2, this is even a
succinct enumeration of all ideal layouts of G. A detail is that the set of grid
points occupied by every unicyclic component is uniquely determined.

To get such a succinct enumeration in the general case, we must also branch
on the yet undecided vertices v of degree 1. For every v with at most 2 possible
positions, this can be trivially done with branching number 2. Every v with
3 possible positions is adjacent to only one vertex which has degree 2. By
simple combinatorics, a connected graph of maximum degree 4 has at most
0.4n vertices v of this kind. (It may be possible to prove a sharper bound in
partial grid graphs.) In the worst case, all vertices of degree 1 are appended with

branching number 3. This yields a time bound O∗(
√

7
0.6n ·30.4n) = O∗(2.7822n).

7 Connected Graphs Filling a Grid

Theorem 6 Given a grid and a connected graph G, we can enumerate, in
O∗(2.6208ν) time, all ideal layouts of G that fit in the grid.

Proof: We first place one edge, in O(ν) ways, and mark its two vertices as
active. Then we pick any active vertex u, branch on the positions of all its
remaining neighbors, mark them as active, and mark u as passive. This step
is iterated until all vertices are passive. Since G is connected, G is then placed
entirely. This is the whole algorithm.

For the analysis, let w be some positive constant to be fixed later. In the
grid graph, we give every point the weight w and every arc the weight 1. Since
the grid has ν points and at most 2ν arcs, its total weight is at most (w + 2)ν.
We say that a point is settled if some vertex is placed on it. We say that an arc
is settled if either some edge of G is placed on it, or we have decided not to use
this arc for hosting any edge.

Whenever the algorithm processes an active vertex u, we decide in every
branch on all neighbors of u, hence an incident arc not used now will never
be used later on. That is, while we settle only the points where we place the
remaining neighbors of u, we settle all arcs incident to the point of u.

We use the following notations: u is the active vertex processed in a step, k
is the number of neighbors of u yet to place, A is the number of ways to place
them. and m is the number of yet unsettled arcs incident to u (which is also the
number of free neighbors of the point of u in the grid). The branching number
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of a step is then A1/(kw+m). This leads to the following cases and branching
numbers:

k = 3, m = 3 =⇒ 61/(3w+3); k = 2, m = 3 =⇒ 61/(2w+3);
k = 1, m = 3 =⇒ 31/(w+3); k = 2, m = 2 =⇒ 21/(2w+2);
k = 1, m = 2 =⇒ 21/(w+2); k = 1, m = 1 =⇒ 1.
Clearly, for any fixed w, the maximum can only be some of 61/(2w+3),

31/(w+3), and 21/(w+2). Since points and arcs of a total weight no larger than
(w+2)ν must be settled, the base in the time bound is at most the maximum of
6(w+2)/(2w+3), 3(w+2)/(w+3), and 2(w+2)/(w+2). The latter number is simply 2,
and by choosing w := 5.127, numerical calculation yields the claimed branching
number. �

8 Rigid Partial Grid Graphs

We call a partial grid graph G rigid if G admits exactly one ideal layout, up to
translations, reflections, and rotations through multiples of 90 degrees. In this
case we call it the unique layout of G. Note that “rigid” implies “partial grid
graph” in our terminology. Remember that the vertices have individual names,
that is, we do distinguish between layouts that are congruent but place some
vertices at different distances, due to automorphisms of the graph. For instance,
a 4-cycle is rigid, but a 4-cycle with a 5th vertex of degree 1 attached has two
different ideal layouts and is therefore not rigid.

Given the motivation from Section 2, we aim in the following at efficient
algorithms for finding large rigid subgraphs of a given graph G, or at least
certain types of rigid subgraphs. Due to the known NP-hardness of partial
subgraph recognition, it is important that such algorithms do not rely on the
assumption that G is a partial grid graph. Rather, they have to identify rigid
(partial grid) subgraphs of any input graph G.

To get a first idea how rigid graphs look, let us enumerate the smallest ones.
For this purpose it is helpful to exclude some classes of graphs that cannot be
rigid. The following fact might also be interesting in its own right.

Theorem 7 No tree with more than two vertices is rigid.

Proof: Assume that G is a tree with more than two vertices, and G is rigid.
Consider its unique layout. We work with an x−y coordinate system. Without
loss of generality, the diagonal y = x contains at least one vertex u of G, and
no vertex is in the halfplane above the diagonal. (Otherwise we can move the
embedding of G accordingly.) Since all neighbors of u are below the diagonal,
u has degree 1 or 2.

