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Abstract. A 3-connected graph G is essentially 4-connected if, for any 3-cut
S ⊆ V (G) of G, at most one component of G − S contains at least two vertices.
We prove that every essentially 4-connected maximal planar graph G on n vertices
contains a cycle of length at least 2

3 (n+ 4); moreover, this bound is sharp.
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1 Introduction and Preliminaries

We consider finite, simple, and undirected graphs. The circumference circ(G) of a graph G is
the length of a longest cycle of G. A cycle C of G is an outer independent cycle of G if the
set V (G) \ V (C) is independent. (Note that an outer independent cycle is sometimes called a
dominating cycle ([3]), although this is in contrast to the more commonly used definition of a
dominating subgraph H of G, where V (H) dominates V (G) in the usual sense.) A set S ⊆ V (G)
(S ⊆ E(G)) is a k-cut (a k-edge-cut) of G if |S| = k and G − S is disconnected. A 3-cut (a 3-
edge-cut) S of a 3-connected (3-edge-connected) graph G is trivial if at most one component of
G−S contains at least two vertices and the graph G is essentially 4-connected (essentially 4-edge-
connected) if every 3-cut (3-edge-cut) of G is trivial. A 3-edge-connected graph G is cyclically
4-edge-connected if for every 3-edge-cut S of G, at most one component of G−S contains a cycle.
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It is well-known that for (3-connected) cubic graphs different from the triangular prism K3 ×
K2 (which is essentially 4-connected only) these three notions coincide (see e.g. [6] and [16]).
Obviously, the line graph H = L(G) of a 3-connected graph G is 4-connected if and only if G
is essentially 4-edge-connected. These two observations are reasons for the quite great interest in
studying all these three concepts of connectedness of graphs intensively.

Zhan [17] proved that every 4-edge-connected graph has a Hamiltonian line graph. Broersma [3]
conjectured that even every essentially 4-edge-connected graph has a Hamiltonian line graph and
showed that this is equivalent to the conjecture of Thomassen [14] stating that every 4-connected
line graph is Hamiltonian (which is known to be equivalent to the conjecture by Matthews and
Sumner [12] stating that every 4-connected claw-free graph is Hamiltonian, as shown by Ryjáček
[13]). Among others, the subclass of essentially 4-edge-connected cubic graphs is interesting due
to a conjecture of Fleischner and Jackson [6] stating that every essentially 4-edge-connected cubic
graph has an outer independent cycle which is equivalent to the previous three conjectures.

Regarding to the existence of long cycles in essentially 4-connected graphs we mention the
following

Conjecture 1 (Bondy, see [8]) There exists a constant c, 0 < c < 1, such that for every essen-
tially 4-connected cubic graph on n vertices, circ(G) ≥ cn.

Note that the conjecture of Fleischner and Jackson implies Conjecture 1 with c = 3
4 . Bondy’s

conjecture was later extended to all cyclically 4-edge-connected graphs (see [6]). Máčajová and
Mazák [11] constructed essentially 4-connected cubic graphs on n = 8m vertices with circumference
7m + 2. We remark that the conjecture of Fleischner and Jackson and, therefore, also Bondy’s
Conjecture with c = 3

4 (this is the result of Grünbaum and Malkevitch [7]) are true for planar
graphs, which can be seen easily by the forthcoming Lemma 1. Many results concerning the
circumference of essentially 4-connected planar graphs G can be found in the literature.

For the class of essentially 4-connected cubic planar graphs, Tutte [15] showed that it contains
a non-Hamiltonian graph, Aldred, Bau, Holton, and McKay [1] found a smallest non-Hamiltonian
graph on 42 vertices, and Van Cleemput and Zamfirescu [16] constructed a non-Hamiltonian graph
on n vertices for all even n ≥ 42. As already mentioned, Grünbaum and Malkevitch [7] proved
that circ(G) ≥ 3

4n for any essentially 4-connected cubic planar graph G on n vertices and Zhang
[18] (using the theory of Tutte paths) improved this lower bound on the circumference by 1.
Recently, in [10], an infinite family of essentially 4-connected cubic planar graphs on n vertices
with circumference 359

366n was constructed.

