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Abstract. In this paper, we study equilateral spherical drawings of planar Cayley
graphs. We focus on the case when the underlying group is generated by two rotations.
In this case, the set of equilateral drawings can be parameterized by spherical ellipses
on the unit sphere. Besides, we give an explicit formula to describe the shortest equi-
lateral spherical drawing and the longest spherical equilateral drawing. Furthermore,
we studied the drawing of Schreier coset graphs arising from these equilateral drawings.

1 Introduction

Cayley graph is a graph encoding the structure of a group, which is a central tool in combinatorial
and geometric group theory. Given a group G with a symmetric generating set S, the Cayley
graph Cay(G,S) associated to (G,S) is an undirected graph with the vertex set G such that two
vertices x and y are adjacent if x = ys for some s ∈ S. The group G acts canonically on the graph
Cay(G,S) by left multiplication and the action is transitive on the set of vertices.

A graph is planar if it has an embedding on the plane without edge-crossing. When all the edges
of the embedding have the same length, it is called an equilateral embedding. Eades and Warmold
[5] showed that determining whether a 2-connected planar graph has an equilateral embedding is
NP-hard. Markenzon and Paciornik [13] presented a linear time algorithm to determine whether
a 2-connected chordal graph has a equilateral embedding without edge-crossing.

One important subject in graph drawing is to find a nice drawing algorithm in 3D. For trees,
there are several 3D graph drawing algorithms like [1], [9], [12]. For other particular kinds of
graphs, there are also some 3D graph drawing algorithms like [6], [11], [3] and [4].

Maschke [14] classified planar Cayley graphs in 1896. A complete list of planar Cayley graphs
can be also be found in [7]. He showed that when X = Cay(G,S) is a planar Cayley graph,
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G is isomorphic to a group of isometries of the unit sphere S2 in R3. In other words, one can
draw X in R3 such that the vertices lie in S2, the edges are straight lines, and the action of G on
X can be extended to S2 as isometries. We call such a drawing a symmetric spherical drawing.
However, Maschke’s proof does not give an explicit construction of symmetric spherical drawings.
He only drew the figures of all planar Cayley graphs and identify them as the skeletons of uniform
polyhedrons.

To construct a symmetric spherical drawing explicitly, first we need find the way to identify
G as a group of isometries of S2. This is equivalent to find a particular three dimensional real
representation of G such that the image of G is the symmetric group of the corresponding uniform
polyhedron. It is not hard to find such a representation by cases, but in fact there is a unified
method using the method of spectral drawing [8, 10], which will be introduced in Section 2.4.

After identifying G as a group of isometries on S2, one can fix a unit vector ~u as the vector used
to draw the identity element of G. Then the coordinate of the vertex g is given by g~u. Denote
the resulted drawing by X~u. Note that all X~u’s are highly symmetric, since they all admit G as a
group of isometries. When all edges of X~u are of equal length, X~u is called an equilateral spherical
drawing. In this paper, we will like to study all equilateral spherical drawings via studying the
following set:

D =

{
~u ∈ S2

∣∣∣∣X~u is an equilateral spherical drawing

}
.

For example, let G = A5, the alternating group of degree 5, and S = {(12)(34), (12345),
(15432)}. The Cayley graph X = Cay(G,S) is the truncated icoshedral graph. One can identify
G as a group of isometries on S2 from the spectral drawing. (In this case, G is also known as the
icosahedral group. See [2] for more details.)

Figure 1: X~u for some random choices of ~u.

The Figure 1 demonstrates X~u for some random choices of ~u. The Figure 2 shows the set D,
which is a union of two so-called spherical ellipses.

In the set D, the drawing with shortest edge length is indeed the skeleton of a truncated
icosahedron; the drawing with longest edge length is the skeleton of an icosahedron. Besides, there
exists some drawing equal to the skeleton of a dodecahedron as shown in Figure 3.

Note that the skeleton of a dodecahedron and the skeleton of an icosahedron are the draw-
ings of the Schreier coset graphs XH associated to (A5/H,HSH/H) where H = 〈ρ((123))〉 and
〈ρ((12534))〉, respectively. (See Section 2.1 for the definition of Schreier coset graph.) In general,
we would like to know when a Schreier coset graph can be seen by certain X~u.

In this paper, we will only focus on the case that G only consists of rotations as a group of
isometries of S2. In this case, we call Cay(G,S) a rotational planar graph. The classification of
such graphs is given in Section 2.3.
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Figure 2: The set D for Cay(A5, {(12)(34), (12345), (15432)}).

The paper is organized as follows. In Section 2, we recall some background knowledge. In
Section 3, we characterize the set D and give an explicit form of ~u for the shortest and longest
equilateral spherical drawings of X~u. Besides, we study the isomorphism class of X~u. Especially,
we show that the shortest and longest drawings are both unique up to isomorphism. Furthermore,
we find some particular subgroups H such that there exists some X~u which is also a graph drawing
of the Schreier coset graph XH . In Section 4, we list the result for all rotational planar graphs.

2 Preliminary

2.1 Schreier coset graphs

For a subgroup H of G, define

HSH = {hsh′|h, h′ ∈ H, s ∈ S},

which is the H-double coset containing S. It can be also written as a disjoint union of left H-coset,
denoted by HSH/H.

The Schreier coset graph XH associated to (G/H,HSH/H) is the graph in which its vertices
are left H-cosets {gH|g ∈ G} in G and two vertices g1H and g2H are adjacent if g2H = g1s̃H for
some s̃H ∈ HSH/H.

It is well-known that a vertex-transitively graph may not be a Cayley graph, but it is always a
Schreier coset graph [15].