Assume that u has degree 2, and let v and w denote the two neighbors
of u. The tree G without u consists of two subtrees Gv and Gw, containing
v and w, respectively. We reflect one of them, say Gw, through the diagonal
y = x. Reflection through a diagonal maps grid points to grid points. The
distance of u and w remains 1. Furthermore, vertices of Gw on the diagonal
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Figure 1: All rigid graphs with up to 8 vertices.

do not change their positions, and all vertices of Gw below the diagonal end up
above the diagonal, where they cannot collide with vertices of Gv. Finally, the
distance of v and w changes from

√
2 to 2. Hence G is another valid layout.

This contradicts our assumption that G is rigid.

It follows that u has degree 1. Without loss of generality, u is on the point
(0, 0), and its unique neighbor v is on (1, 0). Since G is a connected partial grid
graph with more than two vertices, not all vertices other than u can be on the
straight line y = −x+ 1 going through v. In other words, there exists a vertex
on some grid point (x, y) 6= (0, 0) with y 6= −x + 1. Note that the Euclidean
distances from (x, y) to (0, 0) and (1, 1) are different.

Assume that no vertex is on the point (1, 1). Then we can place u alter-
natively on (1, 1). Since this changes at least one Euclidean distance, we have
got another layout, contradicting again the rigidity of G. Hence there is some
vertex u′ on (1, 1). We have already seen that all vertices on the diagonal y = x
have degree 1. Assume that the unique neighbor of u′ is v on (1, 0). Then we
can swap the positions of u and u′, and exactly as above this yields another
layout and a contradiction. It follows that the neighbor v′ of u′ is on (2, 1).

To summarize, we have shown that, for any vertex of degree 1 on the diagonal
y = x that has its unique neighbor to the right, there exists another such pair
of vertices one row higher. But this yields an infinite sequence of vertices, and
this final contradiction concludes the proof. �

Theorem 7 says that every rigid graph must contain a cycle. Using this fact
and simple case inspections we see that the list of rigid graphs with up to 8
vertices in Figure 1 is complete.

We notice in Figure 1 that some rigid graphs are obtained from smaller ones
by adding new vertices of degree 1. More precisely, we call an edge uv a hair if
u has degree 3 and v has degree 1. Then we have: If H is rigid, u has degree 3
in H, and in the unique layout of H, one of the four neighbors of the grid point
of u is still free, then we can add a hair uv (with a fresh vertex v that was not in
H) and still obtain a rigid graph. This is obviously true, since v can be added
to the layout of H in only one way. We call this operation a hair extension of
the rigid graph H.

We also notice a second, much more powerful extension operation: Consider
again a rigid graph H and its unique layout. Informally, let u and v be two
vertices of H, with the property that there exists exactly one shortest u − v
path P in the grid without the points occupied by H. Then we can attach P
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to H and obtain a graph which is still rigid, since P can be added to the layout
of H in only one way. We call this operation a unique shortest path (USP)
extension of the rigid graph H. Interestingly, all graphs in Figure 1 (apart from
the trivial graph with 2 vertices) can be obtained from a 4-cycle by a series of
hair and USP extensions. More generally, one can give an intuitive explanation
why probably “most” rigid graphs are built up in this way. In any case, the
above operations yield a rich class of rigid graphs.

This suggests the following method for finding certain rigid subgraphs of
G, of arbitrary sizes: For any rigid subgraph of G that is already detected,
we compute all possible hair and USP extensions, then we check whether the
corresponding hairs and paths really exist in G, and if so, we obtain larger
rigid subgraphs. The crucial point is that unique shortest paths can be found
efficiently. In the following sections we develop this idea in detail.

Some more graph-theoretic terminology will be needed. Symbol G[U ] de-
notes the subgraph of G = (V,E) induced by a subset U ⊆ V of vertices. The
union of two induced subgraphs G[X] and G[Y ] is defined as G[X ∪ Y ].

An u − v path is a path whose ends are the vertices u and v. The length
of a path is the sum of its edge lengths, or the number of edges, if the edges
have unit length. The distance of vertices u and v in a graph is the length of a
shortest u− v path. If we mean instead the Euclidean distance of two vertices
placed in the grid, we say this explicitly.

The single-source shortest path problem in graphs with n vertices and m
edges with positive lengths can be solved by a variant of Dijkstra’s algorithm
in O(m + n log n) time [11]. If all edges have unit length, Dijkstra’s algorithm
becomes breadth-first search (BFS) and needs only O(m) time.