In [9], Jackson and Wormald extended the problem to find lower bounds on the circumference
to the class of arbitrary essentially 4-connected planar graphs. Their result circ(G) ≥ 2n+4

5 was
improved in [5] to circ(G) ≥ 5

8 (n + 2) for every essentially 4-connected planar graph G on n
vertices. On the other side, there are infinitely many essentially 4-connected maximal planar
graphs G with circ(G) = 2

3 (n + 4) ([9]). To see this, let G′ be a 4-connected maximal planar
graph on n′ ≥ 6 vertices and let G be obtained from G′ by inserting a new vertex into each face
of G′ and connecting it with all three boundary vertices of that face. Then G is an essentially
4-connected maximal planar graph on n = 3n′ − 4 vertices and, since G′ is Hamiltonian, it is easy
to see that circ(G) = 2n′ = 2

3 (n + 4). It is still open whether there is an essentially 4-connected
planar graph G that satisfies circ(G) < 2

3 (n+ 4). Indeed, we pose the following (to our knowledge
so far unstated) Conjecture 2, which has been the driving force in that area for over a decade.

Conjecture 2 For every essentially 4-connected planar graph on n vertices, circ(G) ≥ 2
3 (n+ 4).
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By the forthcoming Theorem 1, Conjecture 2 is shown to be true for essentially 4-connected
maximal planar graphs.

We remark that G− S has exactly two components for every 3-connected planar graph G and
every 3-cut S of G. Thus, in this case, G is essentially 4-connected if and only if S forms the
neighborhood of a vertex of degree 3 of G for every 3-cut S of G. This property will be used
frequently in the proof of Theorem 1.

A cycle C of G is a good cycle of G if C is outer independent and degG(x) = 3 for all x ∈
V (G) \ V (C). An edge xy of a good cycle C is extendable if x and y have a common neighbor
z ∈ V (G) \ V (C). In this case, the cycle C ′ of G, obtained from C by replacing the edge xy with
the path (x, z, y) is again good (and longer than C). The forthcoming Lemma 1 is an essential
tool in the proof of Theorem 1 (an implicit proof for cubic essentially 4-connected planar graphs
can be found in [7], the general case is proved in [4]).

Lemma 1 Every essentially 4-connected planar graph on n ≥ 11 vertices contains a good cycle.

Theorem 1 For every essentially 4-connected maximal planar graph G on n ≥ 8 vertices,

circ(G) ≥ 2

3
(n+ 4).

2 Proof of Theorem 1

Suppose n ≥ 11, as for n ∈ {8, 9, 10}, Theorem 1 follows from the fact that G is Hamiltonian ([2]).
Using Lemma 1, let C = [v1, v2, . . . , vk] (indices of vertices of C are taken modulo k in the whole
paper) be a longest good cycle of length k of G (i.e., circ(G) ≥ k) and let H = G[V (C)] be the
graph obtained from G by removing all vertices of degree 3 which do not belong to C. Obviously,
H is maximal planar and C is a Hamiltonian cycle of H. A face ϕ of H is an empty face of H if ϕ
is also a face of G, otherwise ϕ is a non-empty face of H. Denote by Fe(H) the set of empty faces
of H and let fe(H) = |Fe(H)|. Note that every face of G has at least two (of three) vertices on
C. The three neighbors of a vertex of V (G) \ V (C) induce a separating 3-cycle of G creating the
boundary of a non-empty face of H, which has no edge in common with C because otherwise such
an edge would be an extendable edge of C in G.

Let H1 and H2 be the spanning subgraphs of H consisting of the cycle C and of its chords
lying in the interior and in the exterior of C, respectively. Note that E(H1) ∩E(H2) = E(C) and
H1 and H2 are maximal outerplanar graphs, both having k-gonal outer face and k − 2 triangular
faces. Let Ti be the weak dual of Hi, i ∈ {1, 2}, which is the graph having all triangular faces of
Hi as vertex set such that two vertices of Ti are adjacent if the triangular faces share an edge in
Hi. Obviously, Ti is a tree of maximum degree at most three.

A face ϕ of H is a j-face if exactly j of its three incident edges belong to E(C). Since n ≥ 11,
there is no 3-face in H and each face of H is a j-face with j ∈ {0, 1, 2}. Denote by fj(Hi) the
number of empty j-faces of Hi. Since C does not contain any extendable edge, the following claim
is obvious.

Claim 1 Each face of H incident with an edge of any longest good cycle (in particular, each 1- or
2-face) is empty.

An edge e of C incident with a j-face ϕ and an `-face ψ, where j, ` ∈ {1, 2}, is a (j, `)-edge. Let
ϕ be a 2-face of Hi. The sequence Bϕ = (ϕ,ϕ2, . . . , ϕr), r ≥ 2, is the ϕ-branch if ϕ2, . . . , ϕr−1
are 1-faces of Hi, ϕr is a 0-face of Hi, and ϕj , ϕj+1 (1 ≤ j ≤ r − 1) are adjacent (i.e. Bϕ is a
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minimal path in Ti with end vertices of degree 1 and 3). The rim R(Bϕ) of the ϕ-branch Bϕ is
the subgraph of C induced by all edges of C that are incident with an element of Bϕ. Hence, it is
easy to see:

Claim 2 The rim of a ϕ-branch Bϕ = (ϕ,ϕ2, . . . , ϕr) is a path of length r.