2.2 Displacement function

Let R = R(θ, ~u) be a linear rotation around the unit vector ~u in R3 of degree θ. The square
displacement function of a rotation R on R3 is defined by

dR(~x) = ‖R~x− ~x‖2.

Denote by dR,max the maximum value of dR(~x) on the unit sphere S2.
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(Shortest length drawing) (Longest length drawing)

Figure 3: Some drawings X~u with ~u ∈ D.

Theorem 2.2.1 For every rotation R = R(θ, ~u) on R3, we have

dR,max = 2(1− cos θ) and dR(~x) = dR,max(1− 〈~u, ~x〉2),∀ ~x ∈ S2.

Proof: Let α = {~v1 = ~u,~v2, ~v3} be an orthonormal basis of R3. The we have

[R(θ, ~u)]α =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 .

For ~x ∈ S2, let ~x = x1 ~v1 + x2 ~v2 + x3 ~v3. Thus we have x21 + x22 + x23 = 1 and

dR(~x) = ‖R~x− ~x‖2 = (x2 cos θ − x3 sin θ − x2)2 + (x2 sin θ + x3 cos θ − x3)2

= 2(1− cos θ)(x22 + x23) = 2(1− cos θ)(1− 〈~u, ~x〉2).

Since 1− 〈~u, ~x〉2 ≤ 1, we have dR,max = 2(1− cos θ). �

2.3 Classification of Rotational Planar Groups

A group G is called a planar group if there exists some generating set S such that Cay(G,S) is a
planar graph. Maschke showed that if G can be identified as a group of isometries of S2. In this
case, G contains rotations and reflections. If G only contains rotations, G is a rotation group and
its classification can be also found in [7, Theorem 6.3.1]. The following theorem is the result of
Maschke’s work [14].

Theorem 2.3.1 ([14]) If Cay(G,S) is a planar graph and G is a rotation group of S2. The one
of the following holds.

a) (G,S) ∼= (Zn, {±1}) and Cay(G,S) is a circular graph with n vertices.
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b) G = 〈x, y|x2 = yn = (xy)2 = 1〉 ∼= Dn, the dihedral group with 2n elements.

b1) S = {x, y} and Cay(G,S) is a prism graph with 2n vertices.

b2) S = {x, xy} and Cay(G,S) is a circular graph with 2n vertices.

c) G = 〈x, y|x3 = y2 = (xy)3 = 1, · · · 〉 ∼= A4, the alternating group of degree 4.

c1) S = {x, y} and Cay(G,S) is a truncated tetrahedral graph.

c2) S = {x, xy} and Cay(G,S) is a cuboctahedral graph.

d) G = 〈x, y|x3 = y2 = (xy)4 = 1, · · · 〉 ∼= S4, the symmetric group of degree 4.

d1) S = {x, y} and Cay(G,S) is a truncated cubical graph.

d2) S = {x, xy} and Cay(G,S) is a rhombicuboctahedral graph.

d3) S = {y, xy} and Cay(G,S) is a truncated octahedral graph.

e) G = 〈x, y|x3 = y2 = (xy)5 = 1, · · · 〉 ∼= A5, the alternating group of degree 5.

e1) S = {x, y} and Cay(G,S) is a truncated dodecahedral graph.

e2) S = {x, xy} and Cay(G,S) is a rhombicosidodecahedral graph.

e3) S = {y, xy} and Cay(G,S) is a truncated icosahedral graph.

2.4 Spectral Drawings

Let X be a finite connected undirected graph with the vertex set V = {v1, · · · , vn} and the edge
set E. Let R[V ] be a real inner product space with an orthonormal basis α = {~ev1 , · · · , ~evn}. The
Laplacian operator L is a linear transformation on R[V ] characterized by

L(~ev) =
∑

(v,u)∈E

~ev − ~eu, ∀ v ∈ V.

The Laplacian operator is positive semi-definite with eigenvalues

0 = λ1 < λ2 ≤ λ3 ≤ · · · ≤ λn.

Let

{
~u1 = 1√

n

(
1
...
1

)
, · · · , ~un

}
be an orthonormal eigenbasis such that L(~ui) = λi~ui for all i.

Let W be the k-dimensional subspace of R[V ] with a basis β = {~u2, · · · , ~uk+1}. Then the
k-dimensional spectral drawing is a straight-line drawing of X onto Rk such that the coordinate
of the vertex v is given by

spk(v) = [projW (~ev)]β .

Here projW (~x) is the orthogonal projection onto W and [~x]β is the coordinate vector of ~x under
the basis β.
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Example 2.4.1 Let L be the Laplacian matrix of the cubical graph given by

L =



3 −1 0 −1 −1 0 0 0
−1 3 −1 0 0 −1 0 0
0 −1 3 −1 0 0 −1 0
−1 0 −1 3 0 0 0 −1
−1 0 0 0 3 −1 0 −1
0 −1 0 0 −1 3 −1 0
0 0 −1 0 0 −1 3 −1
0 0 0 −1 −1 0 −1 3


The spectrum of its Laplacian is given by

0, 2, 2, 2, 4, 4, 4, 6.