Recall that grid points at Euclidean distance 1 are neighbors in the grid. We
call a set of points in the plane collinear if all its points are on one straight line.
Without risk of confusion we may identify vertices of an embedded graph with
the grid points they are mapped to.

9 Unique Shortest Path Extensions

Let H be some rigid graph with h vertices. We fix one embedding of H in the
grid. Let H be the graph defined as follows: Its vertices are all grid points,
and any two points with Euclidean distance 1 are joined by an edge, unless
both points are occupied by vertices of H. Informally, H is the entire grid but
without any edges between the vertices of H. This is an infinite graph, but only
some finite subgraph around H will be relevant later on. We also remark that
H is uniquely determined up to isomorphism.

Given any graph G = (V,E) and a set T ⊂ V of terminal vertices, we say
that a pair {u, v} of distinct terminal vertices u, v ∈ T is tight if, among all
u− v paths whose internal vertices are not in T , exactly one path has minimum
length. For brevity we call it the unique shortest u − v path, when T is clear
from context.
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Lemma 2 Let H be a rigid graph, and let u and v be two vertices of H. Suppose
that {u, v} is a tight pair in H, with the vertex set of H as the set of terminal
vertices. Let p denote the length of the unique shortest u− v path in H. Then,
the graph H extended by some u− v path P of length p, whose internal vertices
are not in H, is still a rigid graph.

Proof: Let Q denote the unique shortest u − v path in H. The only possible
way to add P to the unique layout of H is to follow the path Q, since all other
u− v paths in H whose interval vertices are not in H are longer. This implies
rigidity. �

As already mentioned, we call the extension of a rigid graph by a path,
as described in Lemma 2, an USP extension. Suppose that we have already
computed the tight pairs {u, v} of vertices of H in H, and the lengths of their
unique shortest u − v paths. Then we also know all possible USP extensions
of H, that is, we know the pairs {u, v} and the lengths of the u − v paths to
attach. In the following we show how to compute this information. A variant
of Dijkstra’s shortest path algorithm yields:

Theorem 8 Suppose that we are given a graph with n vertices and m edges,
positive edge lengths, and a set T of terminal vertices. For any fixed vertex
u ∈ T , we can compute all tight pairs {u, v} and the lengths of their unique
shortest u− v paths, in O(m + n log n) time. In graphs with unit edge lengths,
this takes only O(m) time. Moreover, the unique shortest u − v paths form a
tree rooted at u.

Proof: First we run Dijkstra’s algorithm with source u, in the graph where
all other terminal vertices and their incident edges are removed. We say that
a pair {u, v} (where v /∈ T ) is firm if there exists exactly one shortest u − v
path in this graph. Let `(u, v) denote the given length of the edge uv (if it
exists), and let d(u, v) denote the distance of u and v in the mentioned graph.
Observe that {u, v} is firm if and only if there exists a unique vertex w with
d(u, v) = d(u,w) + `(w, v), and moreover, either u = w or {u,w} is firm. Based
on this equivalence we can mark the firm pairs during execution of Dijskstra’s
algorithm. Also remember that Dijskstra’s algorithm is just BFS in the case of
unit edge lengths.

Finally we do the following separately for any single terminal vertex v ∈ T :
We re-insert v and its incident edges. Similarly as above, {u, v} is tight if and
only if there exists a unique vertex w with minimum sum d(u,w) + `(w, v), and
moreover, either u = w or {u,w} is firm. Furthermore, this minimum sum is
then the length of the unique shortest u− v path without internal vertices in T .
After checking whether {u, v} is tight, we remove v again and proceed to the
next vertex of T . This costs O(m) additional time in total.

The unique shortest paths form a tree, since every vertex v such that {u, v}
is firm has a unique predecessor w. �

Let H
∗

be the finite subgraph of H, consisting of the smallest axis-parallel
rectangle that encloses the embedded graph H, plus a margin of one line of grid
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points at all four sides. Remember that H (and thus H
∗
) does not contain any

edges between the vertices of H, which are our terminal vertices.

Lemma 3 The same pairs {u, v} of vertices of H are tight in H
∗

and in H,
and for each of them, the length of the unique shortest u − v path is the same
in both graphs.

Proof: Let u and v be two vertices of H, and let Q be any path from u to v in
H, whose inner vertices are not from H. If Q leaves and re-enters H

∗
, then we

can obviously replace the sub-path of Q outside H
∗

with a shorter path along
the border of H

∗
. This contradiction shows that any shortest u− v path must

be entirely in H
∗
. Both assertions follow. �

Since H
∗

has O(h2) vertices and edges, we can now compute all tight pairs
and their path lengths in O(h·h2) = O(h3) time, using Theorem 8 and Lemma 3.