Claim 3 Let ϕ = [v1, v2, v3] be a 2-face of Hi, let Bϕ = (ϕ,ϕ2, . . . , ϕr), r ≥ 2, be the ϕ-branch of
Hi, and let v0v2 ∈ E(H3−i). If

(a) R(Bϕ) = (v1, v2, . . . , vr+1) is the rim of Bϕ or

(b) R(Bϕ) = (v0, v1, . . . , vr) is the rim of Bϕ and v−1v2 ∈ E(H3−i), or

(c) R(Bϕ) = (v3−r, . . . , v2, v3) is the rim of Bϕ and v−1v2 ∈ E(H3−i),

then ϕr is empty.

v0 v1 v2 v3 v4 vr vr+1

ϕ

ϕr

(a)

v−1 v0 v1 v2 v3 v4 vr−1 vr

ϕ

ϕr

(b)

v−1 v0 v1 v2 v3 v4 vs−1 vs vs+1vr−1 vr

ϕ

ϕr

(c)

Fig. 1. A longest good cycle (cyan) sharing an edge with ϕr.

Proof.
(a) The cycle C ′ obtained from C by replacing the path (v0, v1, . . . , vr+1) with the path

(v0, v2, . . . , vr, v1, vr+1) (Fig. 1(a)) is another longest good cycle of G and contains the edge v1vr+1

incident with ϕr, thus ϕr is empty (by Claim 1).
(b) Let ϕs = [v0, v1, vs], for some s with 3 ≤ s ≤ r, be a 1-face of Hi. The cycle C ′ obtained

from C by replacing the path (v−1, v0, . . . , vr) by the path (v−1, v2, . . . , vr−1, v1, v0, vr), for s = r
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(Fig. 1(b)), or by the path (v−1, v2, v1, v3, . . . , vr−1, v0, vr), for s ≤ r − 1 (Fig. 1(c)), is a longest
good cycle of G and contains the edge v0vr incident with ϕr, thus ϕr is empty (by Claim 1).

(c) If r ≤ 3, then ϕr is empty by (a) or (b). If r ≥ 4, then v0v3, v−1v3 ∈ E(Hi), thus
{v−1, v2, v3} is a non-trivial 3-cut, a contradiction. �

These tools will be used continuously in the following; we continue with the proof of Theorem 1.
Hereby, we consider two cases. In the first case, both subgraphs H1 and H2 have some 0-faces. By
using a customized discharging method, we distribute some weights from edges to faces to prove
that sufficiently many faces are empty (each empty face will finally contain weight at most 2

3 ).
In the second case, there are only empty faces on one side of C, so that all vertices not in C are
located on the other side of C. We have to prove that there are some additional empty faces on
this side.

CASE 1. Let H1 and H2 both contain at least two 0-faces or one non-empty 0-face.

For every edge e of C we define the weight w0(e) = 1. Obviously,
∑

e∈E(C)

w0(e) = |E(C)| = k.

First redistribution of weights.

Each edge of C sends weight to both incident faces as follows

Rule R1. A (1,1)-edge sends 1
2 to both incident 1-faces.

Rule R2. A (1,2)-edge sends 2
3 to the incident 1-face and 1

3 to the incident 2-face.

Rule R3. A (2,2)-edge sends 1
2 to both incident 2-faces.

The edges of C completely redistribute their weights to incident 1- and 2-faces. For an empty
face ϕ, let w1(ϕ) be the total weight obtained by ϕ (in first redistribution). Obviously, for an
empty face ϕ, it is

w1(ϕ) =



1, if ϕ is a 2-face incident with two (2,2)-edges,
5
6 , if ϕ is a 2-face incident with a (1,2)-edge and a (2,2)-edge,
2
3 , if ϕ is a 2-face incident with two (1,2)-edges,
2
3 , if ϕ is a 1-face incident with a (1,2)-edge,
1
2 , if ϕ is a 1-face incident with a (1,1)-edge,

0, if ϕ is a 0-face.

Moreover,
∑

ϕ∈Fe(H)

w1(ϕ) = |E(C)| = k.

Second redistribution of weights.