Let

(
~u2 ~u3 ~u4

)
=

1

2
√

2



1 1 1
−1 1 1
−1 −1 1
1 −1 1
1 1 −1
−1 1 −1
−1 −1 −1
1 −1 −1


be the orthonormal basis of the 2-eigenspace. Then we have a three dimensional spectral drawing
as follows. 

sp3(v1)
sp3(v2)
sp3(v3)
sp3(v4)
sp3(v5)
sp3(v6)
sp3(v7)
sp3(v8)


=

1

2
√

2



1 1 1
−1 1 1
−1 −1 1
1 −1 1
1 1 −1
−1 1 −1
−1 −1 −1
1 −1 −1


⇒

2.5 Three Dimensional Real Representations

When X is the underlying graph of the skeleton of a prism, a Platonic solid, or an Archimedean
solid X , one can show by cases that the second smallest Laplacian eigenvalues λ2 is always of
multiplicity three. (In other words, we have λ2 = λ3 = λ4 < λ5.) In this case, the subspace W
spanned by ~u2, ~u3, ~u4 is the λ2-eigenspace. Let G be a group of symmetries of a given solid X ,
then G has a natural action on R[V ] by

g(~ev) = ~eg(v).
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Theorem 2.5.1 The subspace W spanned by {~u2, ~u3, ~u4} is G-invariant. In other words, W is
g-invariant for all g ∈ G, or equivalently, g(W ) ⊆W for all g ∈ G.

Proof: For all g ∈ G and v ∈ V ,

gL(~ev) = g

 ∑
(v,u)∈E

~ev − ~eu

 =
∑

(v,u)∈E

~g(ev)− g(~eu) =
∑

(v,u)∈E

~eg(v) − ~eg(u) = L(~eg(v)).

Therefore, two linear transformations g and L on R[V ] commute which implies that every eigenspace
of L is g-invariant. Especially, the λ2-eigenspace W is g-invariant. �

Corollary 2.5.2 The action of G restricted on W is a three dimensional real representation of G.

By Theorem 2.3.1, when X = Cay(G,S) is a rotational planar graph and X is not a circular
graph, X is the underlying graph of the skeleton of some Platonic or Archimedean solid. Therefore,
we can identify G as a group of isometries of S2 by this manner.

3 Equilateral Drawings

3.1 Setting

Let Cay(G,S) be a rotational planar graph. Suppose G is not a circular graph. By Section 2.3,
we can write S = {s1±1, s2±1}, where s1 = R(θ1, ~u1) and s2 = R(θ2, ~u2) are two rotations on R3.
Let δi = dsi,max for i = 1, 2. By switching s1 and s2, replacing ~ui by −~ui, and replacing si by si

−1

if necessary, we may assume that

• θ1, θ2 ∈ (0, π].

• δ1 ≥ δ2;

• cosψ := 〈~u1, ~u2〉 ≤ 0.

Note that by Theorem 2.2.1 (δi = 2(1− cos θi)) and first two assumptions, we always have θ1 ≥ θ2.
Since G is not a cyclic group, we also have ~u1 6= ±~u2 and sinψ 6= 0.

Let α = {~u1, ~u2, ~u1×~u2}, which forms a basis of R3. For ~x ∈ R3, we will denote the coordinate
vector (x1, x2, x3) of ~x under the basis α by [~x]α. Note that under the basis α, the defining equation
of S2 becomes

x21 + 2x1x2 cosψ + x22 + x23 sin2 ψ = 1.

3.2 Geometric shapes of D

Recall that
D = {~x ∈ S2|ds1(~x) = ds2(~x)}.

By Theorem 2.2.1, for ~x ∈ S2

ds1(~x) = δ1
(
1− 〈~u1, ~x〉2

)
= δ1

(
1− (x1 + x2 cosψ)2

)
and

ds2(~x) = δ2
(
1− 〈~u2, ~x〉2

)
= δ2

(
1− (x1 cosψ + x2)2

)
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Let M1 =

(
1 cosψ

cosψ cos2 ψ

)
and M2 =

(
cos2 ψ cosψ
cosψ 1

)
, then we can rewrite the difference of

the above two equations to obtain

ds1(~x)− ds2(~x) = (δ1 − δ2)−
(
x1 x2

) (
δ1M1 − δ2M2

)(x1
x2

)
.

Therefore, we have

D = {~x ∈ S2|ds1(~x) = ds2(~x)}

=

{
~x ∈ S2

∣∣∣∣ (x1 x2
) (
δ1M1 − δ2M2

)(
x1
x2

)
= δ1 − δ2.

}
Note that

det
(
δ1M1 − δ2M2

)
= −δ1δ2 sinψ4 < 0,

so on the x1-x2 plane, the equation
(
x1 x2

) (
δ1M1 − δ2M2

)(x1
x2

)
= δ1 − δ2 defines a hyperbola

when δ1 6= δ2; it defines the union of two lines when δ1 = δ2. In the formal case, the set D is
the intersection of the unit sphere and a hyperbolic cylinder, which is the disjoint union of two
so-called spherical ellipses. In the latter case, the set D is the intersection of the unit sphere and
the union of two planes, which is the union of two great circles. We summarize the above result
as the following theorem.

Theorem 3.2.1 The following statements hold.

a) If δ1 = δ2, then D is the union of two great circles.

b) If δ1 6= δ2, then D is the disjoint union of two spherical ellipses.

3.3 Maximal and minimal equal displacements

Now we would like to know how does the function

ds1(~x) = δ1
(
1− (x1 + x2 cosψ)2

)
vary on D. Since the above function only depends on x1, x2, it is sufficient to study the two-
variables function f defined by

f(x1, x2) := δ1
(
1− (x1 + x2 cosψ)2

)
.

on the following region:

D0 :

 x21 + 2x1x2 cosψ + x22 ≤ 1(
x1 x2

) (
δ1M1 − δ2M2

)(x1
x2

)
= δ1 − δ2

(1)

(Note that D0 is the projection of D onto the plane spanned by ~u1 and ~u2.) The extreme values
of f(x) occur on either the critical points or the boundary points given by x21 + 2x1x2 cosψ + x22 = 1(

x1 x2
) (
δ1M1 − δ2M2

)(x1
x2

)
= δ1 − δ2

(2)
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First, let us find the critical points of f(x). Set

F (x1, x2) :=
(
x1 x2

) (
δ1M1 − δ2M2

)(
x1
x2

)
.