Next, let G[U ], U ⊂ V , be some induced subgraph of our input graph
G = (V,E), and suppose that G[U ] is rigid, and its unique layout is already
computed. Let GU be the graph obtained from G by deleting all edges (but not
the vertices) of G[U ]. Let H := G[U ] and h := |U |. We compute all possible
USP extensions of H in O(h3) time, in the way shown above. For every tight
pair {u, v} of vertices of H we check whether {u, v} is tight also in GU , with
U as the set of terminal vertices. If this is the case, and if the unique shortest
u−v path in GU has the same length as in H

∗
, we can attach this path to G[U ]

and obtain a larger subgraph of G that is still rigid, due to Lemma 2.
For the sake of completeness we remark that the possible “negative” cases

are: {u, v} is not tight in GU , or it is tight, but the unique shortest u− v path

is longer than in H
∗
. In these cases we cannot apply an USP extension to G[U ]

at the pair {u, v}. If the u − v path in GU is shorter than in H
∗
, or if several

shortest u− v paths exist in GU , then we can conclude that G was not a partial
grid graph.

All tight pairs of vertices of U and the lengths of their unique shortest paths
in GU can be computed in O(hn) time using Theorem 8 again, since GU has
O(n) vertices and edges, or G is not a partial grid graph. With h ≤ n, this
shows altogether:

Theorem 9 Given a graph G, a rigid induced subgraph G[U ], and its unique
layout, we can compute all rigid subgraphs of G that are USP extensions of G[U ]
(or recognize that G is not a partial grid graph) in O(n3) time.

We conjecture that the time can be improved to O(n2), with a slightly
modified goal. These are the issues: There can exist O(n2) tight pairs, and
every unique shortest path may have length O(n). However, G has only n
vertices in total. Instead of returning all these paths separately, we could just
return the union of their vertex sets, which equals the union of the trees from
Theorem 8 for all roots u ∈ U . Then we can take the subgraph induced by
U and this union. This graph is also rigid. The caveat is that this still costs

O(n · n2) time if we run BFS in the graph G[U ]
∗

that can have size O(n2). We
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conjecture that each tree can be computed in O(n) time, by using some more
geometry of the grid. This would result in O(n2) overall time.

Actually, paths in grids with some forbidden vertices (those in H) are a
special case of rectilinear shortest paths in the plane with rectilinear obstacles,
where both the line segments of the paths and the sides of the obstacles must be
axis-parallel. The latter problem is well studied and very efficiently solvable, as
shown in [6] and subsequent work. However, the algorithms are complex, and
it is not clear whether they can be adapted such that also the (non-)uniqueness
of shortest paths can be recognized.

10 Iterated Extensions of Rigid Graphs

Our goal was to find large rigid subgraphs of a graph G efficiently. To this
end we may iterate, as long as possible, an extension procedure as the one
from Theorem 9. The question is how much time this costs in total. Since the
following considerations do not depend on the details of the chosen extension
procedure, it is simpler and cleaner to consider a generic extension operation
from now on.

Definition 10 An extension operation Ext takes as input a graph G = (V,E)
and a rigid induced subgraph G[U ], U ⊂ V , along with its unique layout. Ext
finds some vertex set denoted ε(U), such that U ⊆ ε(U) ⊆ V and the graph
G[ε(U)] is rigid, and it computes the unique layout of G[ε(U)]. Let t denote a
time bound for Ext. Furthermore, extensions have to be monotone, that is, if
U ⊆ U ′ then ε(U) ⊆ ε(U ′).

Note that ε(U) = U is possible, in which case Ext does not find a proper
extension (for instance, because G[U ] is already a maximal rigid subgraph). For
notational convenience we write the time bound t without arguments.

In addition we specify a set S of rigid graphs called start graphs.

Definition 11 Given an extension operation Ext, a set S of rigid start graphs,
and a graph G, we define the family of (G,Ext, S)-rigid induced subgraphs of
G inductively as follows. All induced subgraphs of G isomorphic to some start
graph in S are (G,Ext, S)-rigid. If G[U ] is (G,Ext, S)-rigid, then the result
G[ε(U)] of applying Ext to G[U ] is (G,Ext, S)-rigid.

Let s denote a time bound for finding all induced subgraphs of G being iso-
morphic to some start graph, and computing their unique layouts.