The weight of 2-faces of H exceeding 2
3 will be redistributed to 1-faces and empty 0-faces of H

by the following rules. Let ϕ be a 2-face of Hi with w1(ϕ) > 2
3 (i.e. incident with at least one

(2,2)-edge) and let Bϕ = (ϕ,ϕ2, . . . , ϕr), r ≥ 2, be the ϕ-branch. Moreover, let α be a 2-face of
H3−i adjacent to ϕ and let α2 be the face of H3−i adjacent to α.
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Rule R4. ϕ sends w1(ϕ)− 2
3 to ϕr if ϕr is empty and r ≤ 3.

Rule R5. ϕ sends 1
6 to ϕj if ϕj (2 ≤ j ≤ r − 1) is a 1-face incident with a (1,1)-edge.

Rule R6. ϕ sends 1
6 to ϕr if ϕr is empty and r ≥ 4.

Rule R7. ϕ sends 1
6 to α2 if α is incident with a (1,2)-edge and α2 is an empty 0-face.

Rule R8. ϕ sends 1
6 to β2, where β is a 2-face of H3−i having exactly one common vertex

with ϕ and incident with two (1,2)-edges and β2 is an empty 0-face of H3−i
adjacent to β.

ϕ

α β

e0-f ϕ2
1
3

R4

ϕ

α β

ϕ2

e0-f ϕ3
1
3

R4

1-f

ϕ

α

e0-f ϕ2
1
6

R4

1-f

ϕ

α

ϕ2

e0-f ϕ3
1
6

R4

1-f

ϕ
ϕj

1
6

R5

ϕ
ϕ2

e0-f ϕr
1
6

R6

1-f ϕ

α

e0-f α2

1
6

R7

1-f
1-f 1-fϕ

α β

e0-f β2

1
6

R8

Fig. 2. Redistribution rules R4–8 (1-f is a 1-face and e0-f is an empty 0-face).

For an empty face ϕ, let w2(ϕ) be the total weight obtained by ϕ (after second redistribution).
Obviously,

∑
ϕ∈Fe(H)

w2(ϕ) = |E(C)| = k (as non-empty faces do not obtain any weight). In the

following, we will show that the weight w2(ϕ) of each (empty) face ϕ does not exceed 2
3 which will

mean k =
∑

ϕ∈Fe(H)

w2(ϕ) ≤ 2
3fe(H). The maximal planar graph G has exactly 2n− 4 faces. Each

of fe(H) ≥ 3
2k empty faces of H is a face of G as well, and each of n− k (pairwise non-adjacent)

vertices of G not belonging to C (whose removal has created a non-empty face of H) is incident
with three (“private”) faces of G. Hence 2n− 4 = |F (G)| = fe(H) + 3(n− k) ≥ 3

2k + 3n− 3k and
finally k ≥ 2

3 (n+ 4) will follow.
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Weight of a 2-face.

Let ϕ = [v1, v2, v3] be a 2-face of Hi and let Bϕ = (ϕ,ϕ2, . . . , ϕr), r ≥ 2, be the ϕ-branch. As
already mentioned, 2

3 ≤ w1(ϕ) ≤ 1. We check that the weight of ϕ exceeding 2
3 will be shifted in

the second redistribution.
1. Let ϕ be incident with two (2,2)-edges (note that w1(ϕ) = 1). Denote α = [v0, v1, v2] and
β = [v2, v3, v4] the 2-faces of H3−i adjacent to ϕ. Let α2 and β2 be the face of H3−i adjacent
to α and β, respectively. Each of the faces ϕ2, α2, and β2 is either a 1-face or empty 0-face (by
Claim 3a).

1.1. Let α2 and β2 be 0-faces (possibly α2 = β2).
1.1.1. If edges v0v1 and v3v4 of C do not belong to the rim R(Bϕ) of Bϕ, then r = 2, thus ϕ sends
1
3 to empty 0-face ϕ2 (by R4).
1.1.2. If v0v1 belongs to the rim R(Bϕ) and v3v4 does not belong to R(Bϕ), then ϕ2 = [v0, v1, v3]
is a 1-face and ϕr is empty (by Claim 3a). Thus ϕ sends weight ≥ 1

6 to ϕr (by R4 or R6) and 1
6

to α2 (by R7). (Similarly if v0v1 does not belong to R(Bϕ) and v3v4 belongs to R(Bϕ).)
1.1.3. If edges v0v1 and v3v4 belong to the rim R(Bϕ), then both are (1,2)-edges. Thus ϕ sends
1
6 to α2 and 1

6 to β2 (by R7).