By the method of Lagrange multiplier, we have ∇f−λ∇F = 0, where λ is the Lagrange multiplier,
which implies that

−2δ1M1

(
x1
x2

)
− 2λ

(
δ1M1 − δ2M2

)(
x1
x2

)
=

(
0
0

)
⇐⇒

(
(1 + λ)δ1M1 − λδ2M2)

)(x1
x2

)
=

(
0
0

)
.

The above equation has non-zero solution only when

det
(

(1 + λ)δ1M1 − λδ2M2)
)

= −(1 + λ)λδ1δ2 sin4 ψ = 0.

Since sinψ 6= 0, we have λ = −1 or λ = 0. When λ = −1, (x1, x2) lies in the kernel of M2 and it
is of the form a(1,− cosψ). Plug (x1, x2) = a(1,− cosψ) into the system of equations (1), we have

a2δ1 sin4 ψ = δ1 − δ2 and a2 sin2 ψ ≤ 1.

When λ = 0, (x1, x2) lies in the kernel of M1 which is the form b(cosψ,−1). Plug (x1, x2) =
b(cosψ,−1) into the system of equations (1), we have

−b2δ2 sin4 ψ = δ1 − δ2 and b2 sin2 ψ ≤ 1.

Recall that we assume that δ1 ≥ δ2. If δ1 = δ2, then there exists a unique solution (x1, x2) =
(0, 0). If δ1 > δ2, then there exists no solution for b and we have

a = ± 1

sin2 ψ

√
1− δ2

δ1
.

Moreover, such a satisfies the condition a2 sin2 ψ ≤ 1 if and only if δ1 cos2 ψ ≤ δ2. In this case, the
x3-coordinate of x is given by

x3 = ± 1

sinψ

√
1− x21 − 2x1x2 cosψ − x22 = ± 1

sinψ

√
1− a2 sin2 ψ

Let us summarize the above computation as the two following theorems.

Theorem 3.3.1 For the function f(x1, x2) on D0,

• when δ1 = δ2, it has a unique critical points (0, 0). Moreover, f(0, 0) = δ1 = δ2.

• when δ1 > δ2 ≥ δ1 cos2 ψ, it has two critical points (a,−a cosψ), where a = ± 1
sin2 ψ

√
1− δ2

δ1
.

Moreover, f(x1, x2) = δ2 on these critical points.

• when δ1 cos2 ψ > δ2, it has no critical points.

Theorem 3.3.2 For the displacement function ds1(~x) on D,
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• when δ1 ≥ δ2 ≥ δ1 cos2 ψ, it has two (if δ1 = δ2) or four (if δ1 > δ2) critical points

(a,−a cosψ,± 1

sinψ

√
1− a2 sin2 ψ), where a = ± 1

sin2 ψ

√
1− δ2

δ1
. Moreover, ds1(~x) = δ2 on

these critical points.

• when δ1 cos2 ψ > δ2, it has no critical point.

Remark. The value δ2 is the maximum of ds2(~x), so it is the trivial upper bound of ds1(~x) on
D.

Next, let us find the values of f(x1, x2) at the boundary points. Recall that the boundary
points are given by

x21 + 2x1x2 cosψ + x22 = 1 (3)(
x1 x2

)
(δ1M1 − δ2M2)

(
x1 x2

)t
= δ1 − δ2 (4)

By direct computation, Equation (4) becomes

(δ1 − δ2 cos2 ψ)x21 + 2 cosψ(δ1 − δ2)x1x2 + (cos2 ψδ1 − δ2)x22 = δ1 − δ2.

Subtracting δ1 − δ2 times of Equation (3) from Equation (4), we obtain

(1− cos2 ψ)(δ2x
2
1 − δ1x22) = 0,

which implies that

x1 = ±
√
δ1
δ2
x2.

This is a quite simple characterization of the boundary points.
Plugging the above result into Equation (3), we obtain the following.

Proposition 3.3.3 The four boundary points of D0 are

(x1, x2) = ±
(√

δ1

δ1 + 2ε
√
δ1δ2 cosψ + δ2

, ε

√
δ2

δ1 + 2ε
√
δ1δ2 cosψ + δ2

)
.

where ε = ±1.

In this case,

f(x1, x2) = δ1
(
1− (x1 + x2 cosψ)2

)
= δ1x

2
2 sin2 ψ =

δ1δ2 sin2 ψ

δ1 + 2ε
√
δ1δ2 cosψ + δ2

.

Combing the result of critical points, we have the following theorem.

Theorem 3.3.4 For the displacement function ds1(~x) on D, let δmax and δmin be the maximal
value and the minimal value respectively.

• when δ1 ≥ δ2 ≥ δ1 cos2 ψ, δmax = δ2 and δmin = δ1δ2 sin2 ψ
δ1−2

√
δ1δ2 cosψ+δ2

. Moreover,

• when δ1 cos2 ψ ≥ δ2, δmax = δ1δ2 sin2 ψ
δ1+2

√
δ1δ2 cosψ+δ2

and δmin = δ1δ2 sin2 ψ
δ1−2

√
δ1δ2 cosψ+δ2

.