Example. Let ExtHUSP be the extension operation that applies all possible
hair extensions and all possible USP extensions to G[U ] and takes the union of
the resulting induced subgraphs. Then, e.g., all graphs in Figure 1 (except the
single edge) are (G,ExtHUSP, {C4})-rigid if they occur in G, where C4 denotes
the 4-cycle.

A simple observation is that all (G,Ext, S)-rigid subgraphs of G can be enu-
merated in O(stn) time: There are O(s) start graphs (as they can be produced



JGAA, 24(3) 433–460 (2020) 453

rr rr rr rr rr
rr rr rr rrr

Figure 2: Assume that the displayed graph is an induced subgraph of G. This
graph is rigid but not (G,ExtHUSP, {C4})-rigid. However, it is the union of
two (G,ExtHUSP, {C4})-rigid graphs.

in time s by definition), each of them can be extended at most n times, and an
extension takes time t. Another simple fact is:

Lemma 4 For any fixed finite set S of start graphs we have s = O(n).

Proof: Since start graphs are rigid by definition, they are connected. In order
to find all occurrences of start graphs in G, we do n times BFS, starting from
each of the vertices of G as the root. Since the sizes of the start graphs are
bounded by some constant, only vertices within some constant distance from
the root must be reached. Since partial grid graphs have vertex degrees bounded
by another constant (namely 4), the number of these vertices is also bounded
by some constant, otherwise we recognize that G is not a partial grid graph.
Even when we extract the start graphs from these neighborhoods of constant
size by naive exhaustive search, the time is constant for every root. �

Thus we have O(stn) = O(tn2) in this case. In the following section we
will apply, besides extensions, also pairwise unions of rigid subgraphs. We will
see that this enables us to find more rigid induced subgraphs than by just
extensions, without increasing the overall time. Figure 2 shows a motivating
example from which the reader may recognize the general reason why unions
enhance the possibilities to detect rigid graphs.

11 Combining Extensions and Unions

We need some small preparatory lemmas about unions of rigid graphs.

Lemma 5 For X,Y ⊂ V , suppose that G[X] and G[Y ] are rigid, and their
unique layouts are given. Then we can check whether G[X ∪ Y ] is rigid, and if
so, compute its unique layout, in O(n) time.

Proof: We check in O(n) time that G[X ∪Y ] is connected (otherwise it cannot
be rigid). Fix an embedding of G[X] in the grid. Due to connectivity, G[Y ]
can be added to this embedding in only O(1) ways. Some of these embeddings
of G[Y ] may collide with that of G[X], but it is straightforward to check in
O(n) time whether any vertices from X and Y occupy the same point. Finally,
G[X ∪ Y ] is rigid if and only if exactly one of the mentioned O(1) candidate
embeddings of G[Y ] yields a layout of G[X ∪ Y ]. �



454 P. Damaschke Enumerating Grid Layouts of Graphs

Lemma 6 For X,Y ⊂ V , suppose that G[X] and G[Y ] are rigid, and that
X ∩ Y is not collinear (in the unique layout of G[X] or G[Y ]). Then G[X ∪ Y ]
is rigid, or it is not a partial grid graph.

Proof: Fix an embedding of G[X] in the grid. Since X ∩ Y is not collinear,
G[Y ] can be added to this embedding in at most one way. �

Lemma 7 If X ⊆ Y and G[X] is rigid, then every ideal layout of G[Y ] contains
the unique layout of G[X]. Consequently, if both G[X] and G[Y ] are rigid, then
the unique layout of G[Y ] contains the unique layout of G[X].

Proof: The assertion is trivial. Since G[X] has only one ideal layout, this layout
cannot change by adding the vertices of Y \X. �

The next lemma is slightly more complex.

Lemma 8 Suppose that G is a partial grid graph. Let R be a family of induced
subgraphs of G such that every graph in R is rigid but the union of any two of
them is not rigid. Then the number of graphs in R is O(n).

Proof: We make three observations:

(a) Let a corner be any set of three grid points within one square of the grid,
in other words, three grid points with Euclidean distances 1, 1, and

√
2. Every

rigid graph H is connected, and an embedding of H cannot be merely a path
on a horizontal or vertical line (since a path is not a rigid graph). Thus, the
unique layout of H must contain some corner.

(b) Let T be any triple of vertices in G, let H,H ′ ∈ R be any two graphs
that contain T , and assume that T is a corner in the unique layout of H and H ′,
respectively. By Lemma 6, their union is rigid, which contradicts our assumption
on R. Thus, at most one graph in R has the following property: H contains T ,
and T is a corner in the unique layout of H.