1.2. Let α2 = [v−1, v0, v2] be a 1-face and β2 be a 0-face. (Similarly if α2 is a 0-face and β2 is a
1-face.)
1.2.1. If v3v4 does not belong to the rim R(Bϕ), then r ≤ 3 and ϕr is empty (by proof of Claim 3c).
Thus ϕ sends 1

3 to ϕr (by R4).
1.2.2. If v3v4 belongs to the rim R(Bϕ) and v0v1 does not belong to R(Bϕ), then ϕ2 = [v1, v3, v4]
is a 1-face and ϕr is empty (by Claim 3a). Thus ϕ sends weight ≥ 1

6 to ϕr (by R4 or R6) and 1
6

to β2 (by R7).
1.2.3. Let edges v3v4 and v0v1 belong to the rim R(Bϕ), then both are (1,2)-edges. If v0v1
and v3v4 are incident with ϕ2 and ϕ3, then {v0, v2, v4} is a non-trivial 3-cut, a contradiction. If
ϕ2 = [v0, v1, v3] and ϕ3 = [v−1, v0, v3], then {v−1, v2, v3} is a non-trivial 3-cut, a contradiction as
well. Thus ϕ2 = [v1, v3, v4] and ϕ3 = [v1, v4, v5].
1.2.3.1. If v−1v0 does not belong to the rim R(Bϕ), then ϕr is empty (by Claim 3b). Thus ϕ
sends 1

6 to ϕr (by R6) and 1
6 to β2 (by R7).

1.2.3.2. If v−1v0 belongs to the rim R(Bϕ), then v−1v0 is a (1,1)-edge. Thus ϕ sends 1
6 to ϕj , a

1-face of Bϕ incident with v−1v0 (by R5) and 1
6 to β2 (by R7).

1.3. Let α2 = [v−1, v0, v2] and β2 = [v2, v4, v5] be 1-faces.
1.3.1. If v3v4 does not belong to the rim R(Bϕ), then r ≤ 3 and ϕr is empty (by proof of Claim 3c).
Thus ϕ sends 1

3 to ϕr (by R4). (Similarly if v0v1 does not belong to R(Bϕ).)
1.3.2. Let edges v0v1 and v3v4 belong to the rim R(Bϕ), then both are (1,2)-edges. If v0v1
and v3v4 are incident with ϕ2 and ϕ3, then {v0, v2, v4} is a non-trivial 3-cut, a contradiction. If
ϕ2 = [v0, v1, v3] and ϕ3 = [v−1, v0, v3], then {v−1, v2, v3} is a non-trivial 3-cut, a contradiction as
well. (Similarly if ϕ2 = [v1, v3, v4] and ϕ3 = [v1, v4, v5].)

2. Let ϕ be incident with (2,2)-edge v1v2 and (1,2)-edge v2v3 (note that w1(ϕ) = 5
6 ). Denote

α = [v0, v1, v2] the 2-face of H3−i adjacent to ϕ and let α2 be the face of H3−i adjacent to α. Each
of the faces ϕ2 and α2 is either a 1-face or empty 0-face (by Claim 3a).

2.1. Let α2 be 0-face.
2.1.1. If v0v1 does not belong to the rim R(Bϕ), then ϕr is empty (by Claim 3a). Thus ϕ sends
1
6 to ϕr (by R4 or R6).
2.1.2. If v0v1 belongs to the rim R(Bϕ), then v0v1 is a (1,2)-edge. Thus ϕ sends 1

6 to α2 (by R7).
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2.2. Let α2 be a 1-face incident with v−1v0 (i.e. α2 = [v−1, v0, v2]).
2.2.1. If v3v4 does not belong to the rim R(Bϕ), then r ≤ 3 and ϕr is empty (by proof of Claim 3c).
Thus ϕ sends 1

6 to ϕr (by R4).
2.2.2. If v3v4 belongs to the rim R(Bϕ) and v0v1 does not belong to R(Bϕ), then ϕ2 = [v1, v3, v4]
is a 1-face and ϕr is empty (by Claim 3a). Thus ϕ sends 1

6 to ϕr (by R4 or R6).
2.2.3. Let edges v3v4 and v0v1 belong to the rim R(Bϕ). If v−1v0 does not belong to R(Bϕ), then
ϕr is empty (by Claim 3b). Thus ϕ sends 1

6 to ϕr (by R6). Otherwise v−1v0 belongs to R(Bϕ),
thus it is a (1,1)-edge incident with a 1-face ϕj of Bϕ. Hence ϕ sends 1

6 to ϕj (by R5).