(Here we use the assumption that cosψ ≤ 0.)
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3.4 Isomorphism classes of X~u

For two drawings X~u and X~v of X and A ∈ O(3), we say A is an isomorphism from X~u and X~v if
there exists a permutation σ on G such that

a) Ag~u = σ(g)~v, ∀ g ∈ G
b) g1 ∈ g2S if and only if σ(g1) ∈ σ(g2)S, ∀ g1, g2 ∈ G.

In this case, we say X~u and X~v are isomorphic, denoted by X~u
∼= X~v.

Set

Aut(X~u) = {A ∈ O(3)|A is an isomorphism from X~u to XA~u}

which is a subgroup of O(3).

Proposition 3.4.1 If X~v ∼= X~u, then there exists A ∈ Aut(X~u) such that ~v = A~u.

Proof: Since X~u
∼= X~v, there exist A′ ∈ O(3) and a permutation σ′ satisfying the conditions a)

and b). Set A = σ′(e)
−1
A′ and σ(x) := σ′(e)−1σ′(x). (Here e is the identity of G, which is also

equal to the identity matrix.) Then σ is still a permutation with σ(e) = e on G and (A, σ) still
satisfies the above the conditions a) and b). In this case, we have A~u = Ae~u = σ(e)~v = e~v = ~v.
Therefore, A is an isomorphism from X~u to X~v = XA~u. �

Example 3.4.1 Let A = −I and σ be the identity map, then for all g ∈ G, Ag~u = −g~u =
σ(g)(−~u). Thus −I ∈ Aut(X~u).

Example 3.4.2 Let A = R(π, ~u3/‖~u3‖) (Recall that ~u3 = ~u1 × ~u2.) Then A(~u1) = −~u1, A(~u2) =
−~u2 and A(~u3) = ~u3. Moreover, we have As1A

−1 = s1
−1 and As2A

−1 = s2
−1, which implies that

σ(g) = AgA−1 defines a permutation on G. It is easy to see that such A ∈ Aut(X~u) and so does
−A.

Example 3.4.3 Suppose 〈~u1, ~u2〉 = 0. Let A = R(π, ~u1) and ~v = A~u. Then A( ~u1) = ~u1,
A( ~u2) = −~u2 and A(~u3) = −~u3. Moreover, we have As1A

−1 = s1 and As2A
−1 = s2

−1. By
the same token as the previous example, we also have A ∈ Aut(X~u). Moreover, the same result
also holds for A = −R(π, ~u1),±R(π, ~u2).

For ~u ∈ D, set

Aut0(X) =

{
{±I,±R(π, ~u3/‖~u3‖)} , if 〈~u1, ~u2〉 6= 0;

{±I,±R(π, ~u1),±R(π, ~u2),±R(π, ~u3/‖~u3‖)} , if 〈~u1, ~u2〉 = 0.

From the above examples, we see that Aut0(X) is a subgroup of Aut(X~u) for all ~u ∈ S2.

Theorem 3.4.2 For ~u,~v ∈ D, the following are equivalent.

a) X~u
∼= X~v.

b) There exists some A ∈ Aut0(X) such that A~u = ~v.

c) ds1(~u) = ds1(~v) and 〈T~v, T~v〉 = 〈T~u, T~u〉 where T =
∑
s∈S s.



108 M.-H. Kang and W.-H. Lin Equilateral Spherical Drawings

Proof:
b) ⇒ a): Follow by the property that Aut0(X) is a subgroup of Aut(X~u).

a) ⇒ c): Since X~v ∼= X~u, their edges are all of the same length, which implies that ds1(~u) =
ds2(~v). By Proposition 3.4.1, there exists A ∈ Aut(X~u) so that A~u = ~v. Since A preserves
adjacency relation, we have

{As~u|s ∈ S} = {s~v|s ∈ S}.

c) ⇒ b): Suppose ds1(~u) = ds2(~v) = `. Let [~u]α = (x1, x2, x3), then for A ∈ Aut0(X),

[A~u]α =

{
±(x1, x2,±x3) , if 〈~u1, ~u2〉 6= 0;

(±x1,±x2,±x3) , if 〈~u1, ~u2〉 = 0.

We shall show that [~v]α is equal to one of the above. Solving the following equations

` = ds1(~u) = δ1
(
1− (x1 + x2 cosψ)2

)
and ` = ds2(~u) = δ2

(
1− (x1 cosψ + x2)2

)
,

we obtain {
x1 = k1 − k2 cosψ
x2 = −k1 cosψ + k2

where k1 = ±(
√

1− `
δ1

)/sin2 ψ, and k2 = ±(
√

1− `
δ2

)/sin2 ψ. To solve x3, recall that the equation

of the unit sphere is given by

x21 + 2x1x2 cosψ + x22 + x3 = 1.

Therefore, x3 = ±
√

1− x21 − 2x1x2 cosψ − x22 when x21 + 2x1x2 cosψ + x22 ≤ 1, or equivalently,

1 ≥ sinψ2(k21 + k22 − 2k1k2 cosψ).

We have the following three cases.

1. When k1k2 = 0, there are four solutions which are contained in one Aut0(X)-orbit.

2. When k1k2 6= 0 and cosψ = 0, (or equivalent 〈~u1, ~u2〉 = 0,) there are eight solutions which
are contained in one Aut0(X)-orbit.