(c) Let us fix one layout of G. Every triple T of vertices that is a corner in
the unique layout of some rigid subgraph of G is also a corner in our layout of
G, due to Lemma 7. Trivially, a layout of G contains only O(n) corners. Thus
only O(n) triples T can be corners in rigid subgraphs.

The conclusions of (a),(b),(c) together imply the assertion. �

We enhance the concept from Definition 11 as follows. The number 2 indi-
cates unions of two rigid graphs.

Definition 12 Given an extension operation Ext, a set S of start graphs, and
a graph G, we define the family of (G,Ext, 2, S)-rigid induced subgraphs of G
inductively as follows. All induced subgraphs of G isomorphic to some start
graph in S are (G,Ext, 2, S)-rigid. If G[U ] is (G,Ext, 2, S)-rigid, then the result
G[ε(U)] of applying Ext to G[U ] is (G,Ext, 2, S)-rigid. If G[X] and G[Y ] are
(G,Ext, 2, S)-rigid and G[X ∪Y ] is rigid, then G[X ∪Y ] is (G,Ext, 2, S)-rigid.
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Now we define and analyze the following procedure. For convenience, by a
graph “larger than” H we mean a graph containing H as an induced subgraph.

Rigid(G,Ext,2,S): List all induced subgraphs of G being isomorphic to start
graphs in S. Then apply the following steps in any order: Either take any graph
G[U ] from the list and replace it with the result G[ε(U)] of Ext, or take any
two graphs from the list and test whether their union is rigid, and if so, replace
them with their union. Stop when none of the extensions and pairwise unions
generates a new rigid subgraph.

Lemma 9 Suppose that G[U ], U ⊆ V , is a (G,Ext, 2, S)-rigid graph. Then
the procedure Rigid(G,Ext, 2, S) generates (among other graphs) at least one
(G,Ext, 2, S)-rigid graph G[U ′], U ′ ⊇ U . In other words, G[U ] or some larger
(G,Ext, 2, S)-rigid graph appears in the list after termination.

Proof: Every step of Rigid(G,Ext, 2, S) replaces graphs with larger graphs,
unless an extension step produces the same graph; this monotonicity property
is tacitly used in the following.

Let h be the number of operations (i.e., extensions and unions) needed to
build G[U ] from start graphs. We prove the assertion by induction on h. The
induction base h = 0 is trivial, since Rigid(G,Ext, 2, S) generates all start
graphs appearing as induced subgraphs of G.

For the induction step, fix some h > 0 and suppose that the assertion is
true for all numbers smaller than h. Our graph G[U ] is an extension of some
(G,Ext, 2, S)-rigid graph G[X] (case 1) or the union of some (G,Ext, 2, S)-
rigid graphs G[X ′] and G[X ′′] (case 2), where the mentioned graphs are built
with fewer than h operations. By the induction hypothesis, Rigid(G,Ext, 2, S)
generates, in both cases, the mentioned graphs or larger graphs. We denote
them G[Y ], G[Y ′], G[Y ′′], respectively, where Y ⊇ X, Y ′ ⊇ X ′, Y ′′ ⊇ X ′′.

Case 1: If Y ⊇ U , we are done. Otherwise, the extension ofG[Y ] contains the
extension of G[X] which is G[U ]. If Rigid(G,Ext, 2, S) generates the extension
of G[Y ], we are done. If it does not, then it takes the union of G[Y ] with some
other graph. We rename the union and denote this strictly larger graph G[Y ]
again. Since this step can be iterated only finitely often, we eventually arrive
at some Y ⊇ U .

Case 2: Since Y ′ ∪Y ′′ ⊇ X ′ ∪X ′′ = U , the graph G[Y ′ ∪Y ′′] includes G[U ].
Since G[X ′], G[X ′′], G[X ′ ∪ X ′′], G[Y ′], G[Y ′′] are all rigid, we also get that
G[Y ′ ∪ Y ′′] is rigid: We apply Lemma 7 to X ′ ⊆ Y ′ and to X ′′ ⊆ Y ′′, and we
use that G[X ′ ∪ X ′′] is rigid. It follows that the unique layout of G[X ′ ∪ X ′′]
can be extended to a layout of G[Y ′ ∪ Y ′′] in only one way. Remember that
Rigid(G,Ext, 2, S) generates G[Y ′] and G[Y ′′], and as we have seen, G[Y ′∪Y ′′]
includes G[U ] and is rigid. If Rigid(G,Ext, 2, S) generates the union of G[Y ′]
and G[Y ′′], we are done. If it does not, it generates the extension of some of
them, say of G[Y ′]. Then we rename the extension and denote this strictly
larger graph G[Y ′] again. Since this step can be iterated only finitely often, we
eventually arrive at Y ′ ⊇ U or Y ′′ ⊇ U , or Rigid(G,Ext, 2, S) generates their
union. �
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Lemma 10 After termination of Rigid(G,Ext, 2, S), the list of graphs contains
exactly the maximal (G,Ext, 2, S)-rigid subgraphs of G (i.e., maximal with re-
spect to inclusion), regardless of the order of operations.