2.3. Let α2 be a 1-face incident with v2v3 (i.e. α2 = [v0, v2, v3]). Since v0v3 ∈ E(H3−i), ϕ2 cannot
be the 1-face [v0, v1, v3] in Hi.
2.3.1. If v3v4 does not belong to the rim R(Bϕ), then r = 2, thus ϕ sends 1

6 to ϕ2 (by R4).
2.3.2. If v3v4 belongs to the rim R(Bϕ), then r ≥ 3 and ϕ2 = [v1, v3, v4].
2.3.2.1. If v3v4 is incident with a 1-face of H3−i (i.e., v3v4 is a (1,1)-edge), then ϕ sends 1

6 to ϕ2

(by R5).
2.3.2.2. Let v3v4 be incident with a 2-face β of H3−i (necessarily, β = [v3, v4, v5]). If r = 3, then
ϕ3 is empty (by Claim 3a), thus ϕ sends 1

6 to ϕ3 (by R4). If r = 4, then ϕ3 = [v1, v4, v5] (as
{v0, v3, v4} is a non-trivial 3-cut if ϕ3 = [v0, v1, v4]) and ϕ4 is empty (by Claim 3a), thus ϕ sends
1
6 to ϕ4 (by R6). Finally, let r ≥ 5. Necessarily ϕ3 = [v1, v4, v5] (as for r = 4) and ϕ4 = [v1, v5, v6]
(as {v0, v3, v5} is a non-trivial 3-cut if ϕ4 = [v0, v1, v5]) are 1-faces of Bϕ. If v5v6 is a (1,1)-edge,
then ϕ sends 1

6 to ϕ4 (by R5). Otherwise v5v6 is a (1,2)-edge, thus it does not belong to β-branch
(in H3−i) and therefore β2 is a 0-face, which is, moreover, empty (as the cycle obtained from C by
replacing the path (v0, . . . , v5) by the path (v0, v2, v1, v4, v3, v5) is a longest good cycle of G and
contains the edge v3v5 incident with β2 (Claim 1)). Hence ϕ sends 1

6 to β2 (by R8).

Weight of a 1-face.

To estimate the weight of a 1-face, we use the following simple observation:

Claim 4 Each 1-face of H belongs to at most one branch.

Let ψ be a 1-face incident with an edge e of C. If e is a (1,2)-edge, then ψ obtains weight 2
3

from e (by R2) only. Otherwise e is a (1,1)-edge, thus ψ obtains 1
2 from e (by R1). Furthermore,

in this case, ψ can get 1
6 from a 2-face ϕ (by R5) if ψ belongs to the ϕ-branch. Hence w2(ψ) ≤ 2

3 .

Weight of an empty 0-face.

Each empty 0-face ω belongs to at most two branches (in Case 1). Let ϕ be a 2-face of Hi with
the ϕ-branch Bϕ = (ϕ,ϕ2, . . . , ϕr) such that ϕr = ω, and let e be the edge incident with ϕr and
ϕr−1 (where ϕr−1 = ϕ for r = 2).

If ϕ is adjacent to two 2-faces, then ω gets through e the weight 1
3 (by R4) for r ≤ 3 or the

weight 1
6 (by R6) for r ≥ 4. If ϕ is adjacent to one 2-face, then ω gets through e the weight 1

6 (by
R4) and additionally 1

6 (by R7) for r = 2 or the weight at most 1
6 (by R4) for r = 3 or the weight

1
6 (by R6) for r ≥ 4. Finally, if ϕ is adjacent to no 2-face, then ω gets through e the weight 1

6 (by
R6) for r ≥ 4 or the weight at most 2× 1

6 (by R8) for r ≤ 3.

We showed that w2(ϕ) ≤ 2
3 for each empty face ϕ and completed the Case 1. Thus, we can

assume that in Hi are only empty faces and among them, at most one face is a 0-face. To complete
the proof, we have to show that there are some empty faces in H3−i as well.



JGAA, 25(1) 121–132 (2021) 129

CASE 2. Let Hi contain no 0-face or exactly one 0-face which is additionally empty.

Obviously, if Hi contains no 0-face, then it contains two 2-faces α1 and α2 (since Ti is a path and
2-faces of Hi are leaves of Ti). Note that, (only) in this case, the branches in Hi are not defined.

Remember that H = G[V (C)] has k ≥ 7 vertices (as otherwise G with at most k + 2 ≤ 8
vertices is Hamiltonian). If Hi contains exactly one 0-face, then it contains three 2-faces α1, α2

and α3 (since Ti is a subdivision of K1,3 and 2-faces of Hi are leaves of Ti). We assume that H3−i
contains at least two 0-faces as otherwise all but at most one faces of H3−i are empty and G has
n ≤ |V (H)|+ 1 = k + 1 vertices and Theorem 1 follows immediately (with n ≥ 11).