3. When k1k2 cosψ 6= 0, there are eight solutions which are contained in two Aut0(X)-orbits.

It remains to show that when k1k2 cosψ 6= 0, then ~u and ~v must be in the same Aut0(X)-orbit.
Suppose not, we may assume that

[~u]α = (k1 − k2 cosψ,−k1 cosψ + k2, x3) and [~v]α = (k1 + k2 cosψ,−k1 cosψ − k2, x3),

which are two solutions of the above equations not contained in the same Aut0(X)-orbit.
Note that ds1(~u) = ds2(~v) implies that 〈T~u, ~u〉 = 〈T~v,~v〉. Together with the assumption

〈T~u, T~u〉 = 〈T~u, T~u〉, we should have

〈T ′~v, T ′~v〉 = 〈T ′~u, T ′~u〉

for all T ′ of the form T + cI.
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Note that

T =


s1 + s1

−1 + s2 + s2
−1 , if s1 6= s1

−1 and s2 6= s2
−1;

s1 + s2 + s2
−1 , if s1 = s1

−1 and s2 6= s2
−1;

s1 + s1
−1 + s2 , if s1 6= s1

−1 and s2 = s2
−1;

s1 + s2 , if s1 = s1
−1 and s2 = s2

−1.

Set

T ′ = T −


(2 cos θ1 + 2 cos θ2)I , if s1 6= s1

−1 and s2 6= s2
−1;

(cos θ1 + 2 cos θ2)I , if s1 = s1
−1 and s2 6= s2

−1;

(2 cos θ1 + cos θ2)I , if s1 6= s1
−1 and s2 = s2

−1;

(cos θ1 + cos θ2)I , if s1 = s1
−1 and s2 = s2

−1.

Then by direct computation, we have

〈T ′~u, T ′~u〉 − 〈T ′~v, T ′~v〉 = k1k2δ1δ2 cosψ sin4 ψ ·


4 , if s1 6= s1

−1 and s2 6= s2
−1;

2 , if s1 = s1
−1 and s2 6= s2

−1;

2 , if s1 6= s1
−1 and s2 = s2

−1;

1 , if s1 = s1
−1 and s2 = s2

−1.

In all cases, 〈T ′~u, T ′~u〉 − 〈T ′~v, T ′~v〉 6= 0, which is a contradiction. �

It is easy to see that the four critical points in Theorem 3.3.2 lie in a single Aut0(X)-orbit and
the four boundary points in Proposition 3.3.3 lie in two Aut0(X)-orbits. Together with Theorem
3.3.4, we conclude that:

Corollary 3.4.3 For the displacement function ds1(~x) on D, let δmax and δmin be the maximal
value and the minimal value respectively. Then for the edge length δmax and δmin, there is a unique
equilateral drawing X~u up to isomorphism.

3.5 The angle between two edges

To identify the drawing X~u with the skeleton of some uniform polyhedron, we should find the local
configuration of X~u.

~u

s2~u

s2
−1~u

s1~u

s1
−1~u

π − θ2 π − θ1
τ

~u

s2~u

s2
−1~u

s1~uπ − θ2
τ

s1 and s2 are both of order > 2 s1 is of order 2 and s2 is of order > 2

Figure 4: Local configurations.
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Let us compute the angle τ be between two edges ~u→ s1~u and ~u→ s2~u. Note that

cos τ =
〈s1~u− ~u, s2~u− ~u〉
‖s1~u− ~u‖‖s2~u− ~u‖

.

Besides, under the basis α = {~u1, ~u2, ~u1 × ~u2}, we have

[s1]α = [R(θ1, ~u1)]α =

1 cosψ(1− cos θ1) cosψ sin θ1
0 cos θ1 − sin θ1
0 sin θ1 cos θ1


and

[s2]α = [R(θ2, ~u2)]α =

 cos θ2 0 sin θ2
cosψ(1− cos θ2) 1 − cosψ sin θ2
− sin θ2 0 cos θ2

 .

By Proposition 3.3.3 and Theorem 3.3.4, for

~u =
1√

δ1 + ε2
√
δ1δ2 cosψ + δ2

(
√
δ1~u1 + ε

√
δ2~u2),

we have

‖s1~u− ~u‖2 = ‖s2~u− ~u‖2 =
δ1δ2 sin2 ψ

δ1 + 2ε
√
δ1δ2 cosψ + δ2

.

By direct computation, we obtain

cos τ =
〈s1~u− ~u, s2~u− ~u〉
‖s1~u− ~u‖‖s2~u− ~u‖

= −ε
(

cos
θ1
2

cos
θ2
2

+ sin
θ1
2

sin
θ2
2

cosψ
)
.

For the drawingX~u arising from the critical points in Theorem 3.3.2, we have shown that all such

drawing are isomorphic and it is sufficient to study one of them. Set [~u]α = (a,−a cosψ,
1

sinψ

√
1− a2 sin2 ψ),

where a =
1

sin2 ψ

√
1− δ2

δ1
. After a tedious computation, we have

cos τ =
1

4δ2

(
δ22 + 4 cosψ sin θ1 sin θ2 + 2 sin θ2

√
(δ1 − δ2)(δ2 − δ1 cos2 ψ)

)
.

3.6 Drawings of Schreier coset graphs

The drawing X~u induces a drawing of the Schreier coset graph XH associated to (G/H,HSH/H)
if ~u is fixed by all elements H.

In this case, elements of H are rotations around ~u, which implies H is cyclic and it is generated
by the rotation of the smallest angle. Therefore, we have the following proposition.

Proposition 3.6.1 If the Schreier coset graph XH can be drawn by X~u for some ~u ∈ D, then H
is cyclic.

Suppose H = 〈h〉. Let ~u = ~uh be a unit vector fixed by h. Let Stab(~u) be the stabilizer of ~u
in SO(3), which consists all rotations around ~u. Note that unit vectors ~x and ~y are in the same
Stab(~u)-orbit if 〈~x, ~u〉 = 〈~y, ~u〉.