Proof: Let G[U ] be any maximal (G,Ext, 2, S)-rigid subgraph of G. Due to
Lemma 9, G[U ] or some larger (G,Ext, 2, S)-rigid graph is in the final list, but
the latter case is not possible, as G[U ] is already maximal.

Let G[U ′] be a non-maximal (G,Ext, 2, S)-rigid subgraph of G. Then G[U ′]
is contained is some maximal (G,Ext, 2, S)-rigid subgraph G[U ], and as just
said, G[U ] is in the final list. Since Rigid(G,Ext, 2, S) performs all possible
union operations that have rigid results, G[U ′] and G[U ] would be replaced
with another copy of G[U ], or in simpler words, G[U ′] would be removed from
the list, by this or another operation. �

Theorem 13 We can generate all maximal (G,Ext, 2, S)-rigid subgraphs of a
given partial grid graph G in O(s2 + tn2 + n4) time.

Proof: We run Rigid(G,Ext, 2, S), however, we first perform the operations in
a special order. (Due to Lemma 10, the final list does not depend on the order
of operations.) We split the list in two parts denoted L1 and L2, which are
initially empty. We define a potential, which is twice the number of graphs in
L1 plus the number of graphs in L2.

First we generate all subgraphs of G being isomorphic to start graphs, and
we put them in L1. Since this takes time at most s by definition, the sum of the
vertex numbers of these graphs is O(s), and so is the potential at this moment.

We take some graph H from L1 and test for all subgraphs H ′ in both L1

and L2 whether the union of H and H ′ is rigid. Lemma 5 implies that this
costs O(s) time in total, for the chosen graph H. As soon as we find such H ′,
we stop and replace H and H ′ with their union and put it in L1. If no such H ′

exists, we just move H to L2. We call this procedure with H a union test.
Union tests are iterated until L1 is empty. Note that every union test strictly

decreases the potential. Thus we can do only O(s) union tests, and the entire
phase needs O(s2) time. Moreover, it is an invariant that the graphs in L2 have
pairwise non-rigid unions.

Due to Lemma 8, only O(n) graphs remain in the list, and trivially, this
remains true also after further operations. From now on, the order of operations,
i.e., extensions and union tests, is arbitrary. Each of the O(n) graphs in the list
is involved in O(n) further extension operations that produce larger graphs, and
every such operation costs time t. Multiplication yields O(tn2) total time for
all extensions. Whenever we extend a graph in L2, we move it to L1, (This is
necessary in order to maintain the above invariant, because a larger graph may
be capable of new unions that are rigid.) Since every extension increases the
potential by at most 1, the total increase of the potential is O(n2), which also
bounds the number of further union tests by O(n2). Now every union test costs
only O(n2) time, due to the number of remaining graphs (which may overlap)
and their sizes. This yields the O(n4) term. �
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Figure 3: The smallest rigid graphs that cannot be obtained by USP and hair
extensions of rigid subgraphs. In fact, they do not contain any proper rigid
subgraphs.

Since recognizing partial grid graphs is NP-hard, we have to discuss how to
apply Theorem 13 to a general input graph G. If the union of two subgraphs
turns out not to be a partial grid graph, we know that G was not a partial grid
graph, and we may abort the procedure, as we are only interested in the positive
case (and we may leave the result undetermined in the negative case).

We conjecture that the time bound in Theorem 13 can be improved by a
more sophisticated analysis. Anyway, for ExtUSPH with any fixed set of start
graphs, the current bound becomes O(tn2 + n4) = O(tn2), which is no worse
than the time we needed for generating the (G,ExtHUSP, S)-rigid subgraphs
only. Also remember that we know t = O(n3) for ExtHUSP , but t = O(n2)
might be possible.

12 Conclusions

Due to our application that deals with graphs of rather limited size, we are
interested in capturing most rigid graphs up to some size n in an efficient way.