Distribution of points.

To estimate the number of empty 0- and 1-faces in H3−i, each 2-face αj of Hi (j ∈ {1, 2} if Hi

contains no 0-face and j ∈ {1, 2, 3} if Hi contains one 0-face, respectively) will distribute 1 or 2
points to faces of H3−i. Let αj be adjacent to the faces ϕ and ψ of H3−i.

Rule P1. If ϕ and ψ are 2-faces of H3−i with branches Bϕ = (ϕ,ϕ2, . . . , ϕr) and Bψ =
(ψ,ψ2, . . . , ψt), then ϕr and ψt will each receive 1 point (or 2 points if ϕr = ψt)
from αj .

Rule P2. If ϕ and ψ are 1-faces of H3−i, then ϕ and ψ will each receive 1 point from αj .

Rule P3. If ϕ is a 2-faces of H3−i with ϕ-branch Bϕ = (ϕ,ϕ2, . . . , ϕr) and ψ is a 1-face of
H3−i not belonging to Bϕ, then ϕr and ψ will each receive 1 point from αj .

Rule P4. If ϕ is a 2-faces of H3−i with ϕ-branch Bϕ = (ϕ,ϕ2, . . . , ϕr) and ψ is a 1-face of
H3−i belonging to Bϕ, then only ψ will receive 1 point from αj .

For a face ϕ of H3−i, let p(ϕ) be the total number of points carried by ϕ (in the distribution
of points).

Claim 5 f1(H3−i) + 2f0(H3−i) ≥
∑

ϕ∈Fe(H3−i)

p(ϕ).

Proof. We have to prove that each 1-face of H3−i gets at most 1 point and that each 0-face of
H3−i gets points only if it is empty and it gets at most 2 points. Consequently, Claim 5 follows by
simple counting.

Let β be a 1-face of H3−i. Since β can only get points if it is adjacent to some αj and there
can only be one such face then p(β) ≤ 1.

Let β be a 0-face of H3−i. Since β can only get points if it belongs to a branch and it belongs to
at most two branches (as there are at least two 0-faces in H3−i), then p(β) ≤ 2. Assume first that
β gets a point by P1. Then there is αj incident with two (2, 2)-edges and adjacent 2-faces ϕ and
ψ of H3−i. Let Bϕ = (ϕ,ϕ2, . . . , ϕr) with ϕr = β be the branch which ends in β. By Claim 3a,
ϕr = β is an empty 0-face.

Thus, assume that β gets a point by P3. Then there is αj incident with a (1, 2)-edge with
adjacent 1-face ψ in H3−i and a (2, 2)-edge with adjacent 2-face ϕ such that ψ does not belong
to the branch Bϕ = (ϕ,ϕ2, . . . , ϕr) with ϕr = β. Since the common edge of αj and ψ does not
belong to the rim R(Bϕ), again by Claim 3a, ϕr = β is an empty 0-face. �

Claim 6 f1(H3−i) + 2f0(H3−i) ≥ 4.

Proof. If
∑

ϕ∈Fe(H3−i)

p(ϕ) ≥ 4, then f1(H3−i) + 2f0(H3−i) ≥ 4 (by Claim 5). Assume
∑

ϕ∈Fe(H3−i)

p(ϕ) ≤ 3.



130 Fabrici et al. Circumference of essentially 4-conn. planar triangulations

1. Let Hi contains exactly one 0-face. As there are three 2-faces α1, α2, α3 in Hi (note, that Ti is
a subdivided 3-star in this case), then

∑
ϕ∈Fe(H3−i)

p(ϕ) = 3. Furthermore, only P4 was applied to

each αj (j ∈ {1, 2, 3}) hence there are three 1-faces with 1 point and they belong to three different
branches.

Since |V (H)| = k ≥ 7, there is j ∈ {1, 2, 3} such that αj is adjacent to a 1-face δ of Hi. Let ϕ
be the adjacent 2-face of αj in H3−i and Bϕ = (ϕ,ϕ2, . . . , ϕr) be its branch.

1.1. If r ≥ 4, then ϕ2 and ϕ3 are 1-faces of the same branch. Thus, at most one among ϕ2 and
ϕ3 has a point and f1(H3−i) ≥ 4.

1.2. If r = 3, then δ and ϕ are not adjacent (i.e. δ 6= ϕ2, since H has no multiple edges) and ϕ3

is an empty 0-face (by Claim 3b), hence f1(H3−i) + f0(H3−i) ≥ 4.