JGAA, 25(1) 97–119 (2021) 111

Theorem 3.6.2 For ~u ∈ S2, ~u ∈ D if and only if s2 ∈ Stab(~u)s1Stab(~u).

Proof: For ~u ∈ S2,
ds1(~u) = 〈s1(~u)− ~u, s1(~u)− ~u〉 = 2− 2〈s1(~u), ~u〉.

Therefore, ~u ∈ D if and only if 〈s1(~u), ~u〉 = 〈s2(~u), ~u〉. Suppose 〈s1(~u), ~u〉 = 〈s2(~u), ~u〉, then s1(~u)
and s2(~u) lie in the same Stab(~u)-orbit. Therefore, s2(~u) = g1s1(~u) for some g1 ∈ Stab(~u), which
implies that g2 := s2

−1g1s1 fixes ~u. We conclude that s2 = g1s1g2
−1 ∈ Stab(~u)s1Stab(~u).

Conversely, suppose s2 = g1s1g2 for some g1, g2 ∈ Stab(~u), then

〈s2(~u), ~u〉 = 〈g1s1g2(~u), ~u〉 = 〈g1s1(~u), ~u〉 = 〈s1(~u), g1
−1(~u)〉 = 〈s1(~u), ~u〉.

�

Since we can replace s2 by s2
−1 in the above theorem, we also have ~u ∈ D if and only if s2

−1 ∈
Stab(~u)s1Stab(~u). On the other hand, when ~u is the rotational axis of h, 〈h〉 is a subgroup of
Stab(~u). Consequently, we obtain the following simple criterion.

Corollary 3.6.3 For h ∈ G, if s2 or s2
−1 ∈ 〈h〉s1〈h〉, then D contains the fixed vector of h.

In general, to find all h in Corollary 3.6.3, one can only study by cases. On the other hand,
some h exists for all cases.

Example 3.6.1 Let h1 = s1s2, which is of order m1, then

s2
−1 = 1 · s2−1 = h1

m1s2
−1 = h1

m1−1s1 ∈ 〈h1〉s1〈h1〉.

Therefore, a drawing of the Schreier coset graph X〈h1〉 can be induced by X~uh1
.

Example 3.6.2 Let h2 = s1s2
−1 which is of order m2, then

s2 = 1 · s2 = h2
m2s2 = h2

m2−1s1 ∈ 〈h2〉s1〈h2〉.

Therefore, a drawing of the Schreier coset graph X〈h2〉 can be induced by X~uh2
.

By the same argument as the above two examples, for h3 = s1
−1s2 and h4 = s1

−1s2
−1, we obtain

drawings of Schreier coset graphs X〈h3〉 and X〈h4〉 respectively, namely X~uh3
and X~uh4

.

On the other hand, for A = R(π, ~u3/‖~u3‖) in Example 3.4.2, we have As1A
−1 = s1

−1 and
As2A

−1 = s2
−1, which implies that

Ah1A
−1 = As1s2A

−1 = s1
−1s2

−1 = h3 and ~uh3
= ±A~uh1

.

Therefore, X~uh1
and X~uh3

are isomorphic. Similarly, X~uh2
and X~uh4

are isomorphic.

3.7 Summarization

Let us summarize the results in this section sections. Set
a = 1

sin2 ψ

√
1− δ2

δ1

b = (δ1 − 2
√
δ1δ2 cosψ + δ2)−1

c = (δ1 + 2
√
δ1δ2 cosψ + δ2)−1
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and

` = `(X~u) =
√
ds1(~u),

which is the edge length of X~u. (Note that b < c since cosψ < 0.) When [~u]α =

(√
δ1b,−

√
δ2b, 0

)
,

X~u is the unique shortest equilateral spherical drawing up to isomorphism. Its edge length ` is
equal to

√
b δ1δ2 sinψ and the angle τ between two edges ~u→ s1~u and ~u→ s2~u satisfies

cos τ = cos
θ1
2

cos
θ2
2

+ sin
θ1
2

sin
θ2
2

cosψ.

We denote this vector by ~umin. For the longest drawing, we have the following.

Case I: δ1 ≥ δ2 ≥ δ1 cos2 ψ.

When [~u]α = (a,−a cosψ, 1
sinψ

√
1− a2 sin2 ψ), X~u is the unique longest equilateral drawing up to

isomorphism. Its edge length ` is equal to
√
δ2 and

cos τ =
1

4δ2

(
δ22 + 4 cosψ sin θ1 sin θ2 + 2 sin θ2

√
(δ1 − δ2)(δ2 − δ1 cos2 ψ)

)
Case II: δ1 cos2 ψ > δ2.

When [~u]α =

(√
δ1c,
√
δ2c, 0

)
, X~u is the unique longest equilateral drawing up to isomorphism.

Its edge length ` is equal to
√
cδ1δ2 sinψ and

cos τ = −
(

cos
θ1
2

cos
θ2
2

+ sin
θ1
2

sin
θ2
2

cosψ
)
.

In both cases, we denote this vector by ~umax.
Besides, for h1 = s1s2 and h2 = s1s2

−1, an equilateral drawing of the Schreier coset graph
X〈hi〉 can be induced by X~uhi

for i = 1, 2. Here ~uhi
is a unit vector fixed by hi.

4 Rotational Planar Cayley Graphs

In this section, we study the rotational planar Cayley graphs Cay(G,S) introduced in Section 2.3,
which are not circular. To do so, we will give a permutation representation of the group G so
that one can use computer program to compute the real three dimensional representation σ of G
introduced in Section 2.5 systematically. In fact, once we know cosψ, we can set

~u1 = (1, 0, 0) and ~u2 = (cosψ, sinψ, 0).