By case inspection we find that for n ≤ 9, all rigid graphs with n vertices
are also (G,ExtHUSP, 2, {C4})-rigid, except the first graph in Figure 3. The
picture also shows the next largest rigid graphs that cannot be obtained by USP
and hair extensions from smaller rigid graphs. Their rigidity is seen by ad-hoc
arguments.

We may successively add some of them to the set of start graphs. However,
Figure 3 suggests a more fruitful idea: Note that these graphs contain 6-cycles.
The 6-cycle as such is not rigid, but it has only r := 3 different layouts. Once
the “correct” layout of a 6-cycle is fixed, each of the graphs in Figure 3 can again
be obtained by USP and hair extensions; the other two layouts yield collisions
and are discarded.

Inspired by this observation, we may extend our approach and the algorithm
from Theorem 13 as follows. For some small fixed integer r, we work with
subgraphs that have at most r different layouts (rather than rigid graphs where
r = 1). Since r layouts must be processed simultaneously, the time bound
increases by a factor at least r (also, the list of graphs in Theorem 13 may
become longer), but we capture considerably more rigid subgraphs. The choice
of parameter r should depend on the input size. One could also try and invent
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more (yet fast) extension operations to produce further rigid graphs missed out
by ExtHUSP .

A full characterization of rigid partial grid graphs, and the complexity of
recognizing them, or more generally, of finding a largest rigid subgraph in a
given graph, is open. This is not too important for our application, but it
remains a nice theoretical problem. For layout planning, the rigid subgraphs
are not an end in itself, but only a heuristic means for accelerating the branching.
Nevertheless it would be interesting to learn how the proposed methods perform
in general, how many long edges must typically be allowed, etc. But this would
require testing on considerable sets of real instances.

Another question of more theoretical interest is how far our exponential
bounds on the number of ideal layouts, with or without undecided vertices, are
away from lower bounds, that is, to construct “bad” graphs with as many ideal
layouts as possible.
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Mårdberg (FCC) for encouraging discussions of the practical aspects, anony-
mous reviewers of an earlier manuscript for the approach to subexponential
time and for further literature hints, the anonymous reviewers of JGAA for
other valuable suggestions and a correction, and the students Maxim Goretskyy
and Jesper Jaxing for bringing up the initial idea of path extensions of rigid
graphs in their master’s thesis supervised by the author.



JGAA, 24(3) 433–460 (2020) 459

References

[1] Z. Abel, E. D. Demaine, M. L. Demaine, S. Eisenstat, J. Lynch, and T. B.
Schardl. Who needs crossings? hardness of plane graph rigidity. In S. P.
Fekete and A. Lubiw, editors, 32nd International Symposium on Com-
putational Geometry, SoCG 2016, June 14-18, 2016, Boston, MA, USA,
volume 51 of LIPIcs, pages 3:1–3:15. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2016. doi:10.4230/LIPIcs.SoCG.2016.3.

[2] A. Ahmadi, M. S. Pishvaee, and M. R. A. Jokar. A survey on multi-floor
facility layout problems. Comput. Ind. Eng., 107:158–170, 2017. doi:

10.1016/j.cie.2017.03.015.

[3] M. F. Anjos and M. V. C. Vieira. Mathematical optimization approaches
for facility layout problems: The state-of-the-art and future research direc-
tions. Eur. J. Oper. Res., 261(1):1–16, 2017. doi:10.1016/j.ejor.2017.
01.049.

[4] S. Bereg. Certifying and constructing minimally rigid graphs in the plane.
In J. S. B. Mitchell and G. Rote, editors, 21st ACM Symposium on Compu-
tational Geometry, SoCG 2005, Pisa, Italy, June 6-8, 2005, pages 73–80.
ACM, 2005. doi:10.1145/1064092.1064106.

[5] H. L. Bodlaender, J. Nederlof, and T. C. van der Zanden. Subexponential
time algorithms for embedding h-minor free graphs. In I. Chatzigiannakis,
M. Mitzenmacher, Y. Rabani, and D. Sangiorgi, editors, 43rd Interna-
tional Colloquium on Automata, Languages, and Programming, ICALP
2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 9:1–
9:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:

10.4230/LIPIcs.ICALP.2016.9.

[6] P. J. de Rezende, D. T. Lee, and Y. Wu. Rectilinear shortest paths in the
presence of rectangular barriers. Discrete Comput. Geom., 4:41–53, 1989.
doi:10.1007/BF02187714.
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