2. Let Hi contains no 0-face. Since
∑

ϕ∈Fe(H3−i)

p(ϕ) ≤ 3, there is j ∈ {1, 2} such that P4 was

applied to αj . Let δ be the 1-face of Hi adjacent to αj (since |V (H)| = k ≥ 7), let ϕ and ψ be
the 2-face and 1-face of H3−i adjacent with αj , respectively, and let Bϕ = (ϕ,ϕ2, . . . , ϕr) be the
branch of ϕ. We may assume αj = [v1, v2, v3] and ϕ = [v2, v3, v4].

2.1. Let r ≤ 4.

2.1.1 If δ = [v0, v1, v3], then v0v1 does not belong to the rim R(Bϕ) (otherwise ϕ2 = [v1, v2, v4],
ϕ = [v0, v1, v4] and v0, v3, v4 is a non-trivial 3-cut, a contradiction) and ϕr is an empty 0-face (by
Claim 3b). By P1–4, there is a face in H3−i other than ψ and ϕr with a point, thus f1(H3−i) +
2f0(H3−i) ≥ 4.

2.1.2 If δ = [v1, v3, v4], then ϕ2 = [v2, v4, v5] (since v1v4 ∈ E(Hi)), ψ = ϕ3 = [v1, v2, v5], and
{v1, v4, v5} is a non-trivial 3-cut, a contradiction.

2.2. Let r = 5. There are three 1-faces (in fact ϕ2, ϕ3, and ϕ4) all belonging to the same branch
Bϕ. We may assume that P4 was applied to αj and P2 was applied to α3−j , and all three 1-faces
are adjacent to α1 or α2 (since otherwise there is another 1-face or empty 0-face and Claim 6
follows).

2.2.1. If α3−j = [v−1, v0, v1], then rim R(Bϕ) = (v−1, . . . , v4), thus ϕ2 = [v1, v2, v4] and δ =
[v1, v3, v4], a contradiction to the simplicity of H.

2.2.2. If α3−j = [v4, v5, v6] and δ = [v0, v1, v3], then rim R(Bϕ) = (v1, . . . , v6) and ϕ5 is an empty
0-face (by Claim 3b), thus f1(H3−i) + f0(H3−i) ≥ 4.

2.2.3. If α3−j = [v4, v5, v6] and δ = [v1, v3, v4], then rim R(Bϕ) = (v1, . . . , v6). Hence v1v6 ∈
E(H3−i) and consequently {v1, v4, v6} is a non-trivial 3-cut, a contradiction.

2.3. If r ≥ 6, then there are at least four 1-faces in Bϕ, thus f1(H3−i) ≥ 4. �

Remember that each j-face of H3−i is incident with j (“private”) edges of C, hence 2f2(H3−i)+
f1(H3−i) = k. As each of the k−2 triangular faces of Hi is empty, all non-empty faces of H belong
to H3−i and their number is (k−2)−f2(H3−i)−f1(H3−i)−f0(H3−i) = (k−2)− 1

2 (k−f1(H3−i))−
f1(H3−i) − f0(H3−i) = k

2 − 2 − 1
2 (f1(H3−i) + 2f0(H3−i)) ≤ k

2 − 4 (by Claim 6). Finally, at most
k
2 − 4 vertices of G lie outside the cycle C (and exactly k vertices on C), hence n ≤ k + (k2 − 4)
and k ≥ 2

3 (n+ 4) follows, which completes the proof of Theorem 1.
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[2] D. Barnette and E. Jucovič. Hamiltonian circuits on 3-polytopes. Journal of Combinatorial
Theory, 9(1):54–59, 1970. doi:10.1016/S0021-9800(70)80054-0.

[3] H. J. Broersma. On some intriguing problems in hamiltonian graph theory—a survey. Discrete
Mathematics, 251(1-3):47–69, 2002. doi:10.1016/s0012-365x(01)00325-9.

[4] I. Fabrici, J. Harant, and S. Jendrol’. On longest cycles in essentially 4-connected planar
graphs. Discussiones Mathematicae Graph Theory, 36(3):565–575, 2016. doi:10.7151/dmgt.
1875.

[5] I. Fabrici, J. Harant, S. Mohr, and J. M. Schmidt. On the circumference of essentially 4-
connected planar graphs. Journal of Graph Algorithms and Applications, 24(1):21–46, 2020.
doi:10.7155/jgaa.00516.

[6] H. Fleischner and B. Jackson. A note concerning some conjectures on cyclically 4–edge
connected 3–regular graphs. Annals of Discrete Mathematics, 41:171–177, 1989. doi:

10.1016/s0167-5060(08)70458-8.
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