Then the real three dimensional representation σ can be characterized by

σ(s1) = R(2π/m1, ~u1) and σ(s2) = R(2π/m2, ~u2).

For each Cayley graph, we list the value of cosψ and four special equilateral spherical drawings
X~umin

, X~umax
, X~uh1

and X~uh2
. Besides, for each drawing X~u, the value of cos τ and the edge length

` are listed in the table. We can identify all except two drawings as the skeleton of some uniform
polyhedron by computing the local configuration. To make the figures clearly, we add a sphere
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of suitable radius in the middle of the drawing and color the edges connecting to the point ~u as
shown in the following figure.

~u

s2~u

s2
−1~u

s1~u

s1
−1~u

~u

s2~u

s2
−1~u

s1~u

The configuration when (s1)2 6= 1 The configuration when (s1)2 = 1
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4.1 The dihedral group Dn

Let G = 〈x, y〉 where x =
(
1n
)(

2 (n − 1)
)
· · · and y = (12 · · ·n). Then G ∼= Dn. The following

table is the result for n = 6.

s1 σ(y)

s2 σ(x)

cosψ 0

X~umin
cos τ=0, `= 2√

5

the skeleton of a prism

X~umax
cos τ=1, `=1(=

√
δ2)

the skeleton of a regular polygon

X~uH1
cos τ=1, `=1(=

√
δ2)

the skeleton of a regular polygon

X~uH2
cos τ=− 1

2 , `=1(=
√
δ2)

the skeleton of a regular polygon
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4.2 The tetrahedral group A4

Let G = 〈x, y〉 where x = (123) and y = (12)(34). Then xy = (134) and G ∼= A4.

s1 σ(y) σ(xy)

s2 σ(x) σ(x)

cosψ − 1√
3

− 1
3

X~umin

cos τ=− 1
2 , `=
√

8
11

cos τ=0, `=1

the skeleton of a truncated tetrahedron cuboctahedron

X~umax
cos τ= 1

12 (9+
√
5), `=

√
3 cos τ= 2

3 , `=
√
3

the skeleton of a unknown small stellated dodecahedron

X~uH1
cos τ=1, `=

√
8
3 cos τ= 1

2 , `=
√

8
3

the skeleton of a tetrahedron tetrahedron

X~uH2
cos τ= 1

2 , `=
√

8
3

cos τ=0, `=
√
2

the skeleton of a tetrahedron octahedron
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4.3 The octahedral group S4

Let G = 〈x, y〉 where x = (134) and y = (12). Then xy = (1234) and G ∼= S4.

s1 σ(y) σ(x) σ(y)

s2 σ(x) σ(xy) σ(xy)

cosψ −
√

2
3 − 1√

3
− 1√

2

X~umin
cos τ=− 1√

2
, `= 2√

7+4
√

2
cos τ=0, `= 2√

5+2
√

2
cos τ=− 1

2 , `=
√

2
5

the skeleton of a truncated cube rhombicuboctahedron truncated octahedron

X~umax
cos τ= 5

6 , `=
√
3 cos τ= 1

2 , `=
√
2 cos τ= 1

2 , `=
√
2

the skeleton of a unknown octahedron octahedron

X~uH1
cos τ=1, `=

√
2 cos τ= 1

2 , `=
√
2 cos τ=1, `= 2√

3

the skeleton of a octahedron octahedron cube

X~uH2
cos τ=− 1

2 , `=
√
2 cos τ=− 1

2 , `=1 cos τ=0, `= 2√
3

the skeleton of a octahedron cuboctahedron cube
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4.4 The icosahedral group A5

Let G = 〈x, y〉 where x = (124) and y = (23)(45). Then xy = (12345) and G ∼= A5.

s1 σ(y) σ(x) σ(y)

s2 σ(x) σ(xy) σ(xy)

cosψ −
√

1
6

(
3 +
√

5
)

−
√

1
15

(
5 + 2

√
5
)

−
√

1
10

(
5 +
√

5
)

X~umin

cos τ=−1
4 (
√
5+1), `=

√
2
61 (37−15

√
5) cos τ=0, `=

√
1
41 (44−16

√
5) cos τ=− 1

2 , `=
√

2
109 (29−9

√
5)

the skeleton of a truncated dodecahedron rhombicosidodecahedron truncated icosahedron

X~umax

cos τ= 1
4 (
√
5+1), `=

√
2+ 2√

5
cos τ=0, `= 2√

3 cos τ= 1
2 , `=

√
8√
5+5

the skeleton of a small stellated dodecahedron dodecadodecahedron icosahedron

X~uH1
cos τ=1, `=

√
8√
5+5

cos τ= 1
2 , `=

√
8√
5+5 cos τ=1, `=

√
6−2
√

5
3

the skeleton of a icosahedron icosahedron dodecahedron

X~uH2
cos τ= 1

2 , `=
√

8√
5+5

cos τ=−1
4 (
√
5+1), `= 1

2 (
√
5−1) cos τ= 1

4 (1−
√
5), `=

√
6−2
√

5
3

the skeleton of a icosahedron icosidodecahedron dodecahedron
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4.5 Conclusion

From the results in Section 4.1 to Section 4.4, we see that the shortest equilateral drawing of a
rotational planar Cayley graph gives us the skeleton of the corresponding uniform polyhedron.
On the other hand, some longest equilateral drawings can not be identified as the skeleton of any
uniform polyhedron and it is interesting to figure out these special structures.

As a final remark, we like to point out all vertex-transitive equilateral polyhedra can be real-
ized by this manner if one consider all possible three representations of the underlying groups of
rotational planar Cayley graphs.
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